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ABSTRACT. We conjectured in [3] that every bicon-
nected cyclic graph is the one-dimensional skeleton
of a regular cellulation of the 3-sphere and proved it
is true for planar and hamiltonian graphs. In this pa-
per we introduce the class of weakly split graphs and
prove the conjecture is true for such class. Hamilto-
nian, split, complete k-partite and matrogenic cyclic
graphs are weakly split.

1. Introduction

Let X be a CW-complex [5] on the 3-sphere S® = {z € R*:
|z| = 1} with its standard topology. X is also called a cellu-
lation of the 3-sphere. The ascending sequence X° C X! ¢
X? c X3 = X of closed subspaces of X satisfies the following

conditions:
[1 ] X°is a discrete set of points (0-cells)

[2 ] For 0 < k < 3, X¥— X*1is the disjoint union of open
subspaces, called k-cells, each of which homeomorphic to
the open k - dimensional ball U*(= {z € R* : |z|] < 1}).
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X* is the k-dimensional skeleton of X and is a k-dimensional
CW-complex for 1 < k& < 3 on a subspace of the 3-sphere.
X is a regular CW-complex if the boundary of every k-cell is
homeomorphic to the k— 1 dimensional sphere 5%, for 1 < k <
3. Then, X is called a regular cellulation of S3. If X is regular,
the boundary of every 1-cell is a pair of 0-cells. It follows that the
one-dimensional skeleton of a regular CW-complex represents a
graph with no loops where the 0-cells correspond to the vertices
and the 1-cells correspond to the edges. From now on, we will
consider simple graphs (no loops and no multiple edges between
two vertices ). In particular we are interested in cyclic graphs,
that is, graphs which contain at least one cycle. Since the graphs
are simple, the cycles must be closed paths comprising at least
three vertices.

We conjectured in [3] that every biconnected cyclic graph is
the one-dimensional skeleton of a regular cellulation of the 3-
sphere and proved it is true for planar and hamiltonian graphs.
In [3] this conjecture was given for graphs with at least two
cycles, because we assumed that two 2-cells could not share the
same boundary in order to relate it to the concept of spatiality
degree [1, 2, 4].

In this paper we introduce the class of weakly split graphs
and prove the conjecture is true for such class. Hamiltonian,
split, complete k-partite and matrogenic cyclic graphs are weakly
split. Matrogenic graphs include matroidal graphs. Split matro-
genic graphs include threshold graphs. Several characterizations
of these classes are given in [6].

We define split, matrogenic and weakly split graphs in the
next section and show that biconnected graphs which are weakly
split verify the conjecture.

2. Split and Weakly Split Graphs

A connected graph G = (V, E) is weakly split if V is the union
of three disjoint sets I, K and C such that:
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- I is empty or a stable set in G;

- K is non-empty and the subgraph induced by K is hamilto-
nian;

- C is either empty or none of its vertices is adjacent to a vertex
in I and C induces a subgraph such that each connected
component is a simple path and the terminal vertices of
each path are adjacent to at least two vertices in K while
the internal ones are adjacent either to at least two vertices
in K or to none.

We call the subgraph induced by C the crown of G. We call
G split if the property required on the subgraph induced by K
is to be complete and C is empty.

Lemma 1.1. A cyclic split graph G = (V, E) is weakly split.

Proof. Since G is cyclic and split, V is the union of two disjoint
sets I and K, with I stable (or empty if |V| = 3) and K induc-
ing a complete subgraph with at least three vertices. Therefore,

G is weakly split. O

A connected graph G = (V, E) is matrogenic if V is the
union of three disjoint sets I, K and C such that:

- K is non-empty and the subgraph induced by K is complete;

- C is either empty or each vertex of C is adjacent to every
vertex in K and to none in I and the subgraph induced
by C is either a chordless simple cycle of five vertices or a
matching (a set of disjoint edges) or the complement of a
matching (anti-matching);

- I is empty or a stable set in G such that if the neighborouds of
two vertices in J (that is, subsets of K) are incomparable
then their symmetric difference is equal to 2.
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Lemma 1.2. A cyclic matrogenic graph G = (V, E) is weakly
split.

Proof. Since G is a cyclic matrogenic graph, V is the union
of three disjoint sets I, K and C such that I is stable (or empty
if |V| = 3) and either the subgraph induced by K is complete
with at least three vertices or C is not empty. If C induces a
chordless simple cycle of five vertices or an anti-matching then
K UC induces a hamiltonian subgraph since C induces a hamil-
tonian subgraph and every vertex of C is connected to every
vertex of K. Therefore, G is weakly split with an empty crown.
Otherwise, C induces a matching, that is, a crown according to
the definition of a weakly split graph. The union of K with two
adjacent vertices in C induces a hamiltonian subgraph. There-
fore, G is weakly split. O

Lemma 1.3. Let m;,my > 1if k = 2. Then, a complete
k-partite graph Ko, mg ...m, is weakly split.

Proof. Since my, mg > 1 if k = 2, Ky m,,,m, iS always cyclic.
Let I' = {a}.--i%, },---, IF = {ék-- -4k} be the k elements of
the partition and m; < mg < -+ < my. Without loss of gener-
ality we assume that m; is greater than 1 (otherwise the graph
would be weakly split since it is complete) and k; < --- < k4
is the subsequence of 1---k such that k; = 1 and my,_; < my;
for 2 < j < d. We compute a simple cycle with the following
procedure. As first step, start the cycle with the simple path
i},43,---i¥. As second step, continue the path with the vertex
is~1 (if there is no such vertex, the graph is weakly split with
an empty crown and a stable set of two vertices totally con-
nected to a complete graph). Then, there is either a sequence
i~ ...4} or a sequence i5~!,- - -4§? (if m; = 1) which can con-
tinue the path. Generally speaking, the odd steps add sequences
of vertices from the leftmost stable set in I%,-- -, I* which has

vertices not covered yet by the path to J* while the even steps
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add sequences from I; to such set. For stable sets with even
cardinality my; and j < d, the last vertex is covered by the
path at an even step. The successive odd step continues the
path with a sequence of vertices from I*i+1 to I*. Finally, only
vertices of the sets I*¢,... I* are not covered. If k; = k, the
graph is weakly split because an edge from the last vertex of I*
covered by the path to il can be added to have a cycle which
covers all the vertices but a subset of I*. Otherwise, we add
sequences of vertices from I* to I*¢ and viceversa until all of
them are covered and then we close the path with an edge from
the last covered vertex of I* to i1. Then, the graph is weakly
split because it is hamiltonian. O

We give as a lemma the result shown in [1] that hamilto-
nian graphs verify the conjecture since it is needed to prove the
conjecture for weakly split graphs.

Lemma 1.4. Every hamiltonian graph G = (V, E) is the one-
dimensional skeleton of a regular cellulation of S3.

Proof. We embed V into the 3-sphere. Let vi,vs,...v,,v; be
the sequence of vertices (0-cells) ordered by a hamiltonian cy-
cle h of G, where |V| = n. We embed the edges of h (1-cells)
into the 3-sphere so that we have a one-dimensional complex X.
Then, we add to X a 2-cell with boundary h. If G is a simple
cycle, another 2-cell with boundary h is added to X. At this
point, by adding two 3-cells to X we obtain a regular cellulation
of the 3-sphere. If G is not a simple cycle, let us consider any
edge, say (vi,v;), which does not belong to h, with i < j. We
add to X the edge (v;,v;) as a 1-cell and two 2-cells with the
cycles vy, ..., ;, v, ...Un,v1 and v;,v;,vj_1,...,%; as boundaries,
respectively. These 2-cells are added so that their intersection
is the edge (v;,v;) to satisfy the property of a CW-complex on
the disjointness of cells. Then, we add one 3-cell bounded by
these 2-cells and the 2-cell with h as boundary. Since we added
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only one 3-cell, we can embed the remaining edges of G and,
similarly, the corresponding two 2-cells and one 3-cell for each
edge. Differently from the first 3-cell we added, the boundaries
of these additional 3-cells comprise four 2-cells instead of three.
Finally, we add to X one more 3-cell to obtain the regular cel-
lulation of the 3-sphere with G as one-dimensional skeleton. O

Now, we can prove our result.

Theorem 2.1. A biconnected weakly split graph G = (V, E) is
the one-dimensional skeleton of a regular cellulation of S3.

Proof. Since G is weakly split, V' is the union of three disjoint
sets I, K and C such that I is stable, the subgraph induced
by K is hamiltonian and C is the crown. We embed K into
the 3-sphere. Let wj,ws,...wk, w; be the sequence of vertices
ordered by the hamiltonian cycle h of the subgraph induced by
K. We embed the edges of h into the 3-sphere so that we have
a one-dimesional complex X and we add to X a 2-cell with
boundary k. Then, we can apply to X the procedure of Lemma
1.4 to produce a regular cellulation of a proper subspace B; of
S3. B is a proper subspace of S® because we do not add to X
the last 3-cell produced by the procedure of lemma 1.4. There-
fore, By is homeomorphic to a closed 3-dimensional ball while
the complement B, of B; in S® is an open 3-dimensional ball
where we embed the vertices u, uy, ...u; of I. For each vertex u;,
1 < j <1, first we add the edges connecting u; to the adjacent
vertices in A to X. Since G is biconnected, there are at least
two such vertices for each u;. Then, for each pair of vertices w
and w' adjacent to u; and consecutive in &, we add to X a 2-cell
with boundary the cycle defined by u;, w, w' and the vertices
in h between w and w' (which, obviously, are not adjacent to
u;). These 2-cells can be added so that they are disjoint and
a 3-cell bounded by these 2-cells and the 2-cells determined by
u;_y (if 7 = 1, the 2-cell with boundary k) is added as well. The
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homeomorphism of such boundary to the 2-sphere follows from
the disjointness of the 2-cells. If C is empty, we add to X one
more 3-cell to obtain the regular cellulation of the 3-sphere with
G as one-dimensional skeleton. Otherwise, the vertices in C are
embedded into the portion of B, which has not been covered by
any cell yet. C induces a graph with p connected components
where each connected component is a simple path. Let Cy,- - C,
be the partition of C such that each element of the partition in-
duces one of the p connected components. Let #;,---¢. be the
vertices of C; in the order induced by the corresponding simple
path. Then, for 1 < j < ¢ we add to X the edges (if any)
connecting t; to the adjacent vertices in A and, for each pair of
vertices w and w’ adjacent to ¢; and consecutive in h, we add
to X a 2-cell with boundary the cycle defined by ¢;, w, v’ and
the vertices in h between w and w’ (which are not adjacent to
t; since w and w’ are consecutive in h). As for the vertices in 7,
these 2-cells can be added so that they are disjoint. Let j; - - - j¢
be the subsequence of 1---¢ such that ¢;, - - - t;, are the vertices
of C; adjacent to at least two vertices in K (obviously, j; = 1
and j, = ¢). Then, for 1 < r < ¢, we add to X the edges
of the path from ¢;, to ¢;_,,. It follows from the definition of
weakly split graph that we can select in h two vertices adjacent
to t;, and two vertices adjacent to ¢;,,,. These selections define
a set S of vertices in h of cardinality between two and four,
depending on whether two, one or none of the selected vertices
adjacent to t;, coincide with the two selected vertices adjacent
to t;,,,. Then, we add two 2-cells with boundaries the cycles
defined by the vertices of the path from ¢;, to ¢; _,,, two vertices
of S respectively adjacent to t;, and ¢;,,, which are consecutive
(unless they coincide) in h with respect to S and the vertices in
h (if any) between them (which do not belong to S since the two
vertices of S are consecutive). It follows that these two 2-cells
can be added to X so that they are disjoint. Therefore, two
disjoint 3-cells can be added to X bounded by these two 2-cells
and complementary subsets of the 2-cells determined by ¢; .,
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and by t;.. Moreover, we add one 3-cell bounded by the 2-cells
determined by t¢;, and the ones determined by u;. Again, the
boundaries of these 3-cells are homeomorphic to the 2-sphere.
Such embedding procedure is repeated for each connected com-
ponent Cy, ---C, of the crown (for each of these components,
the last 3-cell added to X is partially bounded by 2-cells of the
previous component). Finally, we add to X one more 3-cell to
obtain the regular cellulation of the 3-sphere with G as one-
dimensional skeleton. O

Corollary 2.1. If a biconnected cyclic graph G is split, ma-
trogenic or complete k-partite then it is the one-dimensjonal
skeleton of a regular cellulation of S3.

Proof. It follows from lemma 1.1, lemma 1.2, lemma 1.3 and
theorem 2.1. O

2. Conclusion

We introduced the class of weakly split graphs and proved that
a weakly split graph is the one-dimensional skeleton of a regular
cellulation of the 3-sphere. Weakly split graphs include hamil-
tonian, split, complete k-partite and matrogenic cyclic graphs.
Matrogenic graphs include matroidal graphs. Threshold graphs
are split and matrogenic. Hamiltonian graphs include complete
graphs. Over all the graphs with n vertices, the complete graph
is an obvious case where the genus is maximized. On the other
hand, when the genus of the graph is 0 the regular cellulation
of the 3-sphere is obviously provided by the graph embedding
into the 2-sphere. This consideration suggested the conjecture
that every biconnected graph is the one-dimensional skeleton of
a regular cellulation of the 3-sphere since this property might
hold when the graph lies, as far as embeddability into surfaces is
concerned, in between a planar one and a complete one. In con-
clusion, we want to point out that such extremal results were



obtained in this paper for k-partite graphs since complete k-
partite graphs are weakly split.
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