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Abstract

We give a new combinatorial bijection between a certain set
of balanced modular tableaux of Gusein-Zade, Luengo and Melle-
Hernandez and k-ribbon shapes. In addition we also use the Schen-
sted algorithm for the rim hook tableaux of Stanton and White to
write down an explicit generating function for these balanced modu-
lar tableaux.

1 Introduction

Young tableaux are well-known combinatorial objects that have deep con-
nections with representation theory, geometry and algebra. Standard
Young tableaux are intimately connected with symmetric function theory
and the irreducible representations of the symmetric group. Study of sym-
metric functions has also led to a study of ribbon tableaux, first introduced
by Lascoux, Leclerc and Thibon (7].

In [4] Gusein-Zade, Luengo and Melle-Hernandez showed that the num-
ber of tableaux with kn boxes such that cell (i, j) is filled with the integer
aj + bi (mod k) and the entries attain each of the residues (0,1, ...,k — 1)
n times, is equal to the Euler characteristic of the Hilbert scheme of points
on the quotient stack [A%2/G), where G is the cyclic group Z; acting on
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A? as (z,y) — (r°z,7r%) and r is a primitive k-root of unity. In this pa-
per we give a simple direct combinatorial bijection between the tableaux of
Gusein-Zade, Luengo and Melle-Hernandez and k-ribbon tableaux. As an
interesting Corollary, we show that Fibonacci triples satisfy the sufficient
conditions on the parameters required for the bijection between balanced
modular tableaux and k-ribbon shapes to hold. We use the results of Stan-
ton and White [6] to give a generating function for the number of such
tableaux, which we call balanced modular tableauz, in a special case.

2 Background and Definitions

We say A = (A1, Ag,..., k) is a partition of n if Ay > Ag > -+ 2 A >
0 and z\:?=1 Ai = n. A partition is described pictorially by its Ferrers
diagram, an array of n cells into k left-justified rows with row i containing
A; cells for 1 < i < k. The kth diagonal of a Ferrers diagram is the set of
cells (4, ) such that j — i = k. The outer rim of a partition is the set of
cells (4, j) such that the cell (i + 1,7 + 1) is not in the partition.

For example, the Ferrers diagram for the partition A = (6,5, 3,3,1) is:

|

Figure 1: Ferrers Shape for partition A = (6,5,3,3,1)

A Young tableau is a filling of the Ferrers diagram with numbers such
that each square in the diagram contains a number. We define modular and
balanced modular tableaux below.

Definition 2.1. Given n,k € N and a,b € Z, we define a modular
tableau T, of shape A to be a filling of the partition A F n such that

)

the (3, 7) cell of the Ferrers diagram of A is filled with number aj + bi mod
k.

Definition 2.2. Let n,k € N and a,b € Z. A modular tableau T‘f,b of
shape A I n is called balanced with respect to k, a, b if it contains exactly
n/k cells labelled j for 0 < j < k—1.

For a partition A I n to be balanced with respect to k,a, b it is clearly
necessary but not sufficient that n be an integer multiple of k. For example,
the tableau in Figure 2 is a balanced modular tableau of size n = 20
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with k = 5,a = 2 and b = 3. Note that there are 20/5 = 4 occurrences of
0 < j <4 in the tableau.
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Figure 2: Balanced Modular Tableau for A = (5,5, 3,3,2,2) with k = 5,2 =
2,b=3.

Definition 2.3. A k-ribbon is defined as k adjacent cells in the Ferrers
diagram none of which lie on the same diagonal. A k-ribbon shape is a
partition which can be completely decomposed into k-ribbons. (See Figure

3.)

ol

Figure 3: A 5-ribbon shape with three 5-ribbons

Definition 2.4. A k-ribbon tableau is a filling of a k-ribbon shape with
the numbers 1,2,...n such that entries in each ribbon are identical, each
number appears in exactly one ribbon and the rows and columns are weakly

increasing. (See Figure 4.)

By definition a k-ribbon tableau has shape A which is a k-ribbon shape.
However, decomposition of a k-ribbon shape into k-ribbons is not neces-
sarily unique. The shape A = (5,5, 3,1,1) in the example above admits six
distinct 5-ribbon decompositions.

3 Results

In [2], Li proves several theorems relating the cellular decomposition of
certain Hilbert Schemes and (a,b; m)—aedmissable Young diagrams. The
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Figure 4: A 5-ribbon tableau with three 5-ribbons

(a,b; m)—admissable Young diagrams of Li are precisely our balanced mod-
ular tableauz. Li indicates that in the case (a,b) = (1,—1), the number
of admissible Young diagrams (balanced modular tableaux) can be com-
puted using the a formula of Géttsche for computing the Betti numbers
of an appropriate Hilbert Scheme, see [3]. In this section we construct a
direct combinatorial bijection between k-ribbon shapes and this same set
of balanced modular tableaux that does not require the deep results of Li
and the formula of Géttsche. First we prove two technical Lemmas about
balanced modular tableaux.

Lemma 3.1. Let T¥, be a modular tableau of shape A - n such that a+b =
k. Then the entries on a given diagonal are constant.

Proof. Let T¥, be a modular tableau of shape A I- n such that a +b = k.
Consider the cells on diagonal £. These cells are indexed by (1,4 + £) and
are filled with a(i + £) + bi (mod k) by the definition of modularity. It is
easy to check that the labels of the cells on diagonal £ are:

a(i + £) + bi (mod k) = (a + b)i + af (mod k)
= ki + af (mod k)
= af (mod k)

which is independent of the indices ¢ and j and is therefore constant. [

Lemma 3.2. Let T" be e balanced modular tableau of shape A b n such
that a + b=k and gcd(a, b, k) = 1. If the last cell in the first row contains
an s then there exists a cell containing t = s — b (mod k) on the outer rim
of T‘f‘ ». Purthermore, this cell has no cell immediately below it.

Proof. Let T, b be a balanced modular tableau of shape A F n such that
at+b=k and gcd(a, b, k) = 1. Let s be the label in the rightmost cell of the
top row of T . Define t = s —b (mod k). Then every cell in T, labelled ¢
either has an s immediately below it or the cell is necessarily on the outer

rim of TX,.
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We can pair all of the cells in the tableau labelled s with the cell above
labelled ¢ unless the cell containing an s is in the first row. Since s is in the
rightmost cell of the first row, then there must exist a cell labelled ¢ with

no cell below it, therefore that cell is on the outer rim of T¥,.
o

Theorem 3.1. A modular tableau T¥ ‘o such that a+b = k and ged(a, b, k) =
1 is balanced if and only if its shape s a k-ribbon shape.

Proof. Let T¥, be a balanced modular tableau of shape A - n such that
a+b=k and gecd(a,b, k) = 1. We proceed by induction on the size of T"
If T¥, has size n = k then by virtue of being balanced, it contains each J
for 0 < j £ k exactly once and is therefore a k-ribbon.

Now consider T, with size mk. Then by Lemma 3.1 the entries on a
given diagonal are constant modulo k. In addition, since ged(a,b, k) = 1
then any k consecutive diagonals contain cells filled with the numbers 0,
1, ..., k — 1, although not necessarily in that order. Let s be the label
in the rightmost cell of the top row of T 'p- By Lemma 3.2 there exists at
least one cell on the outer rim of T¥, labelled with ¢. Choose the northeast
most cell on the outer rim that is labelled with ¢ that has no cell below
it. Construct a k-ribbon by selecting k adjacent cells on the outer rim
beginning with this cell £ and moving northeast. The final cell in such a
k-ribbon will be labelled with an s. This cell labelled s cannot have a cell
labelled ¢ immediately to its right since this would contradict our choice of
the cell labelled ¢. Therefore the k-ribbon that results can be removed to
leave a balanced modular tableau of size (m — 1)k. By induction on the
size of the tableau, we obtain a k-ribbon shape.

To prove the other direction, begin with a partition A of n = mk that is
a k-ribbon shape. Fill the cells of A such that cell (3, j) contains j — i (mod
k). Since A is a k-ribbon shape of size mk, it can be decomposed into m
k-ribbons each containing cells from k consecutive diagonals and this each
contains exactly one cell labelled 0,1,...,k — 1, thus the resulting tableau
is a balanced modular tableau. O

Ezample 3.3. For example, in Figure 2, the last cell in the first row is
labelled 3. The construction above indicates that we can find a 5—ribbon
whose tail is labelled 3 — 3 = 0 and whose head is labelled 3 that contains
each of the numbers 0,1,2, 3,4 exactly once. Moreover, this 5—ribbon is
on the outer rim and can be removed leaving a valid 5—ribbon shape. In
Figure 2, the desired ribbon begins with the 0 in cell (6,1) and ends with
the cell (4, 3).

The following corollary is a direct result of Theorem 3.1.
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Corollary 8.4. If F; is the ith Fibonacci number, then a modular tableau
T of shape A F n is balanced with respect to (F;, Fiy1, Fiy2) if and only if
A is an Fyo-ribbon shape.

Proof. The result follows from the fact that that any three consecutive
Fibonacci numbers are pairwise relatively prime and F; + F;y, = Fiye. O

Theorem 3.1 implies that counting balanced modular tableaux of size n
in the special case where a +b = k and ged(a, b, k) = 1 reduces to counting
the distinct k-ribbon shapes of size n (not the k-ribbon tableaux themselves
as there may be multiple such tableaux for a given shape). Stanton and
White developed a bijection between k-ribbon tableaux and k-tuples of
tableaux [6]. We note that the bijection of Stanton and White implicitly
defines a bijection between k-ribbon shapes of size n and a k-tuples of
partitions A1, Az, ..., Ak such that || + |A2] + -+ + |Ak| = n simply by
ignoring the content of the tableaux. For details of this interpretation of
Stanton and White’s bijection, see [5]. Therefore we have the following
generating function for balanced modular tableaux.

Theorem 3.2. Let n € N and T* (n) be the set of balanced modular
tableaux Tf’b of size n = mk such that a + b = k and gcd(a,b, k) = 1.
Then for a fized integer k > 1,

Yt = ([ =)
n>0 j>1 q

where ([T;5, -I_Lq,—)" is the generating functions for k-colored partitions
of n.

4 Remarks

The condition that ged(a,b, k) =1 in Theorem 3.1 is necessary as without
this condition not all of the numbers 0 through k& — 1 will appear in a
modular tableau. This condition can be relaxed if we expand the notion of
balanced. Given a modular tableau T‘f' p such that a+b =k, gcd(a, b, k) =d
and for which every integer that does appear in the tableau appears the
same number of times (call this quasi-balanced), we can create a balanced
modular tableau T‘f,"b, where o’ = a/d, ¥ = b/d and k' = k/d. Thus the
set of quasi-balanced modular tableaux T: p With a+b = k, ged(a,b,k) =d
is in bijection with the set of k’-ribbon shapes.

The condition that a+b = k, however, appears quite strict. Without this
condition, we lose the fact that each diagonal in a tableau contains the same
number on it, thus losing the important condition that any k consecutive
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diagonals contains the numbers 0 through k£ — 1. It is an open question
to determine an efficient way of counting balanced modular tableaux T!f, b

where a + b # k.
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