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Abstract

For a poset P = (X, <p), the strict-double-bound graph (sDB-
graphsDB(P)) is the graph on X for which vertices « and v of SDB(P)
are adjacent if and only if u # v and there exist z and y in X distinct
from u and v such that £ <p u <p y and £ <p v <p y. The strict-
double-bound number {(G) of a graph G is defined as min{n; GUK,
is a strict-double-bound graph }.

We obtain that for a spider Su,m (n,m > 3) and a ladder L. (n >
4), [2y/nm] £ ((Sn,m) < n+m, {(Sn,n) = 2n, and [2/3nF+2] <
¢{(Ln) € 2n.
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1 Introduction

In this paper we consider finite undirected simple graphs. For a graph G,
G is the complement of G. A clique in a graph G is the vertex set of a
maximal complete subgraph of G. A family @ = {Q1,Q2, ..., Q. } is an edge
cligue cover of G if each Q; is a clique of G and for each {u,v} € E(G),
there exists Q; € Q such that u,v € Q;. For a graph G and S C V(G),
(S)v is the induced subgraph of S. For a graph G and v € V(G), Ng(v) =
{v; {u,v} € E(@)}.
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For a poset P = (X,<p) and an element z € X of P, we put Up(z) =
{ve X; 2 <py}and Lp(z) = {y € X ; y <p z}. For a poset P, let
Max(P) be the set of all maximal elements of P and let Min(P) be the set
of all minimal elements of P.

McMorris and Zaslavsky [4] introduced a concept of double bound graphs.
Diny [1] characterized double bound graphs. We consider strict-double-
bound graphs and strict-double-bound numbers. For a poset P = (X, <p),
the strict-double-bound graph (sDB-graph) of P = (X, <p) is the graph
sDB(P) on X for which vertices u and v of sDB(P) are adjacent if and
only if u # v and there exist z € X and y € X distinct from « and v
such that z <p u <p y and =z <p v <, y. We say that a graph G is a
strict-double-bound graph if there exists a poset whose strict-double-bound
graph is isomorphic to G.

Maximal elements and minimal elements of posets are isolated vertices
of strict-double-bound graphs. So a connected graph with p > 2 vertices is
not a strict-double-bound graph. Era, Tsuchiya (2] and Scott [6] dealt with
strict-double-bound graphs. Scott [6] gave the following result.

Proposition 1.1 (Scott [6]) Any graph that is the disjoint union of a
non-trivial component and enough number of isolated vertices is a strict-
double-bound graph.

We introduce the strict-double-bound number of a graph. The strict-
double-bound number {(G) is defined as min{n ; GU K, is a strict-double-
bound graph }. In this paper, we consider properties of strict-double-bound

numbers.

Scott [6] obtains the following result, using a concept of transitive double
competition numbers.

Theorem 1.2 (Scott [6]) For a non-trivial connected graph G and a min-
imal edge clique cover Q of G, |_2\/IQ|] <G L|Q+1.

We already know ((K,) = 2 for n > 2 by Theorem 1.2. Konishi,

Ogawa, Tagusari, Tsuchiya [3] and Ogawa, Tagusari, Tsuchiya [5] obtained
that (K1) = [2VA] (v 2 1), ¢(Pn) = [2VA=T| (n 2 2), ¢(Ca) =

{2ﬁ-| (n > 4), and ((W,,) = [2\/11 - 1] (n > 5). In [5] Ogawa, Tagusari,

Tsuchiya also gave that [2v/n —1] < ¢(T) < X,emvr) [2\/ degr(v -I -
2(|IN(T)| = 1), where T is a non-trivial tree with n > 2 vertices, and IN(T')
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Figure 1: A spider S, m

is the vertex set of non-leaves of T'. In this paper we deal with strict-double-
bound numbers of other graphs, that is, spiders and ladders.

2 On spiders

A spider Sp,m (n 2> 3) is a graph as follows:
(1) V(Spm) ={vo}U{vij; i=1,2,..,n,5 =1,2,...,m},

(2) E(Sam) = {{vo,vin} ; 1 i < n} U {{vij,vi541}5 1 <i <,
1<j<m-1}.
We have the following result on strict-double-bound numbers of spiders.

Proposition 2.1  For a spider Sp.m (n,m 2> 3), [2¢/nm] < {(Sn,m) <
n+4+m,

Proof. We construct a poset P for S, m as follows:
(1) V(P) = V(Sn,m) U {.’Bl,l’z, s Ty Y15 Y2, o0y ym};
(2) V(Sn,m), {z1,%2,....,n} and {¥1,¥2,...,ym} are antichains of P,
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wpr; (1<Lign),

vi;<pzi (1<i<n,1<j<m),
(3)< v <p vo,

Y Sp -1 (1£i<n,2<j<m),

yi<pvi; (1<i<n1<j<m).
We show that sSDB(P) & Sp.m U Kngm.

(1) For Vo, Vi,1 (1 << n), Lp(‘vo)f'le(‘v,',l) = {yl} # 0 and Up('vo) N
Up(vi,1) = {z:} # 0. So there exist edges {vo,v;1}(1 < i < n) in sDB(P).

(2) For Vi,j—1,Vi,j (1 <i<m, 2< .7 < m)a LP(Ui,.’i-l) n LP(vi,:i) =
{y;} # 0,Up (s j-1)NUp(vi ;) = {z:} # 0. So there exist edges {v; ;_1,v; 5}
(1£i<n,2<j<m)insDB(P).

(3) For vp,v; (1 <4< n, 2<j<m), Lp(v) N Lp(vi;) = 0. Next
we consider adjacency relations of v; ; and vxy for 1 < i,k <nand 1<
4,1 < m. In the case i # k, Up(vi ;) N Up(vky) =0 for 1 < i,k < n and
1< j,l<m. Inthecasei=kand |j—1| >2, Lp(vi;) N Lp(viy) =0 for
1<i(=k)<nand1<jl<m.

Thus sDB(P) & Sp.m U Kntm and {(Sn,m) < n+m. Since E(S,,m) isa
minimal edge clique cover of Sy, i and |E(Sn,m)| = nm, [2¢/nm] < ((Sn,m)
by Theorem 1.2. Therefore [2y/nm] < ((Sp,;m) <n+m. O

We obtain the following result by Proposition 2.1.
Corollary 2.2 For a graph Sp . (n 2 3), {(Sn.n) = 2n.

Proof. By Proposition 2.1, 2n = [2%77] <¢(Sp,n) £ n+n=2n. Thus
¢(Snn)=2n.0

3 On ladders

The ladder Ly, is a graph as follows:
(1) V(Ln) = {01702) ey V2043 'v2n+4})

(2) E(Ln) = {{vi,vit2}; 1 €1 <20+ 2} U {{v2i41,v2i42};1 < i < n}.
We have the following result on strict-double-bound numbers of ladders.

Proposition 8.1  For a ladder L, (n > 4), [2v/3n+2] <{(La) < 2n.

Proof. We construct a poset P for L, as follows:
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Figure 2: A ladder L,

(1) V(P) =V(L,)u {:1:1,:1:2, vy Ty Y1, Y2, ...,yn}.
(2) V(Ln), {z1,22,...,2n} and {y1,¥2,...,¥n} are antichains of P,
(3) In the case n is odd:

(3-1) On relations of z; and v;:
(1) vai,Vait1, Vait2 Vaita <P T2 (1 i< B5L),
) (1)  V4i-3)Vai—1,Vai, Vai1 <P Toi—1 (1 <i < ZHL),

(448)  von42,v2n+4 <P T2,
L () vp,v4 Sp Tp-1-
(3-2) On relations on y; and v;:

[ () y2i <P Vaic1,Vait1, Vaig2, vaips (1 <i < B35,

(#)  y2i—1 <P V4i—2,V4i—1,%4i,Vait2 (1 <i < i)
(44)  y2 <P V2nt1,V2n43,
| () yn—1 <P v1,vs.

(4) In the case n is even:

(4-1) On relations of z; and v;:
(1) Vai, Vait1, Vaiv2, Vaira <P T4
(8)  v4i-3,Vai—1, V4i, Vai+1 <P T2i-1
()  wvan41,v2n43 <p T1,
(iv) wva,vq <p Zp.

_=
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(4-2) On relations of y; and v;:
(3)  y2i <P V4i—1,Vai41,V4i+2,Vai43 (1 <4<
(1)  y2i-1 <P V4i-2,V4i-1,V4i, Vaip2 (1 <1<
(1)  y2 <P V2n42,Von+td,
(tv) Yn—1 <P V1,03

By the construction of P, we have the following:

(1) Up(vai+1)NUp(vaig2) = {z1} # @ and Lp(vai+1)NLp (vaire) = {mi} #
@forl=1,2,..,n

(2) In the case n is odd: for 1 < ¢ < 23L,
() Up(v1) NUp(v3) = {z1}, Lp(v) N Lp(vs) = {yn-1},
(i)  Up(vai—1) NUp(vais1) = {Z2i-1}, Lp(vai-1) 0 Lp(vais1) = {v2i},
(#3)  Up(vgie1) NUp(vaiys) = {Z2isr},  LP(vai+1) N Lp(vairs) = {v2i},
(v)  Up(van41) NUp(V2n43) = {2n},  Lp(v2n41) N Lp(v2n+3) = {92}
(v)  Up(v2) NUp(vs) = {Tn1}, Lp(v?) N Lp(vs) = {01},
(vi)  Up(va) NUp(vair2) = {z2i} Lp(ve) N Lp(vaiv2) = {v2i—1},
(vi))  Up(vaig2) NUp(vairs) = {22}, Lp(vair2) N Lp(vaira) = {v2i41}s
(viid) Up(vant2) NUp(venta) = {22},  Lp(ven+2) N Lp(venss) = {wn}.

() In the case n is even: for 1 <i< 5 -1,
@) Up(w1)NUp(vs) = {m1}, Lp(v1) N Lp(vs) = {yn—1},
(i)  Up(vai-1) NUp(vais1) = {22i-1},  Lp(vai-1) N Lp(vais1) = {vai},
(i)  Up(vair1) NUp(vaiss) = {z2ir},  LP(vair1) N Lp(vaies) = {2},
(‘i’U) UP('UZn—l) N UP(v2n+1) = {mn—l}’ LP(”Zn-l) N LP('U2n+1) = {ym}
(v) Up(vzn41) N Up(vzn43) = {z1}, Lp(van41) N Lp(ven43) = {yn},
(vi)  Up(v2) NUp(vs) = {zn}, Lp(v2) N Lp(ve) = {n1},
(vid) Up(vai) NUp(vais2) = {22i}s Lp(vg) 0 Lp(vait2) = {y2i-1},
(visi) Up(vair2) NUp(vaies) = {z2i},  LP(vaiv2) N Lp(vaira) = {v2i11},
(iz) UP('U2n) n UP('v2n+2) = {xn}, LP('U2n) nLp (1’2n+2) = {yn-l},
(1) UP('U2n+2) NnUp ('U2n+4) = {.‘B,.}, LP(vZn+2) NLp ('U2n+4) = {y2}~

So there exist edges {v,vi42} (| = 1,2,...,2n + 2) in sDB(P) and edges
{var—1,v21} (1 =2,8,...,n+1) in sDB(P).

Next we consider non-adjacent vertices v; and v; of V(L,). We easily
check by definitions that for Up(v;) N Up(v;) # 0, Lp(vi) N Lp(v;) = 0.

Thus sDB(P) has the edge set E(sDB(P)) = {{vi,vi42};1 <i<2n+
2} U {{'0254.1,1)2;'4.2}; 1<:< 'n} So SDB(P) =L,U Kj, and C(Ln) < 2n.

E(L,) is a minimal edge clique cover of L, and |E(L,)| = 3n + 2.
Therefore [2v/3n + 2] < ¢(L») by Theorem 1.2. O
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