The m-competition indices of symmetric
primitive digraphs with loop*

Yanling Shao! Yubin Gao
Department of Mathematics, North University of China
Taiyuan, Shanxi 030051, P.R. China

Abstract

For a positive integer m, where 1 < m < n, the m-competition
index (generalized competition index) of a primitive digraph D of
order 7 is the smallest positive integer k such that for every pair of
vertices = and y, there exist m distinct vertices v1,v2,...,vm such
that there exist walks of length k& from z to v; and from y to v;
for 1 € i < m. In this paper, we study the generalized competition
indices of symmetric primitive digraphs with loop. We determine the
generalized competition index set and characterize completely the
symmetric primitive digraph in this class such that the generalized
competition index is equal to the maximum value.
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1 Introduction

For terminology and notation used here we follow [1, 4]. Let D = (V, E)
denote a digraph with vertex set V = V(D), arc set E = E(D) and order
n. Loops are permitted but multiple arcs are not. A digraph D is called
primitive if for some positive integer k, there is a walk of length exactly &k
from each vertex u to each vertex v (possibly u again). The smallest such
k is called the ezponent of D, and it is denoted by exp(D). It is well known
that D is primitive if and only if D is strongly connected and the greatest
common divisor of all the cycle lengths of D is 1.
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The distance from vertex u to vertex v in D, is the length of a shortest
walk from u to v, and denoted by dp(u,v) (for short, d(u,v)). The notation
u —> v is used to indicate that there is a walk of length k from u to v.

Let D be a primitive digraph of order n. For a positive integer m
where 1 < m < n, we define the m-competition index (generalized compe-
tition index) of D, denoted by k., (D), as the smallest positive integer k
such that for every pair of vertices x and y, there exist m distinct vertices
U1, V3,..., Uy, such that N v; and y £, v; for 1 <i<min D.

Akelbek and Kirkland (2, 3] introduced the scrambling index of a prim-
itive digraph D, denoted by k(D). Kim [4] introduced the m-competition
index as a generalization of the competition index. In the case of primitive
digraphs, the definitions of the scrambling index and 1-competition index
are identical. We have k(D) = k;(D).

For a positive integer k and a primitive digraph D, we define the k-step
outneighborhood of a vertex z as

N*(D* : z) = {v € V(D)jz = v}.
We define the k-step common outneighborhood of vertices x and y as
NT(D* : z,y) = N*(DF : z) n N*(D* : y).
We define the local m-competition indez of vertices x and y as
k(D : 2,y) = min{k : IN* (D" : z,y)| > m where t > k}.
We also define the local m-competition indez of z as

km(D :z) = kn(D :z,y)}.
(D:2) = max {kn(D:z,9)}

Then, we have

= () = km(D : z,v).
k(D) Ig,%)km(D z) 7 (D:z,9)

The m-competition index is a generalization of the scrambling index
and the exponent of a primitive digraph. It was known that for 1 <m < n
(For example see [4]):

k(D) = ky(D) < ka(D) < -+ < kn(D) = exp(D).

A symmetric digraph is a digraph such that for any vertices u and v,
(w.w) is an arc if and only if (v, u) is an arc. An undirected graph (possibly
with loops) can be regarded as a symmetric digraph.
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There has been interest recently in generalized competition index [4,
5, 6, 7]. Let S, denote the set of all primitive graphs of order n with
one loop at least. In this paper, we study m-competition indices of S,,.
We determine m-competition index set for Sy, and characterize completely
the symmetric primitive digraph in this class such that the m-competition
index is equal to the maximum value.

2 The generalized competition indices for spe-
cial graphs

In this section, we study the generalized competition indices for some
special graphs. First, we consider the following graphs,

Ui+1
va Vo v3 v Vi42
\ Vn

Fig. 1 Graphs Gn;

where1</{<n-1.
Theorem 2.1 For2<i<n-land2<m<n-1,

_[l+m-1, f2<m<l,
km(Gn,l) = { 2, fm>141.

Proof Casel.2<m <l
For any wv;, noticing that d(v;,v;) < ! and v, is a loop vertex, then
{v1,v2,...,vm} C N'*(Gf;':lm'l : v;). Then
km(Gng) Sl+m -1
On the other hand, N‘*'(G'"""'2 PUy) =

n,l

V(Gn)\{vi-e |0 <t <l —m, and t is even}, if I + m is even,
{vi,v2,- -, }\{v—t |0 £t <l ~m, and t is odd}, if !+ m is odd,

and N* (G2 v) =

{vi,v2,---,u\{vi—e |0 <t <l-m—1, and t is odd}, if [+ m is even,
V(Gu\{vi-t |0t <l —m—1, and t is even}, if L + m is odd.
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Then [N+(GH™2 tup, up)| = [NHGHT 2 o) ANT(GLH 2 s o) =
{v1,v2,- -+, vm—1}| = m —1, and km(Gn,) > 1+ m —2. So

km(Gny) =1+m —1.

Case 2. m>1+1.
It is easy to see that for each vertex v;,

N*(GZ) : vi) = V(Gry),

SO
km(Gn'l) S 2l.

On the other hand, since
I—
N+(Gfl,l s Ul+l) = {Ul,v% ter avl}v

we have km (Gnt) > 20 — 1, and kn(Gny) = 2L
Theorem 2.1 holds now. O

Theorem 2.2 For2<m<n-—1, kn(Gn,1) =2

Proof It is clear that N*(GZ; : v;) = V(Gn,) for each vertex v;, so
km(Gn1) < 2.

On the other hand, for any v; # vy, N*(GL, : v;) = {v1}. Therefore
kn(Ghi) > 1, and ky(Gry) =2. O

Next, we consider the following graphs,

Un

Un-1

v v v3 R Un—2

Oo—— ;
\’Ul+1

Fig. 2 Graphs Gn

where 1 <!l <n-2.
Theorem 2.3 Ffor2<i<n—-2and2<m<n-1,

—_— _ l4-7n, if 2 SE”WZS L
km(Gn,z)—{ 2A+1, fl+1<m<n-L
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Proof Casel.2<m<l.
For any v;, noticing that d(v;,v;) <!+ 1 and v, is a loop vertex, then

{v1,v2,-.,¥m} € N*(@" : vi). Then
k(Crt) < L +m.

On the other hand, N“'(GHm ! :Un)

{vi,v2,- -, vn1}]\{vi—t | 0Kt <l —m, and t is even}, ifl+ m is even,
{vi,v2, -, v, va}\{v1—: |0 St <! —m, and t is odd}, ifl+ m is odd,

and N*(Gu" ™ 2 vmoy) =

»
{vi,v2, -, v, va}\{v-: [0St <l-m—1, and tis odd}, ifl+ m iseven,
{vi,v2, -, a1 \{vi—¢ |0<t <l-m—1, and t iseven}, if !+ m isodd.

Then [N*@,""" ¢ vnyvact)l = INF@H™ ¢ wa) N N*@

Vn=1)] = {v1,v2, -, Um-1}| =m -1, and Icm(G,,,l) >l+m-1. So
km(-(_;'n,z) =1l4+m.

Case2.l+1<m<n-1.

For any v; # vp, noticing that d(v;,v1) < I, d(vn,v1) =1+ 1, and v,
is a loop vertex, then N+t (G2 H :v;) = V(Gny) and N “”(5,21171 ) =

{vl,vg, ) vn—l} Then
km(@,,g) <2 +1.

On the other hand, N*(G n‘, tUp) = {vl,vz, -+, Vn} and N+(5,2:’, :

2l
Un_1) = {v1,92, -+, Vn-1}. Then [N+(Cay : vn, vpy)| = [N+(Goy : va) N
N*(Gn, vn—1)| = [{v1,v2,+ -+, ui}| =, and km(Gn;) > 2I. So
km(Gny) =20 +1.

Theorem 2.3 holds now. O
Theorem 2.4 For2<m<n—1, kn(Gn,) = 3.
Proof For any vertex v; # vn, N +(@i,l : v;) = V(Ghn,1). For vertex v,,
N*(G2, i vn) = V(Gn1)\{va}. Sofor2<m<n—1, k,,,(@n 1) <3

On the other hand, N"’(@2 t vn) = {v1,vn}, N"'(Gnl P Upoy) =
V(Gr,1)\{vn}- So |N+(G’,l 18 vn)nN+(Gn 1 :Un—1)| = |v1] = 1. Therefore

km(Gni) > 2, and km(Gn1) =3. O
The result of Theorm 2.5 is clear.
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Theorem 2.5 Let K, be the complete graph of order n adding a loop in
each vertez. Then for2<m<n-1,

ke (Bn) = 1.

3 The generalized competition index set of
Sn

For 1 < m < n, let E,;, = {km(G) | G € Sn}. It was known that E, =
{1,2,...,n — 1} (see Theorem 3.3 in [8]) and E, = {1,2,...,2n — 2} \ S,
where S is the set of all odd numbers in {n,n+1,...,2n — 2} (see [9]).

In this section, we show that E,, = {1,2,...,n+m—2}for2<m <
n — 1. We also characterize the graph in S, such that the generalized
competition index is equal to the maximum value.

Theorem 3.1 Let GE€ S,. For2<m<n-1,
kn(G)<n+m-2.
The equality holds if and only if the graph G is isomorphic to Gnn-1.

Proof Let v; be a loop vertex of G. It is easy to see that for any v; €
V(G), d(vi,v1) < n—1, INYH(G™ ! : v;)| > m, and N¥*(G™! : v1) C
N+(G™t™=2 : ;). Then for any v;,v; € V(G),

NHG™™ 2y, v)| 2 INYHG™ L iwy)| 2 m,
j

and so
kn(G)<n+m-—2.

Let G € S, such that kyn(G) =n+m—2for2<m <n-1. For
a vertex v with loop, we denote d, = max,,ev(c){d(vi,v)}. Suppose that
there exists a vertex v with loop such that d, < n — 2. Then for any
v; € V(G), d(v;,v) < n—2, and N*T(G™"!:v) € N*(G"+™2 : v;). Then
for any v;,v; € V(G),

|N+(G-n+m—3 . Ui,'Uj)l > |N+(Gm—-1 . ,v)l > m,

and so kn,(G) £ n+m—3. It is a contradiction. Thend, =n—1 for each
vertex v with loop. This means that G is isomorphic to Gp,n-1. O

Theorem 3.2 For2<m<n-1, E,={12,...,n+m—2}.
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Proof For m =2, taking 2 <! < n -1, by Theorem 2.1, {3,4,...,n} C
E,,. Combining the results of Theorems 2.2 and 2.5, we have E,, =
{1,2,...,n}.

For 3 < m < n-—1, taking m <! < n-1, by Theorem 2.1, {2m —
L,2m,...,n+m —2} C E,. Taking 2 <1 < m — 1, by Theorem 2.1,
{4,6,...,2m — 2} C E,. Taking 2 <! < m — 2, by Theorem 2.3,
{5,7,...,2m — 3} C E,,. Combining the results of Theorems 2.2, 2.4
and 2.5, we have E,, = {1,2,...,n+m—-2}. O
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