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Abstract

In this study, we first define new sequences named (s, t)-Jacobsthal and
(s,t) Jacobsthal-Lucas sequences. After that, by using these sequences,
we establish (s, t)-Jacobsthal and (s,t) Jacobsthal-Lucas matriz sequences.
Finally we present some important relationships between these matrix
sequences,
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1 Introduction

In the last years, we have seen a great many studies on the different number
sequences. From these sequences, Fibonacci F,, and Lucas L, numbers are the
terms of the sequences {0, 1, 1, 2, 3, 5, ...} and {2, 1, 3, 4, 7, 11, ...} wherein
each term is the sum of the two previous terms, beginning with the values
Fo =0,  =1and Ly = 2, L, = 1 respectively. Similarly Jacobsthal
and Jacobsthal-Lucas numbers are also given by recurrence relations S,4; =
Sn+285,-1, So =0, §; =1 and sp41 = 8 + 28,1, S0 = 2, 8, = 2 for
n > 1, respectively [1-5]. In the literature, in [6-8], there are the some gen-
eralizations of the Fibonacci, Jacobsthal and Pell families. For instance, in
(6], Falcon and Plaza introduce k—Fibonacci sequence {Fi,»}2; by using Fi-
bonacci and Pell sequences. Many properties of these numbers were deduced
directly from elementary matrix algebra. In {12], Authors defined generalized
k—Horadam sequence and examined the properties of these sequence. Then, in
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[9], we defined a new generalization {Gk,n}, ey Of k—Fibonacci family. Civciv,
in [10-11], defined (s,t) Fibonacci and (s,t) Lucas matrix sequences by using
(s,t) Fibonacci and (s,t) Lucas sequences. He also gave some properties related
to these matrix sequences.

In this study, we firstly define (s,t)-Jacobsthal and (s,t)-Jacobsthal-Lucas
sequences, then by using these sequences, we also define (s, ¢)-Jacobsthal and
(s,t)-Jacobsthal Lucas matrix sequences. In the last of the study, we investigate
the relationships between (s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas matrix
sequences.

2 Main Results

Let us first consider the following definitions of (s,t) Jacobsthal and (s,t) Jacob-
sthal Lucas sequences which will be needed for the definitions of (s,t) Jacobsthal
and (s,t) Jacobsthal Lucas matriz sequences and relationships between them.

Definition 1 For any real numbers s, t; the (s, t) Jacobsthal {ja(s, t)},en
and the (s, t) Jacobsthal-Lucas {ca(s, t)},en sequences are defined recurrently
by

jn (8, t) = 3jn—l (3’ t) + 2tjn—2 (S,t) ’ jO(‘g! t) = Ol jl(sa t) = 11 n 2 2, (1)
and
cn (8,) = scn—1 (8,8) + 2ten—2 (s,t), co(8,t) =2, ci(s,t) =8, n22, (2) -
respectively, where t # 0 and s + 8t # 0.
Particular cases of the previous definition are:
e Ifs=1, t=1/2and jo(1,1/2) =0, j1(1,1/2) = 1, the classic Fibonacci
sequence is obtained,
eIfs=1,t=1/2 and c(1,1/2) = 2, ¢;1(1,1/2) = 1, the classic Lucas
sequence is obtained,
o If s=t=1and jp(1,1) =0, 5;(1,1) = 1, the classic Jacobsthal sequence
is obtained,
e Ifs=1t=1and ¢1,1) = 2, e1(1,1) = 2, the classic Jacobsthal-Lucas
sequence is obtained,

Furthermore, in the following proposition, (s,t)-Jacobsthal matrix sequence
{Jn (5,8)} e is defined by carrying to matrix theory (s,t)-Jacobsthal sequence.

Definition 2 For any integer numbers s, t; the (s, t) th Jacobsthal matriz
sequence {Jn(3, t)}nen 18 defined recurrently by

Jn (8, t) = 3Jn—-l (3lt) + 2tJn—2 (31 t) ] (3)

Jo(s,2) ((1) g),Jl(s,t)=(': 3),7122,
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respectively, where t # 0 and s% + 8t # 0.

Theorem 3 For any integer n > 1, we have

'n. yt 2 in yt
Jn(srt) = ( Jt;': g:,t; 2t.7'nil E: t; ) (4)

. 3 g . 1 0 2
with initial values Jo (s,t) =1 = ( 0 1 )’ Ji(s,t) = ( : 0 ) )

Proof. If we take n =2 in (3), then we get

ji3(s,8)  ga(s,t) \ _ [ $*+2t 2
Jz(s,th(éﬁfﬁ,& 21;123,0)'( st 2:)

By considering induction steps, let us suppose that the equality in (4) holds for
all n = k € Z*. To end up the proof, we have to show that the case also holds

for n = k + 1. Therefore we can write

Je+1(8,t) = 8Jk(s,t) + 2tTk—1(s,t)
s ( Jev1(8:t)  25x(s,t) )
tje(s,t)  2tje-1(s,t)
jk(slt) 2jk—1(3)t) )
+2t( tik—1(syt) 2tjx—2(s,t)
87k+1 (3, t) + 2tj; (8, t) 287 (8, t) + 4tjk...1(8, t)

stie(s,t) + 2t%jk—1(5,) 2stix—_1(8,t) + 4t25x_2(s,1)
( Je+2(s,t)  2k+1(s,t) )

ties1(s,t)  2t5(s,t) /-

Hence the result. =

Theorem 4 For any integer m,n >0, we get

-

Jman(8,t) = Jm(8,8)Jn(s,t). )]

Proof. It’s proven by induction. Consider n = 0, it’s true. Let us suppose that
the equality in (5) holds for all n = k € Z*. Consequently, we have to show
that the case also holds for n = k + 1. Therefore we can write

Jmint1(s,t) = 8Jmin(s,t) + 2tImin-1(s,t)
8Jm(8,t)Jn(s,t) + 2tJm(3,t) Jn-1(s,t)
Jm(8,t) [8Tn(s,t) + 2tTn_1(s, 1))
= JIm(s,t)Jns1(s,t).
Furthermore, in the following proposition, (s,t)-Jacobsthal-Lucas matrix se-

quence {C, (s,1)},,cn is defined by carrying to matrix theory (s,t)-Jacobsthal-
Lucas sequence. ®
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Definition 5 For any integer numbers s, t; the (s, t) th Jacobsthal-Lucas ma-
triz sequence {Cn(3, t)},en 18 defined recurrently by

Cn(s,t) = 8Cpn-1(s,t)+2tCp_2(s,t), n =2 (6)
4 244t
Co(s,t) = ( 2St -8 ), Ci(s,t) = ( : :;4 i: )!

respectively, where t # 0 and s? + 8t # 0.

Theorem 6 For any integer n > 1, we have

B ot 2¢n(s,1)
Cn(sit) - ( cr;:g:,t; 2tcnf':§z| t) ) ' (7)

2
with initial values Cp(s,t) = ( ;t —43 ) and Ci(st) = ( s :;4t ‘21’: ) .

Proof. By using (2) and (7), for n = 2, we also have

_{ ca(s,t) 2ca(s,t) \ _ [ s3+6st 25248t
C2(s’t)_(tq(s,t) 2ei(s,t) ) \ sPt+4i2 2s :

By considering induction steps, let us suppose that the equality in (7) holds for
alln =k € Z+. To end up the proof, we have to show that the case also holds

for n = k + 1. Therefore we have

Cr+1(s,t) = 3Ci(s,t) +2tCr-1(s,t)
s(ck+1(8,t) 2c(s, 1) )

tex(s,t) 2tep—1(s,t)
ck(s,t)  2ck-1(s,t)
+2t ( tep-1(s,t) 2tck—a(s,t)
scri1(8,t) + 2tck(s,t)  2sck(s, t) + 4tck-1(s, )
stex(s,t) + 2t2ci_1(s,t) 2stcr—1(s,t) + 4t3ck_2(s, 1)

( ck+2(8,t)  2ckt1(s,t) )

tery1(s, t) 2tc (s, t)

Hence the result.
Let us consider the following proposition which will be used for the results in

this section. In fact, by this proposition, it will be given a relationship between
the sequences {Jn(8,%)},en 2nd {Cn(s,t)} ,en- B

Proposition 7 Forn > 0, we get

Cn+1(3: t) = Cl(sat)']n(s, t)' (8)
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2
Proof. For n = 1, it is obvious from Cj(s,t) = ( s+ i‘: ‘21: ) and Jy(s,t) =

(¢5)

Ci(s,t) (s, t)

_ 2 +4t 2s s
- st 4t t

2
0
83+ 6st 252+ 8t )

CZ (31 t)

= ( St+4t2 2t
c3(s,t)  2co(s,t)
tea(s,t) 2tei(s,t)

Suppose that C)(s,t)Jn(s,t) = Cn41(8,1), for n = N. We have to show that
the case also holds for n = N + 1.

Cl(sit)JN+1(3at) Cl(syt)JN(s’ t)Jl(srt)
Cr+1(8,t)1(s,t)
( CN+2(8,t) 2en+1(8,t) ) ( s 2 )
tens1(syt)  2ten(s, t) ‘ANt o0
_ ( cn+3(8,t)  2en42(s,t) )
ten+2(8,t)  2tcn4r (s,2)
Cn+1(s,t).

]
Proposition 8 For m,n > 0, we have
Im(8,8)Cns1(8,t) = Cpy1(s, t)Jm(s, t). (9)

Proof. From proposition 7 and Theorem 4, we can write

Im(8,t)Cnt1(8,8) = JIm(3,t)C1(8,t)Jn(s,1)
Jm(sy t) [8J1(S, t) + 4tJ0(37t)] Jn(s)t)
8Tntm+1(8,t) + 481 (s, 1)
[sJ1(s,t) + 4tJo(s,t)] Jnam(s,t)

Ci1(8, )T (s, t)Im(s, )
= Cat1(s,t)Im(s, ).

|
Proposition 9 Forn > 1, we have

Ca(s,t) = 8Jn(s,t) + 4tJo_1(s,2). (10)
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Proof. For n =1, it is obvious
Ci(s,t) = s8Ji(s,t) + 4tJo(s,t)
(7% 3)-(i (3 )
For n = M, assume that Cps(s,t) = sJpm(s,t) +4tJar—1(s,t). We will show that
the case also holds for n = N + 1.
Crnisi(st) Ci(s,t)In(s,t)

[sJ1(s,t) + 4tJo(s,t)] In(s,t)
8JN+1 (8, t) + 4tJN(8, t).

]
Proposition 10 For n > 0, we have
a) C%y1(st) = CE(s,t)an(s, 1),
b) C%,1(s,t) = C1(5,t)Cons1(s, 1),
¢) Con+1(8,t) = Jn(8,t)Cri1(s, ).
Proof. From proposition 7 and the proof of a) is obvious

C2.1(8t) = Cnryui(s,t)Cnia(s,t)
Ci(s, t)Jn(37 t)Ci(s, t)Jn(S) t)
C3(s,t)Jan(s, ).

From a) and proposition 7, we can write

Cﬁ-{-l (3a t) Cf (31 t)Jzn(sv t)
Ci(s,t)C1(s,t)J2n(s,t)
o) (8, t)Czn+1 (s, t).

Using proposition 7, we have

Conti(s,t) = G (s,t)J2n(s,t)
Jn(8,8)Crs1(s,2)-

a

Corollary 11 Forn >0, we have
a) &2 o(s,t) +2tc2 (s, t) = (8% + 8t) jan+3(s,t),
b) c2,o(s,t) + 2tc2 1 (8, 1) = Consals,t) + 2tcany2(s, B),
c) can(8,t) = ja(s,t)cn+1(s,t) + 2tgn_1(s,t)en(s, 1)
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Proof. From a) of proposition 10, the proof of a) of this corollary is obvious:
Crzz+1(3’t) = Cf(sit)JZn(",t)

cns2(5,t)  2cn41(s,t) 2 _ s?+4t 2 2(j2n+l(svt) 2j2n(37t) )
tensi(s,t)  2ten(s,?) B st 4t tizn(s,t)  2tjon-1(s,t)

From the equality of the first entries of matrices in both of sides of the equation,
we write
Zia(st) +2tc2 1 (s,8) = (s +105% + 16t%) japa (s, t) + t(25° + 168t)jan(s, £)
= $%(sjan+1(5,1) + 2g2a(s, ) +
+88t(3j2n+1(31 t) + 2tj2n(3)t)) +
+25%tj2n41(5,t) + 16t%j2041(s, t)
= %jans2(3,t) + Bstiansa(s,t) +
+25%t5an41(5,8) + 16t%2n42(s,t)
= 8%(sfan+2(8,t) + 2izns1(5,1)) + Bt(s2nsa(s, t) +
+2tj2n+1 (37 t))
= (5% +8t)jan+a(s,t).
From b) of proposition 10, the proof of b) of this corollary can be clearly seen:
Cr21+1(33 t) = 01(8, t)C2n+1(31 t)
cni2(8t) 2enpa(st) \° _ [ 2+4t 2s Cons2(8,8)  202n41(s,t) ) .
tent1(s,t)  2ten(s,t) st 4t teans1(s,t)  2tean(s,t)

From the equality of the first entries of matrices in both of sides of the equatibn,
we have

c?t+2(8’ t) + 2tc,2,+1(3, t) = 3(3°2n+2(3: t) + 2tc2n+1(sat)) + 4tc2n+2(37 t)
(sc2n+3(s,t) + 2tconsa(s, 1)) + 2tezny2(s,t)
Consa(s,t) + 2tcan2(s, t).

From c) of proposition 10, the proof of c) of this corollary is obvious:

Cont1(5,8) = Jn(8,8)Cns1(s,2)

(czn+z(s,t) 2C2n+1(s.t)) _ (jn+1(3yt) 2ja(s,t) )
teans1(s,t)  2teon(s,t) tin(s,t)  2tjn-1(s,t)

(Cn+2(3,t) 2Cn+1(3,t))
tent1(sit)  2ten(st) /-

Equalizing the entries in the second coloumn and row in both of sides of the
matrix equality gives
2tepn(s,t)

C2n (3 ’ t)

2t(jn(3a t)cn+1(3) t) + 2tj‘n—l(3: t)c,,(s, t))
jn(sy t)c'n+1 (31 t) + thn-l (31 t)cn(s) t)'
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Binet Formula enables us to state (s,t) Jacobsthal and (s,t) Jacobsthal Lucas
numbers. It can be clearly obtained from the roots r; and r of characteristic

equations of (1) and (2) as the form z? = sz + 2, where r; = ZEZEE
T2 = e=y/sT8t ; 8 m

Corollary 12 For n > 0, the Binet Formulas for nth (s,t) Jacobsthal number
and nth (s,t) Jacobsthal Lucas number are given by

. _ T —13

n(s,t) = T —7Tg (11)
and

cn(st) =70 +75 (12)
respectively.

Proof. The proof of first equality is obvious from the principle of induction
n. Now, let us prove second equality. It follows from proposition 9 that we have

cn(s,t) = sjn(s,t) + 4tjn-1(st).

From (11), we have

-1 n—1
-1y -1
en(s,t) = s2—2 44t 2
Ty —T2 ™ —T2
4t ,.n at\ .n
_ (s+;)r1—(s+m)r2
Ty —T2

rist4t .n _ rzstdt,.n
1 T2 2

Ty —T2

2 2
i +2t n _ T31+2t n
[ LB ry Tg

TL—T2

7‘2, -T2 rn — r:-r; T2 7'”
L 1 ) 2

Ty — T2
= rf+r3.

Proposition 13 Forn >0, we get
Jl(s,t)—ero(s,t)) n (J1(8. t) —r1Jo(s,t)) n
Tl - T2 .

T1—T2

L@ﬂ:(

TL—T2
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Proof.

_ P 8§—T2 2 _ T3 s—n 2
Jn(s’t) - Ty — T2 ( t -T2 Ty —T9 14 -

= 1 s(rp —r8)—rira (rP7 = r37Y) 2(rf —r3)
T ( t(rf - r3) —rirg (1P = 137Y) )
(J;(s,t) - roJo(s, t)) - (Jl(s, t) — T1Jo(s,t)) .
™ —7T2 T1T —T2

Proposition 14 Forn > 0, we have

C2(3:t) = rZCl(s,t)) ™ (CZ(S:t) - rlcl(s’t)) 2.

Ty — T2

Crt1(s,t) = (

n—r
Proof. By using the above proposition and C,11(s,t) = Ci(s,t)Ja(s,t), it can
be clearly seen.

Conclusion 15 We define new sequences named (s,t) Jacobsthal and (s,t) Jacobsthal
Lucas sequences. By using these sequences, we establish (s,t) Jacobsthal and

(syt) Jacobsthal Lucas matriz sequences. Similarly, one can define matriz se-
quences releted to other number sequences and can ezamine their properties.
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