{C4, K3 + e}-metamorphosis of S(2,4,n)

Giorgio Ragusa
Dipartimento di Matematica e Informatica
Universita di Catania
viale A. Doria, 6
95125 Catania, Italia
gragusa@dmi.unict.it

Abstract

Let (X,B) be a A-fold G-decomposition and let G;, i = 1,...,4,
be nonisomorphic proper subgraphs of G without isolated vertices. Put
B; = {B: | B € B}, where B; is a subgraph of B isomorphic to Gi.
A {G1,Gy,...,G,}-metamorphosis of (X, B) is a rearrangement, for each
i=1,...,, of the edges of g s (E(B)\ E(B;)) into a family F; of copies
of G; with a leave L;, such that (X, B; U F;, L;) is a maximum packing
of AH with copies of G;. In this paper, we give a complete answer to the
existence problem of an Sx(2,4,n) having a {C4, K3 + e}-metamorphosis.

1 Preliminaries

Let G and H be simple finite graphs. A A-fold G-decomposition of AH () copies
of H) is a pair (X, B) where X = V(H), the vertex set of H, and B is a collection
of copies of G (blocks), which partitions the multiset E(AH), the multiset of
edges of AH.

Let K, denote the complete simple graph on n verticess. A \-fold G-
decomposition of AK, is said a A-fold G-design or G-system of order n. A A-fold
K.-design of order n is well-known as an S)(2, k,n), a balanced incomplete block
design of order n, block size k and indez A. A A-fold Kj-decomposition of the
complete multigraph on u; parts of size g;, ¢ = 1,2,...,h, is well-known as
a k-GDD (group divisible design) of indez A and type g;*gy?...gp". If some
blocks are isomorphic to K, and the other are isomorphic to K, we have an
{r,s}-GDD of indez X and type gy’ gy*...gp". If A = 1, we drop ”of index 1”.
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A packing of AH with copies of G is a triple (X, B, L), where X = V(H),
B is a collection of copies of G from E(AH) and L, called the leave, is the
graph induced by the edges of AH not belonging to some block of B. If the
cardinality of the multiset B is as large as possible, the packing (X, B, L) is said
to be maximum. When L is empty, a maximum packing of AH with copies of
G coincides with a A-fold G-decomposition of AH.

A k-path Py, k > 2, is the graph [a1,a9,...,ax] on vertices ay,--- ,ar and
edges {ai,ai+1}, i = 1,...,k — 1. We denote by E; the graph on 4 vertices
consisting of two disjoint edges.

A k-cycle Ci, k > 3 is the graph on vertices ai,as,...,a; with edges
{a1,a2},{asz,a3},...,{ax,a1}. A Ci will be denoted by any cyclic shift of
(a1,a2,- -+ ,ak) or (ax,ak—1,...,01). In particular, the triangle K3 with edges
{a,b},{a,c}, {c,b} will be denoted by (a,b,c).

A Ks + e, or a kite, is a simple graph on 4 vertices consisting of a triangle
and a single edge (tail) sharing one common vertex (see Figure 1). We denote
by (a,b,¢c) — d or (b,a,c) — d the kite having base {a,b} and tail {c, d}.

o
[~

Figure 1: the kite (a,b,c)-d

Definition. Let (X, B) be a A-fold G-decomposition of AH. Let G;,
i=1,...,p, be non isomorphic proper subgraphs of G, each without
isolated vertices. Put B; = {B; | B € B}, where B; is a subgraph of
B isomorphic to G;. A {G1,Gs,...,G,}-metamorphosis of (X,B) is a
rearrangement, for eachi=1,...,u, of the edges of |Ugg(E(B)\ E(B;))
into a family B, of copies of G; with leave L;, such that (X,B; UB], L;)
is a mazimum packing of \H with copies of G;.

Above definition has been introduced in [1} as simultaneous metamorpho-
sis. A Gy-metamorphosis is also well-known as metamorphosis into a maximum
packing with copies of G;. The existence problem of Sx(2, 4,n) having a meta-
morphosis has been studied in many papers (for example (7, 8]).

In this paper, we become to study the simultaneous metamorphosis of an
Sx(2,4,n) when the subgraphs G;,i = 1,...,u, u > 2 are obtained by removing
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from K, a fixed number t € {1,2,...,5} of edges. In our definition we require
that G; is not isomorphic to G; when i # j, so the first case to study is ¢ = 2.
It is G = K4,G, = Cy4,G2 = K3 +e. In the following we always denote the sets
1, By, L1, Ly by C, K, L¢ and Ly, respectively.
It is well-known that, for n > 4: an Sx(2,4, n) exists if and only if An(n—1) =
0 (mod 12) and A(n—1) = 0 (mod 3); a A-fold Cy-system of order n exists if and
only if An(n — 1) =0 (mod 8) and A(n — 1) = 0 (mod 2); a A-fold kite-system
of order n if and only if An(n — 1) =0 (mod 8).
Necessary and sufficient conditions for the existence of an S)(2, 4, n) having
a metamorphosis into a maximum packing of AK,, with 4-cycles (with kites) are
given in [6] ([5]). See the following table, where § denotes the empty graph.

A (mod 12) n>4 Le L
1,5,7,11 1 (mod 24) [/} []
4 (mod 24) 1-factor P;oor, if n> 4, By
13 (mod 24) | Cg or 2 K3s P; or E;
16 (mod 24) 1-factor 0
2,10 1,4 (mod 12) ] []
7,10 (mod 12) 2P, P3 or 2P, or E;
3,9 1 (mod 8) [ [
0 (mod 8) 1-factor 0
4 (mod 8) 1-factor P or 2P, or E»
5 (mod 8) 2P, P; or 2P, or E,
4,8 1 (mod 3) [] (]
6 0,1 (mod 4) [] []
2,3 (mod 4) 2P, P3 or 2P or E»
0 Vn >4 ] []

Pairing [5] and [6] it is easy to check that in some cases Cy-metamorphoses
and (K3 + e)-metamorphoses follow from & same starting S\ (2,4, n). Collecting
these results we get our first result.

Theorem 1.1. (5, 6/ If A\ =1 andn = 4,13 (mod 24), A =2 andn = 7,10, 19,
A=3 and n =4,5 (mod 8), A =6 and n = 2,3 (mod 4), then there exists an
S51(2,4,n) having a {C4, K3 + e}-metamorphosis.
Theorem 1.2. [Weighting construction] . Suppose there exist:

1. an {r,s}-GDD of type g;*g3*... gp*;

2. an Sx(2,4,a + wg),i = 1,...,h, with & = 0,1, having a {Cy, K3 + €}-
metamorphosis;
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3. a 4-GDD of index X and type w”™, having a {C4, K3 + e}-metamorphosis;
4. a 4-GDD of indez \ and type w®, having a {Cy, K3 + e}-metamorphosis.

Then there is an Sx(2,4,w(g1uy + ... + gnun) + @) having a {C4, K3 + €}-
metamorphosis.

Proof The proof follows easily from the well-known Wilson fundamental con-
struction [3]. m]

2 A=1

Lemma 2.1. There ezists a 4-GDD of type (2t)%, with t > 2,t # 3, having a
{Ca4, K3 + e}-metamorphosis.

Proof Fort > 2,t # 3, let X = Zgy X Zy, G = {Zgs x {k},k € Z4} and
B= {{(il 1)3 (]! 2)7 (iol j’ 3)) (1:°2jl 0)} | i’j € Z2t}) where (Zzt, 01) and (Z2ta 02)
are two orthogonal quasigroups of order 2t [2]. Then T = (X, G, B) is the 4-GDD
of type (2¢)*.

Remove from each block the edges {(%,1), (4,2)}, {(i014,3), (¢024,0)}. These
edges cover two complete bipartite graphs Ko, o, then we can rearrange them
into the set C of 4-cycles [10].

For each 0 < i < 2t — 1 and for each 0 < j < ¢ — 1, remove the edges
{(i’ 1)’ (.7’ 2)}’ {(.7) 2); (z 01 J 3)}$ {(i: l)v (7' o1 (.7 + t)a 3)}) {(‘l 1 (.7 + t)’ 3)’ (7' 02
(j+t):0)}' Since {(.7,2):(101.7!3) | 0 S 1< 2t - 1)0 SJ S t— 1} = {(jrz)v(iol
(j+1),3)]0<i<2t—1,0< j <t- 1}, the removed edges can be assembled
into the set K = {((4,1),(5,2), (i01 (7 +1),8)) = (102 (5 +1),0) |01 < 2 -1,
0<j<t—1}. o

In order to give a {G1, G2, ..., G,}-metamorphosis, it is sufficient, for A = 1,
to indicate, for each i, L; and B, being straightforward the blocks in B; .

Lemma 2.2. Forn = 25,49, 73 there is an S(2,4,n) (X, B), having a {C4, K3+
e}-metamorphosis with empty leaves.

Proof n=25: X = Zss, B = {{1,5,12,0}, {1,6,13,2}, {3,7,14,2}, {8,4,3,10},
{4,9,11,0}, {5,10,17,6}, {7,11,18,6}, {7,12,19,8}, {9,15,13,8}, {14,5,16,9},
{10,15,22,11}, {12,16,23,11}, {12,24,17,13}, {13,18,20, 14}, {10,14,21,19},
{15,2,20,16}, {16,21,3,17}, {17,22,4,18}, {0,23,19,18}, {19,24,1,15},
{21,20,7,0}, {21,8,1,22}, {2,22,9,23}, {23,5,3,24}, {6,20, 24,4}, {2,0,24,10},
{3,20,11,1}, {4,2,21,12}, {3,0,13,22}, {4,14,23,1}, {7,5,4,15}, {6,8,16,0},
{7,9,17,1}, {2,8,5,18}, {19,3,9,6}, {9,20,12,10}, {5,21,13,11}, {6,14,22,12},
{7,23,10,13}, {14,8,24,11}, {15,17,0,14}, {10,18,1,16}, {17,19,2,11},
{15,18,12,3}, {16,19,13,4}, {22,20,19,5}, {15,21, 23,6}, {24,16,22,7},
{20,17,23,8}, {9,21,24,18}}; C = {(2,3,1,0), (7,5,3,0), (14,13,4,0), (23,7,16,0),
(10,11,2,1), (8,6,4,1), (24,10,17,1), (18,15,4,2), (20,11,9,2), (21,22,4,3),
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(19,5,12,3), (9,7,6,5), (21,24,8,5), (22,20,9,6), (15,22, 13,6), (14, 10,8,7),
(17,18,9,8),(13,11,12,10), (18,16,14, 11), (19, 15,13, 12), (21, 23, 14,12),

(17,19, 16, 15), (23,24,17,16), (20,21,19,18), (24,22, 23, 20)}

K = {(4,0,1) — 20, (5,9,0) — 22,(1,3,2) — 12, (6,2,7) — 1,(10,8,9) — 1, (6,10,4) ~
12,(11,5,6) — 3, (15,8,7) — 16,(11,8,12) — 6, (18,9, 14) — 1, (11, 16, 15) — 6,
(19,10,11) — 14, (14,12,13) — 7, (23,13,24) — 7, (15,14,19) — 16, (10,2,16) — 4,
(11,21,17)-8, (18,16,17)—14, (21,18, 22)-3, (23,2, 18)—15, (8,0, 18)—3, (24,15, 5)—
22, (10,0,20) — 4,(21,0,6) — 19, (20,8,22) — 23}

n=49: X = Zgo. The starters blocks of B are {0,8,3,1}, {0,29, 4,18}, {6,33,21,0},
{32,19,9,0}. The starters blocks of C are (0,5,4,22) and (0,9,34,13). The starters
blocks of K are (0,1, 19) — 12, (6,17,0) — 16.

n=73: X = Zz3. The starters blocks of B are {1,4,6,0}, {7,28,0,20}, {9,33,44,0},
{0,25,47,15}, {46,12,30,0}, {0,31,14,50}. The starters blocks of C are (0, 1,3,13),
(0,26,54,24) and (0,29, 65, 31). The starters blocks of K are (10, 1,0) —4, (40,27,0) —
12, (0,23,8) — 22. u)

Lemma 2.3. Forn =1 (mod 24), there exists an S(2,4,n) having a {Cy4, K3+
e}-metamorphosis.

Proof For n = 25,49, 73, the result follows from Lemma 2.2. Let I’ be the
4-GDD in Lemma 2.1 with £ = 12. Add an infinite point to each group G; =
Zyg x {i},1=0,1,2,3, and place on it a copy of the S(2, 4,25) given in Lemma
2.2. The result is an S(2, 4,97) having a {C4, K3 + €}-metamorphosis. Now let
n = 2du + 1, with « > 5. Add an infinite point to the vertex set of a 4-GDD
of type 6* [3] and apply to it the weighting construction with r =s =4, a =1
and w = 4. This completes the proof. (]

Lemma 2.4. There exist an S(2, 4, 16) and an S(2,4,40) having a {Cy, K3+€}-
metamorphosis where Le is an I-factor and Lx is the empty graph.

Proof n=16: X = Z;6, B= {{1,2,0,3}, {4, 6,0,5}, {0,7,8,9}, {11,13,0,12},
{15,0,10,14}, {4,1,7,11}, {1,12, 14,5}, {1,8,15,6}, {9,13,10,1}, {2, 13, 15,4},
{2,10,5,7}, {2,9,12,6}, {8,11,14,2}, {3,9,14,4}, {3,5,8,13}, {3,11,10,6},
{3,7,12,15}, {8,10,4,12}, {9,15,5,11}, {7,14,6,13}}:

¢ ={(1,2,9,8), (11,13,9,3), (0,3,5,7), (11,7,14, 5), (13,2, 10,8), (4,15,12,1),

(6,10, 14, 4), (0,15, 6,12)};

Le= {(0, 5), (1,10), (2, 14),(3,7),(4,12),(6,13), (8,11), (9, 15)};

K ={(4,1,0)-6, (10,0,7)—1, (13,14,12)-7, (2,6,8)—13, 6,3,1)—-12, (3,9,13)-15,
(14,7,8) - 10, (11,12,15) - 0, (13,2,10) — 4, (11,6,9) — 14}

n=40: X = Zg. B = {{i,1 +i,4 +4,13 +4}, {,2+ 4,7 +14,24 + i}, {i,6 + 4,14 +
1,25 +i}v{j| 10+ 4,20 +1130+]} j0<i<39,0<;<9)

C={(,4+14,20+4i,24 +1%), (i,5+1%,20+1,25+1%), (5,8 +1,20+%,28+4) |0 <i < 19};
Le = {5,20+5),(10+5,30+5) |0 < j < O}

K = {(6,21,15) — 25, (7,22,16) — 26, (7,22,16) — 26, (8,23,17) — 27, (9,24, 18) — 28,
(10, 25,19) — 29, (11, 26,20) — 30, (12,27,21) — 31, (13,28,22) — 32, (14, 29, 23) — 33,
(15,30, 24) — 34, (16,31, 25) — 30, (17,32, 26) — 31, (18,33, 27) — 32, (19, 34, 28) — 33,
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(20,35,29) — 34, (21,36, 30) — 35, (22,37,31) — 36, (23, 38,32) — 37, (24,39,33) — 38,
(25,0, 34) — 39, (26,1, 35)—0, (27,2, 36)— 1, (28, 3,37) 2, (29,4, 38) -3, (30, 5,39) -4,
(31,6,0)—17, (32,7,1)—18, (33,8,2)-19, (34,9,3)—20, (35, 10,4)—21, (36,11,5)—22,
(37,12,6)—23, (38,13, 7)— 24, (39, 14,8) —25, (0, 15,9)—26, (1,16,10)—27, (2,17,11)—
28, (3,18,12) — 29, (4,19,13) — 30, (5,20,14) — 31, (0,5,17) — 29, (1,6,18) — 30,
(2,7,19)—31, (3,8, 20)— 32, (4,9,21)—33, (5,10,22) — 34, (6,11, 23) — 35, (7,12,24) -
36, (8,13,25) — 37, (9,14,26) — 38, (10,15,27) — 39, (11,16,28) — 0, (12,17,29) —
1, (13,18, 30) — 2, (14,19,31) - 3, (15,20,32) — 2, (16,21,33) — 3, (17,22,34) — 4,
(18,23, 35)—5, (19, 24, 36)—6, (20,25,37)—7, (21,26, 38) -8, (22, 27, 39)—9, (23,28,0)—
10, (24,29,1) — 11}. o

Remark 2.1. In the S(2,4,16) given in Lemma 2.4, it is possible to choose a
path of lenght 2 from each B € B\{0, 1,2, 3} so that the edges belonging to these
paths can be reassembled into the set of (K3 +e)s {(13,14,2) -5, (12,8,7) - 13,
(2,8,6) — 15, (6,3,5) — 14, (3,13,9) — 14, (11,12,15) — 10, (13,10,12) - 5,
(9,6,11) — 4, (4,5,7) — 9} and into the edges {0,15},{2,4}.

Remark 2.2. In the §(2,4,16) given in Lemma 2.4, it is possible to choose a
path of lenght 2 from each B € B\{0, 1,2, 3} so that the edges belonging to these
paths can be reassembled into the set of (K3 +€)s {(12,8,7) - 11, (6,2,8) — 15,
(3,6,5) — 12, (3,13,9) — 14, (11,12,15) — 13, (13,12,10) ~ 15, (9,11,6) — 14,
(4,7,5) — 14} and into the triangles (0,7,10), (2,13, 14).

The 6t + 4 Construction[6]. Let n = 6t + 4, where ¢ is even and ¢ > 10.
Let X = {1,2,...,t} and let R be a skew room frame of type 2*/2 with holes
H = {hy,ha,...,hy2} of size 2. For the definition of a skew room frame and
for results on its existence see [4].

1. For the hole h; € H, let (Xn,,B;) be a copy of the S(2,4,16) in Lemma
2.4 on Xy, = {a,b,¢,d} U (hy x Zs).

2. For each hole h; € H\ {h;}, let (Xn,,B;) be a copy of the S(2,4,16) in
Lemma 2.4 on X, = {a,b,c,d} U (h; x Zg) such that {a,d,c,d} € B;.

3. If z and y belong to different holes in H, then there exists only one cell (7, c)
in R containing the pair {z,y}. Let D = {{(z,1), (v,9), (r,i+1), (c,i+4)} |
i € Zg}.

Let X = Up,cxr Xn, 8nd B = (Up,emnng Bi \ {{a,b,c,d}}) UBLUD. Tt is
straightforward to see that (X, B) is an S(2,4,n). For i,j € Zs, the vertices
(z,4) € X will be called "of level i” and the edge {(z,%), (y,7)} will be called
"between levels 7 and j”.

Lemma 2.5. Forn = 16 (mod 24), there ezists an S(2,4,n) having {C;, K3+
e}-metamorphosis.
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Proof Let n = 16 4 24k. By Lemma 2.4 we can assume k > 2. Let (X,B)
the S(2,4,n) given by the 6t + 4 Construction with ¢ = 4k + 2. It is proved in
(6)(Lemma 2.5) that (X, B) has a Cy-metamorphosis with leave a 1-factor. So
we have only to prove the (K3 + e)-metamorphosis of (X, B).

o Take a (K3 + €)-metamorphosis of (Xp,,B1) as in Lemma 2.4.

o For each hole hy;, 1 < i < k, delete the edges from type 2 blocks and re-
assemble them as in Remark 2.1, where we put q, b, ¢, d instead of 0,1, 2, 3.

e For each hole hgipy, 1 € ¢ < k, delete the edges from type 2 blocks
and reassemble them as in Remark 2.2, where we put a, b, ¢,d instead of
0,1,2,3. Note that the edges from Remark 2.1 and the triangles from 2.2
can be reassembled into (K3 + e)s.

e Delete the paths [(z,2),(c,0), (v,2)}, [(z,3),(c,1), (v, 3)] and (=, 4), (7,5),
(v,4)] from all blocks in D of the form {(z,2), (¥, 2), (c,0), (r,3)}, {(z,3),
(v,3), (¢, 1), (r,4)} and {(z,4), (v.4), (,5), (¢,2)}. Delete the paths
[(%,0), (=,0), (r,1)], [(%,1), (=1}, (r2)], [(#,5), (2,5), (,0)] from all
blocks in D of the form {(.'E, 0), ('y; 0); (rl l)v (C, 4)}, {(:L‘, 1)’ (y: 1)1 (1", 2):
{(¢,5)} and {(z, 5), (v, 5), (r,0), (c,3)}, respectively.

The deleted edges don’t belong to the same hole and we can split them into the
following classes:

1. edges between levels 0 and 2;
. edges between levels 1 and 3;
. edges between levels 4 and 5;
. edges on level 0;

. edges on level 1;

. edges between levels 0 and 1;

2
3
4
5
6. edges on level 5;
7
8. edges between levels 1 and 2;
9

. edges between levels 0 and 5.

Reassemble the edges of type 1, 4, 7 into the (K3 +e)s ((c,2), (¥, 0), (z,0)) —
(r,1), the edges of type 2, 5, 8 into the (K3 +e)s ((¢c, 3), (¥, 1), (z,1)) — (7, 2), the
edges of type 3, 6, 9 into the (K3 + ¢)s ((c,4), (,5), (z,5)) — (r,0). Note that,
for example, {{(z, 2), (¢,0)}, {(¥,2),(c,0)}} = {{(c, 2), (¥,0)}, {(«2),(z,0)}} =
{{(a,2),(1,00},{(2,2), (2,00}, {(6,:2),(3,0)},{(4,2),(4,0)},... | & # 1,2,b #
3,4,...} = {{(1,2),(a,0)},{(2,2), (2,0)},{(3,2), (b,0)},{(4,2), (b,0)},... | @ #
1,2,b# 3,4,...}. Therefore we obtain a (K3 + €)-design of order n. O
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Theorem 2.8. For n = 1,4 (mod 12), there exists an S(2,4,n) having a
{C4, K3 + e}-metamorphosis.

Proof The result follows from Theorem 1.1 and Lemmas 2.3 and 2.5. O

3 A=3
Lemma 3.1. There exist {4,5}-GDDs of type 2145, 3154, 61(6u + 4)%, u > 2.

Proof Let (S,G,B) be a 5-GDD of type 5° (3], where the groups are G; =
Zsx {i},i=1,...,5. Let By,..., Bs be the blocks of B meeting (0,1). Remove
the vertices (0, 1) (1 1),(2,1) and form & new GDD of type 2145 having G \
{(0,1),(1,1),(2,1)} and B;\{(0,1)},i=1,...,5 as groups and G;,i=2,3,4,5
and B\ {(1,1),(2,1)}, for every B € B\ {Bl, Bz, ..., Bs}, as blocks. Note that
the blocks of size 5 of this new GDD are those meeting (3,1) or (4,1). The
remaining blocks are of size 4.

Now delete (0,1),(1,1) in (S,G,B). We get a {4,5}-GDD of type 3!5%. The
blocks of the new GDD have size 5 if they contain one of the points (2, 1), (3,1),
(4,1), otherwise have size 4.

Let (S,G, B) be a 5-GDD of type (6u +4)° u > 2 [3], where the groups are
Gi = Zgusa % {i}, for 1 < i < 5. By deleting the points (0,1),(1,1),..., (6u -
3,1), we obtain a {4, 5}-GDD of type 6'(6u + 4)*. The blocks of the new GDD
have size 4 or 5. The blocks of size 5 are those containing (z,1), for some
6u—-2<z<6u+3. (m]

Lemma 3.2. Fort > 2,t # 3, there ezist 4~-GDDs of indez 3 and type (2t)*
or (2t)° having a {C4, K3 + e}-metamorphosis.

Proof Take the 4GDD of type (2t)* constructed in Lemma 2.1 and repeat
three times its blocks. The result is a 4-GDD of type (2t)* and index A = 3.
Now let (X,B) be an S3(2,4,5). Place in each block {z1,z2,23,7z4} € B &

4-GDD of type (2t)* with groups G; = {z:} x Zs: having a {Cy4, K3 + €}-
metamorphosis. The result is the required 4-GDD of index 3 and type (2t)5
having a {C4, K3 + e}-metamorphosis.

Lemma 3.83. For n =1 (mod 8), n > 9, there exists an S3(2,4,n) having a
{C4, K3 + e}-metamorphosis.

Proof

n = 9. X = Zy. The starters blocks of B are {2,0,4,1}, {1,6,0,4}. If we delete
the edges {a, b}, {c,d} from each block {a, b, c, d}, we can reassemble these edges
into a set C = with starter block (0,4, 8,2). If we delete the paths with starters
[4,2,1], [1,0,6], we can reassemble these edges into a set K with starter block

(0,1,3) — 4.
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n = 17. X = Zy7. The starters blocks of B are {6,4,1,0}, {2,12,8,0},
{16,7,4,0}, {15,8,14,0}. If we delete the edges {a,d}, {c,d} from each block
{a,b,c,d}, we can reassemble these edges into a set C with starter blocks
(0,8,16,3), (0,1,3,10). If we delete the paths with starters [1,4,0], [8,0,12],
[16,4,7], [0,15,14), we can reassemble these edges into a set K with starter
blocks (0,1,4) - 9, (0,5,8) — 10.

n = 24u+1, u > 1. Take 3 copies of the S(2,4,7) having a {C4, K3 + €}-
metamorphosis given in Lemma 2.3.

n = 33. Take the 4-GDD of index 3 and type 84 constructed in Lemma 3.2. Add
an infinite point to each group G;,? = 0,1,2,3, and place on it a copy of the
S3(2,4,9) above constructed. We obtain an S3(2, 4, 33) having a {C;, K3 + €}-
metamorphosis.

n=24u+9 u>2o0rn=48u+ 17, u > 1. Add an infinite point to the vertex
set of a 4-GDD of type 23“+! (434*1)[3] and apply Theorem 1.2 with r = s =4
and w = 4. The result is an S3(2, 4,n) having a {C,, K3 + e}-metamorphosis.
n = 96u+41, » > 0. Blow up by 8 an 53(2,4,12u+5) (Z124+5, B) and place in
each expanded block a 4-GDD of type 8* having a {C4, K3 + e}-metamorphosis
(see Lemma 2.1). To complete the proof add an infinite point to each ex-
panded vertex of Zjs,45 and place on it an S3(2,4,9) having a {C4, K3 + e}-
metamorphosis.

n=9u+89 u >0 Apply Theorem 1.2 with A=3,a=1,r=4,8=35
(Lemma 3.2) and the following ingredients given in Lemma 3.1:

o ifu=0: w=4, a {4,5}-GDD of type 2145;
e ifu=1: w=8, a{4,5}-GDD of type 3!5%
o ifu>2: w=4,a {4,5}-GDD of type 6!(6u + 4)*.
o

Lemma 3.4. For n = 8,24 there ezist an S3(2,4,n) having a {Cy4, K3 + €}-
metamorphosts.

Proof

n=8: X = Zs, B = {{0,1,3,7}, {1,2,4,7}, {2,3,5,7}, {3,4,6,7}, {4,5,0,7},
{5,6,1,7}, {0,6,2,7}, {2,4,5,6}, {3,5,6,0}, {4,6,0,1}, {5,1,0,2}, {6,3,1, 2},
{0,3,2,4}, {1,3,4,5}}. Delete the edges (a, b),(c, d) from each block {a,b,¢,d} €
B and reassemble them into C = {(0,1,2,7), (6,5,1,7), (5,4,3,7), (2,3,5,4),
(6,0,2,4), (0,6,3,1)} and Lc = {(1,2),(3,0),(4,7),(5,6)}. Delete from the
blocks in B the paths (1,0,3], {1,4,7), [4,6,7], [0,5,7], [5,1,7), [2,0,7], 5,4, 6],
3,8,5}, [6,0,4], [1,0,5], [2,1,3], [0,3,4], [1,3, 5] and reassemble their edges into
K ={(2,1,0)-4, (3,5,0)-1, (3,7,1)— 4, (6,7,4) - 3, (0,6,3) -1, (0,7,5) — 1,
(4,6,5) — 3}.
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n=24: X = Z12 x {1,2}. B = {{(;,1),(11 +4,2), (1 +3,1),(2+1,2)}, {(i,1), (5, 2),
(3+i1 1)7 (5+i1 1)}1 {(iv 1)1 (9+i1 2)! (4+i1 l)v (6+i» 1)}) {(i: 1)) (7+i: 2)! (3+i! l)) (5+
i, 1)}, {(5, 1), (6+4,2), (4+4,1), (5+4, D}, {6, 1), (8+4,2), (3+4,1), (4+4, 1)}, {(i, 1),
(6+1,2), (10+4,2), (11+4,2)}, {(5, 1), (4+,2), (8+4,2),0+1,2)}, {(5,1), (11+5,2),
(8+4,2), (10+4,2)}, {(i» 1), (3,2), (3-+4,2), (5+4, 2} {5 1), (744, 2), (144,2), (344, 2)},
{G,1),(,2), (6+4,1),(6+5,2)} | i € Z12,j € Ze}. Delete the edges {a, b}, {c,d} from
each block {a, b, c,d} and reassemble them into C = {((3,1),(2 +14,1),(1 +14,2), (11 +
4,2)), ((5,1),(2 +4,1),(2 +4,2),(1 +4,2)), ((,1),(1 +4,1),(10 +4,2),(8 +i,2)),
((Jl 1)1(6 + 7 1)!(.1!2))(6 +j12)) I i€ Za,j € Zs} and Lc = {{(Jv 1)1 (jyz)}’ {(6 +
Js 1):(6+jv 2)} I Jj€ ZG}.
K={((2),05+41),¢1) -2+ i,2), ((9+14,2),(6 +14,1),(4,1)) = (5+14,1), ((3+
‘i,2),(1 + i, 2)'(i: 1)) - (4 + i12)’ ((11 + i,2),(8 + i12))(i:1)) - (i;2) | i€ Zlﬂ} U
{((101 2)| (0, l)! (6’ 2))—(01 2)7 ((111 2)! (1y l)a (7’ 2))'—(1$ 2)’ ((12a 2)1 (2» 1)1 (8’ 2))—(2’ 2),
((13, 2)’ (31 1)» (9) 2)) - (3, 2)1 ((14: 2)1 (41 1)7 (101 2)) - (4a 2)1
((31 2)' (5| 1)1 (11’ 2)) - (71 2)1 ((41' 2), (6) l)l (12, 2)) - (8! 2)! ((4’ 1)! (0| 1)7 (3! 1)) - (3: 2)’
((5’ 1)’ (1: 1)1 (4r 1)) - (41 2)! ((6» 1)) (2» 1), (511)) - (5’ 2)! ((79 1)’ (31 1)! (61 1)) - (6, 2)’
((8,1),(4,1),(7,1)) - (7,2), ((8,1),(5,1),(9, 1)) — (3,2), ((9,1),(6,1),(10,1)) - (4,2),
((10,1),(7,1), (11,1)) - (5,2), ((0,1), (1,1),(9,1)) — (7,2),
((1,1),(2,1),(10,1))—(8,2), ((2,1), (3, 1), (11,1)) - (9, 2), ((1,2),(7,1),(5,2)) - (11, 2),
((2,2),(8,1),(6,2)) - (10,2), {(0,1),(11,1),(8,1)) — (8,2)}.

The 4t Construction. [6] Let n = 4t, where ¢ > 4 and ¢t # 6. Let
S ={1,2,...,t} and let (S,0) be an idempotent self-orthogonal quasigroup of
order t [2]. Set X =S x Z4 and define a collection of blocks B as follows:

1. For each = € S, place in B three copies of the block {(z,0),(=z,1),(z,2),
(z,3)}.

2. For each pair z,y € S,z < y, place in B the blocks {(z, %), (y,i), (xoy, i+
1),(y o z,i + 1)}, where ¢ € Z; and the second coordinates are reduced
modulo 4.

3. For each pair z,y € S,z < y, place in B the blocks {(z, 1), (y,%),(zoy,i+
2),(y o z,i + 2)}, where i = 0,1 and the second coordinates are reduced

modulo 4.

4. For each pair z,y € S,z # ¥, place in B the block {(z,0),(y,1),(z o
y!2)’ (y°$73)}'

Then (X, B) is an S3(2,4,n). For i € Z4, the vertices (z,7) € X will be called
"of level i and the edge {(z,%),(z,j)} will be called "belonging to the same
column”.

Lemma 3.5. Forn =0 (mod 8), there ezists an S3(2,4,n) having a {C4, K3+
e}-metamorphosis.
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Proof Let n = 8k. For k = 1,3, the result follows from Lemma 3.4. Now
let k£ # 1,3 and let (X, B) be the S3(2,4, 8k) given in the 4¢ Construction with
t = 2k. Lemma 4.4 in [6] proves that (X, B) has a C4-metamorphosis.

Now we prove that (X, B) has a (K3 + e)-metamorphosis:

o For each odd z € S, delete the paths 2{(z, 1), (z,0), (z,2)] and
((z,1), (x,2), (x,3)] from type 1 blocks; for each even = € S, delete the
paths 2[(z,0),(z,1),(z,2)] and [(z,0),(z,2), (z,3)] from type 1 blocks.
Reassemble these paths into (K3 + e)s with leave [(z, 1), (z, 0), (z, 2)] for
z odd and
{(,0), (z,1), (x, 2)] for = even.

e From each type 2 block delete the path [(z,3),(z o y,% + 1), (y,%)]. The
deleted edges don't belong to the same column and we can split them into
the following classes: (I) edges between levels 0 and 1, (II) edges between
levels 1 and 2, (III) edges between levels 2 and 3, (IV) edges between levels

0 and 3.

¢ From each type 3 block delete the path [(y, ), (z, 1), (yoz,i+2)] if z = 25-1
and yoxz = 2j, j = 1,...,k, otherwise delete the path [(z,?), (¥,1), (¥ o
z,i+ 2)]. The deleted edges don’t belong to the same column and we can
split them into the following classes: (V) edges on level 0, (VI) edges on
level 1, (VII) edges between levels 0 and 2, (VIII) edges between levels 1

and 3.

¢ From each type 4 block delete the path [(y, 1), (z,0), (zoy, 2)]. The deleted
edges don’t belong to the same column and we can split them into the
following classes: (IX) edges between levels 0 and 2, (X) edges between

levels 0 and 1.

Reassemble the deleted edges (I), (V) and (VII) into the (K3 +e)s ((y,0), (zo
¥,1),(2,0)) - (yoz,2)ifz=2j~1and yox =27, = 1,..., k; otherwise, into
the (K3 + €)s ((z,0),(z 0 y,1),(y,0)) - (y 0 z,2).

Reassemble the deleted edges (II), (VI), (VIII) into the (K3 +e)s ((y, 1), (zo
v,2),(z,1)) — (yoz,3)ifc=2j—1and yoz =25, j =1,...,k; otherwise, into
the (K3 + e)s ((z,1),(z 0¥,2),(y,1)) - (yoz,3).

Reassemble the deleted edges (III), (IV), (IX) and (X) into the (K3 + €)s
((y oz, 3): (23 °y, 2)) (xa 0)) - (y’ 1)

Next we need to rearrange these (K3 + €)s to use the paths obtained from
type 1 blocks, ((z, 1), (z,0), (z,2)], for z odd, and [(z, 0), (z, 1), (z, 2)], for z even.
Foreach j =1,...,k, replace the (K3 +e) ((%,0),(zoy,1),(25 - 1,0)) - (24,2),
obtained by rearranging the deleted edges (I), (V) and (VII), by ((%,0),(z o
Y, 1)7 (23 -1, 0)) - (2.7 -1, 2) Replace the (K3 +6) ((y’ 3): (:L‘Oy, 2)! (2.7 - 1’0)) -
(27,1), obtained by rearranging the deleted edges (III), (IV), (IX) and (X), by
((yx 3), (x oy, 2)) (2.7 -1, 0)) - (2.7 -1, 1)
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Next arrange the remaining edges {(23,0), (24,1)}, {(24,1), (24, 2)},
{(27 — 1,0),(24,1)} and {(25 — 1,0),(27,2)}, 7 = 1,...,k, into the (K3 + €)s
((2.7 -1, 0)’ (2.7: 2)1 (2.7) 1)) - (2.710), i=1...k

We obtain a 3-fold (K3 + e)-design of order n and so an S3(2,4,n) having a
{C4, K3 + e}-metamorphosis. a]

Theorem 8.8. For n = 0,1 (mod 4), there exists an S3(2,4,n) having o
{C4, K3 + e}-metamorphosis.

Proof For n =4,5 (mod 8), the result follows from Theorem 1.1. For n =0
(mod 8) and for n =1 (mod 8) , the result follows from Lemmas 3.5 and 3.3,

respectively. O

4 Summary

Lemma 4.1. For A = 2 withn = 1,4 (mod 12),n 2 4, A =6 withn =0,1
(mod 4),n >4, A = 4,8 withn =1 (mod 3),n > 4 and A = 12, with n > 4,
there ezists an Sx(2,4,n) having o {Cy, K3 + e}-metamorphosis.

Proof For the values of A and n as in hypothesis, there exists an Sy /2(2,4,7),
(X, B). By repeating two times each block of (X, B), we obtain an $)(2,4,n).
For each By, B; € B such that By = By = {z,y, z,t}, remove the edges {z,y},
{1} ({z,y} and {,t}) from B, and the edges {=,t}, {4, 2} ({8, }, {zt}) from
B;. Rearrange the removed edges into the 4-cycle (z,y,z,t) (into the K3 + e
(z,y,t) — z). This completes the proof. (]

Theorem 4.2. There ezists an S\(2,4,n) having a {Cy4, K3+e}-metamorphosis
if and only if n > 4, Mn(n - 1) =0 (mod 12) and A(n — 1) =0 (mod 3).

Proof The necessity is trivial. For A = 1,3 the result follows from Theorems
2.6, 3.6. For A = 2 with n = 1,4 (mod 12), A = 6 with n = 0,1 (mod 4),
A = 4,8,12, the result follows from Lemma 4.1. For A = 2, n = 7,10, 19, the
result follows from Theorem 1.1. For A =2, n = 17,10 (mod 12), n > 22, take a
PBD(n) with one block of size 7 and others of size 4 [9] and place an S3(2,4, 4)
or an S2(2,4,7) having a {C,, K3 + e}-metamorphosis on each block. For A = 6
and n = 2,3 (mod 4), the result follows from Theorem 1.1. For A =5,7,9,10,11
combine a S,(2,4,n) having a {Cy, K3 + e}-metamorphosis with a S,(2,4,n)
having a {C4, K3 +e}-metamorphosis, with (A, v, ) = (5,4,1), (7,6,1),(9,6,3),
(10,8,2),(11,6,5), respectively. For A = 12k + h, with 0 < h < 11, combine &
512(2,4,n) having a {Cy, K3 + e}-metamorphosis with an S,(2,4,n) having a
{C4, K3 + e}-metamorphosis. (m]
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