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Abstract

A maximal independent set is an independent set that is not a proper
subset of any other independent set. A connected graph (respectively,
graph) G with vertex set V(G) is called a quasi-tree graph (respectively,
quasi-forest graph), if there exists a vertex £ € V(G) such that G — z
is a tree (respectively, forest). In this paper, we determine the second
largest numbers of maximal independent sets among all quasi-tree graphs
and quasi-forest graphs. We also characterize those extremal graphs achiev-
ing these values.

1 Introduction

Let G = (V,E) be a simple undirected graph. An independent set is a
subset S of V such that no two vertices in S are adjacent. A mazimal
independent set is an independent set that is not a proper subset of any
other independent set. The set of all maximal independent sets of a graph
G is denoted by MI(G) and its cardinality by mi(G).

The problem of determining the largest value of mi(G) in a general
graph of order n and those graphs achieving the largest number was pro-
posed by Erdés and Moser, and solved by Moon and Moser [8]. It was
then studied for various families of graphs, including trees, forests, (con-
nected) graphs with at most one cycle, (connected) triangle-free graphs,
(k-)connected graphs, bipartite graphs; for a survey see (4]. Jin and Li (1]
investigated the second largest number of mi(G) among all graphs of order
n; Jou and Lin [5] further explored the same problem for trees and forests.

A connected graph (respectively, graph) G with vertex set V(G) is called
a quasi-tree graph (respectively, quasi-forest graph), if there exists a vertex
z € V(G) such that G — z is a tree (respectively, forest). The concept
of quasi-tree graphs was mentioned by Liu and Lu in [7]). Recently, the
problem of determining the largest numbers of mi(G) among all quasi-tree
graphs and quasi-forest graphs of order n was solved by Lin (6].
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The purpose of this paper is to determine the second largest numbers
of maximal independent sets among all quasi-tree graphs and quasi-forest
graphs of order n. Additionally, extremal graphs achieving these values are
also given.

2 Preliminary

In this section, we present some notations and preliminary results, which
will be helpful to the proof of our main result in next section. For a vertex
z € V(G), let MI_(G) = {I € MI(G) : z € I} and MI;(G) = {I €
MI(G) : z € I}. The neighborhood Ng(z) of a vertex z is the set of vertices
adjacent to z in G and the closed neighborhood Ng(z] is {x} U Ng(z). The
degree of z is the cardinality of Ng(z), denoted by degg(z). Let A(G) =
max{degg(z) : z € V(G)}. A vertex z is called a leaf if deggz = 1. For a
set A C V(G), the deletion of A from G is the graph G — A obtained from G
by removing all vertices in A and their incident edges. Two graphs G; and
G, are disjoint if V(G1) NV (G2) = 0. The union of two disjoint graphs G,
and G; is the graph Gi UG, with vertex set V(G UG2) = V(G1)UV(G2)
and edge set E(G1 UGz) = E(G1) U E(Gz2). nG is the short notation for
the union of n copies of disjoint graphs isomorphic to G. Denote by C,, a
cycle with n vertices and P, a path with n vertices.
Throughout this paper, for simplicity, let 7 = /2.

Lemma 2.1. ([9]) For any vertez z in a graph G, mi(G) < mi(G - z) +
mi(G — Nglz]).

Lemma 2.2. ([6]) Let = be the vertex in a graph G such that mi(G) =
mi(G — z) + mi(G — Ng|[z]), the following hold.

(1) mi(G - z) = MI_2(G)|.

(2) For a mazimal independent set I € MI(G — ), I N Ng(x) # 0.

Lemma 2.3. ([2]) If G is the union of two disjoint graphs G and G, then
mi(G) = mi(G1)mi(G2).

The results of the largest numbers of maximal independent sets among
all trees and forests are described in Theorems 2.4, 2.5, respectively.

Theorem 2.4. ([2], [3]) If T is a tree with n > 1 vertices, then mi(T) <
t(n), where

_J ™ %41, ifniseven;
t(n) = { =l if n is odd.

Furthermore, mi(T) = t(n) if and only if T = T(n), where
B(2,252) or B(4,%5%), ifn is even;

T(n) = { B(1,221), if n is odd.
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where B(i,j) is the set of batons, which are the graphs obtained from the
basic path P of i > 1 vertices by attaching j > 0 paths of length two to the
endpoints of P in all possible ways (see Figure 1).

Figure 1: The baton B(3, j) with j = j; + j2

Theorem 2.5. ([2], [3]) If F is a forest with n > 1 vertices, then mi(F) <
f(n), where

_J ™ if n is even;
fn) = { ™1 ifn is odd.
Furthermore, mi(F') = f(n) if and only if F = F(n), where

F(n) = 2P, if n is even;
~ | B(1,2=L=2)U sP; for some s with0< s < 251, ifn is odd.

The results of the second largest numbers of maximal independent sets
among all trees and forests are described in Theorems 2.6 and 2.7, respec-

tively.

Theorem 2.6. ([5]) If T is a tree with n > 4 vertices having T # T(n),
then mi(T) < t'(n), where

rn2, if n is even;
t'(n) =4 3, ifn=>5;
3r"S 41, ifn is odd.

Furthermore, mi(T) = t'(n) if and only if T = T (8),T5(8),Pio or T =
T'(n), where T'(n) and T} (8), T;(8) are shown in Figures 2 and 3,
respectively.

T!(n), n > 4 is even T'(5) T!(n),n>7isodd
Figure 2: The graph T'(n)
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! ! K
Ty (8) T3(8)
Figure 3: The graphs T7(8) and T3 (8)

Theorem 2.7. ([5]) If F is a forest with n > 4 vertices having F # F(n),
then mi(F) < f'(n), where

3r"~4, ifn is even;
f(n)=1¢ 3, ifn="5;
™7, if n is odd.

Furthermore, mi(F) = f'(n) if and only if F = F'(n), where

Pyu n_;.ipz, if n > 4 is even;
F'(n) = T'(5) or PLUP;, ifn=35;
Pruzslp,, ifn > 7 is odd.

The results of the largest numbers of maximal independent sets among
all quasi-tree graphs and quasi-forest graphs are described in Theorems 2.8
and 2.9, respectively.

Theorem 2.8. ([6])If Q is a quasi-tree graph with n > 5 vertices, then
mi(Q) < g(n), where

(n) = 3rn—4, if n is even;
W= m-141, ifn is odd.

Furthermore, mi(Q) = q(n) if and only if Q = Q(n) or Q = Cs, where
Q(n) is shown in Figure 4.

G

Q:(n) Qe(n) Qo(n)

n is even n is odd

Figure 4: The graph Q(n)

Theorem 2.9. ([6])If Q is a quasi-forest graph with n > 2 vertices, then
mi(Q) < g(n), where

if n is even;

N f ™
9(n) = 3r"—3, ifn is odd.
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Furthermore, mi(Q) = g(n) if and only if @ = Q(n), where

rp, £ .
_J 3P, if n is even;
Q) = { CsUB2P;, ifn is odd.

3 Main results

In this section, we determine the second largest values of mi(G) among
all quasi-tree graphs and quasi-forest graphs of order n > 4, respectively.
Moreover, the extremal graphs achieving these values are also determined.

For even n > 6, Q.(n) is the graph obtained from B(1, 23%) by adding
a C3 and a new edge joining a vertex of C3 and a leaf of B(1, 254); Q2'(n)
is the graph obtained from Q.(n) by adding a new edge joining a vertex
with degree 2 of induced C3 of @.(n) and the only vertex in the basic path
of B(1, "—2’25), see Figure 5.

Qe(n) Q:'(n)
Figure 5: The graphs Q’(n) and Q2'(n) for even n > 6

Theorem 3.1. If Q is a quasi-tree graph of even order n > 8 having
Q # Q(n), then mi(Q) < 51"~ +1. Furthermore, the equality holds if and

only if Q = Qc(n) or Q = Q¢'(n).

Proof. Tt is straightforward to check that mi(Q.(n)) = mi(Q2'(n)) = 5r"~©
+1. Let Q be a quasi-tree graph of even order n > 8 having Q # Q(n) such
that mi(Q) is as large as possible. If Q is a tree, then 57" ¢ +1 < mi(Q) <
t(n) = v 2 +1 < 57"~% + 1. This is a contradiction, so @ contains at
least one cycle. Let z be a vertex such that Q — z is a tree. Then z is on
some cycle of Q, it follows that degg(z) > 2. In addition, by Theorem 2.4,
mi(Q —z) < t(n-1).

First, suppose that Q@ —z = T(n — 1) = B(1, 252). By Lemma 2.1, we
have mi(Q — Ng[z]) = mi(Q) —mi(Q—=z) = (57" C+1)—r"~2 = pn-641,
If degg(z) > 4 then Q — Nglz| is a forest with at most n — 5 vertices,
by Theorem 2.5, r*~¢ + 1 < mi(Q — Ng|z]) < f(n —5) = r"6, This is
a contradiction. So we assume that 2 < degg(z) < 3. We consider the
following cases:

o The vertices in Ng(z) are on only one P; of B(1, "%2). Since Q #
Q(n), there are two possibilities for graph Q. See Figure 6. By simple
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N1 1T
Q(ll) le)

Figure 6: The graphs QEI) (i=1,2)

calculation, we have mi(le)) < 4r"—641 fori = 1,2, a contradiction
to mi(Q) > 578 + 1.

o The vertices in Ng(z) are on exactly two Py’s of B(1, 252). Suppose
that Ng(z) contains the only vertex in the basic path of B(1, 252),
then mi(Q — Ng[z]) = r"~%, a contradiction to mi(Q — NQ[a:]) >
776 4+ 1. Hence there are five possibilities for graph Q. See Figure 7.
Note that Q) = Q2'(n). On the other hand, by simple calcula-
tion, we have mi(Qﬁz)) < 56 for i = 1,2,3,4, a contradiction to
mi(Q) > 5r" ¢+ 1.

T Q(l2) T ng) T Q:(32)

* QP QP

Figure 7: The graphs Q{® (i = 1,2,3,4,5)

e The vertices in Ng(z) are on three P,’s of B(1,252). There are
four possibilities for graph Q. See Figure 8. By s1mple calculation,
mi(Q — Nolz]) < ™8 + 1, a contradiction to mi(Q — Ng[z]) >

641,
T (3) T (3)
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z Q§3) T ‘(13)
Figure 8: The graphs tha) (:=1,2,3,4)

Now we assume that Q — z # T(n — 1). By Theorem 2.6, we assume that
mi(Q — z) < t'(n —1). By Lemma 2.1 and degg(z) > 2, we have

5rn—6 +1< 'rm(Q) < mz(Q — z) + mz(Q - NQ[QS'])
<t'(n—1)+ f(n-3)
=3 +1)+rt
=5""% 4+ 1.

Furthermore, the equalities holding imply that |MI_.(Q)| = mi(Q — z) =
#(n—1) and [ML,+(Q)] = mi(Q - Nglz)) = f(n - 3).

Since |MI-z(Q)| = mi(Q — =) = t'(n — 1), by Theorem 2.6, we have
that @ —z = Tj;(n—1). On the other hand, [MI;(Q)| = mi(Q — Ng[z]) =
f(n—3), by Theorem 2.5, we have that Q—Ng|z] = F(n—4) or Q—Ng|z] =
F(n — 3). We consider two following cases.

Case 1. degg(z) = 3. By Theorem 2.5, we have that Q — Ng[z] =
F(n - 4) = 254 P,. Hence we obtain that @ = Q3'(n).

Case 2. degg(z) = 2. Since @ — z = T(n — 1) and by Theorem 2.5,
we have that Q — Nglz] = F(n — 3) = B(1, 2=4=22) U 3P, for some s with
0<s< "24 Hence there are seven poss1b111t1es for graph @ meeting the
requirements. See Figure 9.

f i 6o

Type 3 Type 4

Mm (Y

Type 5 Type 6 Type 7
Figure 9: The seven possibilities for graph Q

Moreover, among these only that of Type 7 satisfies Lemma 2.2 (2),
hence we obtain that Q = Q.(n). ]
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Theorem 3.2. If Q is a guasi-forest graph of even order n > 4 having
Q # Q(n), then mi(Q) < 3r™~*. Furthermore, the equality holds if and

only if

Pyu "—2——4'}32

Qe(n —2s)UsPh,
Q=Q.(n)=4 Qi(n—2s5)UsPh,

Q:'(6)U 22 P,

C3 U B(1, "‘4"2’) Ush;

for some s withOSssﬂ-;—‘.

Proof. 1t is straightforward to check that mi(_Q-;(n)) =3r""4 Let Qbea
quasi-forest graph of even order n > 4 having Q # Q(n) such that mi(Q)
is as large as possible. Then mi(Q) > mi(a-: (n)) = 3r"~4. If Q is a forest
and Q # Q(n), by Theorem 2.7, then 3r"~* < mi(Q) < f'(n) = 3r"~4.
Thus Q = P,u 2 P2 Now we assume that @ is a quasi-forest graph
with at least one cycle Let = be a vertex such that Q — z is a forest and
degq(z) is as large as possible . Then z is on some cycle of Q, it follows
that degg(z) > 2. By Theorem 2.5, mi(Q ~ z) < f(n — 1). On the other
hand, @ — Ng[z] is a forest with at most n — 3 vertices, by Theorem 2.5
again, mi(Q — Ng(z]) < f(n — 3). Thus, by Lemma 2.1, we have

3r*~4 < mi(Q) < mi(Q — z) + mi(Q — Nglz])
<fln-1)+f(n-3)
= ,'.'n—2 + 1‘"—4

=34

Furthermore, the equalities holding imply that [MI_.;(Q)| = mi(Q — z) =
f(n—1) and [MI4,(Q)} = mi(Q — Nglz]) = f(n — 3). By Theorem 2.5, we
have that Q —z = F((n—1). Note that F(n—1) is the union of a baton and
some P,’s. In addition, Q — Ng{z] = F(n —4) or Q — Ng|z] = F(n —
Let s be an integer with 0 < s < ";4 We consider two following cases.
Case 1. degg(z) = 3. Then Q — Nglz] = F(n — 4) = 254 P,. Hence we
obtain that Q = Qe(n —2s) UsP,, or Qi(n—2s)UsP,, or Q2'(6)U 252 P,.
Case 2. degg(z) = 2. Then Q- Ng[z] = F(n—3) = B(1, "'4‘2’)U3Pz
On the other hand, degg(z) is as large as possible, hence we obtam that
Q= C3UB(1 n—d_ 2’)U3P2 a

Theorem 3.3. If Q is a quasi-forest graph of odd order n > 5 having
Q # Q(n), then mi(Q) < 5r"~5. Furthermore, the equality holds if and
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only if

Q.(5)U 252 P,

Q=0Q.(n)={ Wu ”‘5P2
CsU nZ 5P2

where W is a bow, that is, two triangles C3 having one common vertez.

Proof. 1t is straightforward to check that mz(ao(n)) =5r""5 Let Q be a
quasi-forest graph of odd order n > 5 havmg Q # Q(n) such that mi(Q) is
as large as possible. Then mi(Q) > mz(@ (n)) = 575, If Q is a forest,
then 5r"~% < mi(Q) < f(n) = =1 < 5r"~5. This is a contradiction, so
Q contains at least one cycle. Let = be a vertex such that Q — z is a forest
and degg(z) is as large as possible. Then z is on some cycle of @, it follows
that degg(z) > 2. Thus Q — Ng[z] is a forest with at most n — 3 vertices,
by Theorem 2.5, mi(Q — Ng|z]) < f(n—3). By Lemma 2.1, we obtain that
mi(Q — z) > mi(Q) —mi(Q — Ng[z]) = 5r" % —r"=3 = 3pn-5 = f/(n—1).
By Theorem 2.7, we have mi(Q — z) = f(n — 1) or mi(Q — z) = f'(n —1).
Hence we consider two following cases.

Case 1. mi(Q —z) = f(n—1). Then Q —z = F(n—1) = 251Pp,.
Suppose that degg z = 2, then Q = Q(n). This is a contradiction. Hence
degg = > 3, that is, @ — Ng[z] is a forest with at most n — 4 vertices. By
Lemma 2.1 and Theorem 2.5, we have r"~5 = f(n —4) > mi(Q — No[z]) >
mi(Q) —mi(Q —z) > 5" 8 -l =75 = f(n —4) = f(n-5), it
follows that Q — Ng[z] = F(n — 4) or F(n — 5). For the case of Q —
Nglz]) = F(n—4)=P,U "'5P2, then Q = Q,(5) U 252 P,. For the case of
Q- Nglz]=F(n-5) = Pz, then Q = WU 23 5P2, where W is a bow.

Case 2. mi(Q —z) = f’(n 1). ThenQ —z = F’(n 1) = PU2:2P,
Since Q — Ng[z] is a forest with at most n — 3 vertices, by Lemma 2.1
and Theorem 2.5, we have r"~3 = f(n — 3) > mi(Q — Nplz]) > mi(Q) —
mi(Q — ) > 5r"~° — 3r"~5% = r"73. It follows that deggz = 2. Then
Q—z =PyU3P; and Q — Nglz] = 252 P,. In addition, degg(z) is as
large as possible, hence we obtain that Q@ = Cs U 258 P,. O

Theorem 3.4. If Q is a quasi-tree graph of odd order n > 7 having Q #
Q(n), then mi(Q) < r™~1. Purthermore, the equality holds if and only
if Q = Q1(7), Q3(7), Q3(7), Q4(7) or B(1, 252), where Q3(7), Q3(7), Q3(7)
and Q3(7) are shown in Figure 10.
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VAN N

Q1(7) Q3(7)
Q3(7) Qi(7)

Figure 10: The graphs Q3(7), Q3(7), @3(7) and Q3(7)

Proof. Let Q be a quasi-tree graph of odd order n > 7 having Q # Q(n)
such that mi(Q) is as large as possible. Since Q # Q(n) and mi(B(1, 23%))
= r*=1 then ! < mi(Q) < mi(Q(n)) -1 = (r""1+1) -1 = 7L,
This implies that mi(Q) = r"~!. If Q is a tree, by Theorem 2.4, r*~! =
mi(Q) < t(n) = r"~1. This follows that Q = B(1, 251).

Now we assume that @Q contains at least one cycle. We claim that
A(Q) = 3. Let v be a vertex of Q such that deggy(v) = A(Q). If Q —v =
2-1p, then Q = Qo(n). This is a contradiction, so @ — v # 25} P;. Note
that Q — v is a quasi-forest graph of even order n — 1. By Theorem 3.2,
we have mi(Q — v) < 3r"~5. Hence mi(Q — Ng[v]) = mi(Q) — mi(Q —
v) 2 1 — 375 = "5 If degg(v) 2 5, by Theorem 2.9, r"~° <
mi(Q — Ng[v]) < G(n — 6) = 3r™~°, this is a contradiction. If degq(v) = 4,
by Theorem 2.9, then 7% < mi(Q — Ng[v]) < §(n — 5) = 7™, hence
we obtain that Q — Ng[v] = 25%P,. It is not difficult to see that there
does not exist a quasi-tree graph Q such that Q —v = Q.(n — 1) and
Q — Ng[v] = 252 P,. On the other hand, it is obvious that mi(C,) < 7"~1,
hence we obtain that degg(v) = 3. Since Q is a quasi-tree graph and
A(Q) = 3, there exists a vertex z € V(Q) such that z is on some cycle in
Q and degg(z) = 3. It follows that Q — z is a forest of even order n — 1
and Q — z contains at most two components. Since Q — Ng[z] is a forest
of odd order n — 4, by Lemma 2.1, Theorems 2.5 and 2.7, we have

1 = mi(Q) < mi(Q — z) + mi(Q — Ngl[z])
<flln=-1)+f(n—4)
< 38 4 pn

=r* L

The equalities holding imply that Q —z = P,U 232 P,. Sincen > 7,Q -z

contains exactly two components, these imply n = 7 and mi(Q — Ng[z]) =
=5 = 2. Hence we obtain that Q = Q}(7), Q5(7), @3(7) or Q3(7). O
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