Quasi-tree graphs with the second largest number of maximal independent sets

Jenq-Jong Lin Ling Tung University, Taichung 40852, Taiwan

Abstract

A maximal independent set is an independent set that is not a proper subset of any other independent set. A connected graph (respectively, graph) G with vertex set V(G) is called a quasi-tree graph (respectively, quasi-forest graph), if there exists a vertex $x \in V(G)$ such that G - x is a tree (respectively, forest). In this paper, we determine the second largest numbers of maximal independent sets among all quasi-tree graphs and quasi-forest graphs. We also characterize those extremal graphs achieving these values.

1 Introduction

Let G = (V, E) be a simple undirected graph. An independent set is a subset S of V such that no two vertices in S are adjacent. A maximal independent set is an independent set that is not a proper subset of any other independent set. The set of all maximal independent sets of a graph G is denoted by MI(G) and its cardinality by mi(G).

The problem of determining the largest value of mi(G) in a general graph of order n and those graphs achieving the largest number was proposed by Erdös and Moser, and solved by Moon and Moser [8]. It was then studied for various families of graphs, including trees, forests, (connected) graphs with at most one cycle, (connected) triangle-free graphs, (k-)connected graphs, bipartite graphs; for a survey see [4]. Jin and Li [1] investigated the second largest number of mi(G) among all graphs of order n; Jou and Lin [5] further explored the same problem for trees and forests.

A connected graph (respectively, graph) G with vertex set V(G) is called a quasi-tree graph (respectively, quasi-forest graph), if there exists a vertex $x \in V(G)$ such that G - x is a tree (respectively, forest). The concept of quasi-tree graphs was mentioned by Liu and Lu in [7]. Recently, the problem of determining the largest numbers of mi(G) among all quasi-tree graphs and quasi-forest graphs of order n was solved by Lin [6].

The purpose of this paper is to determine the second largest numbers of maximal independent sets among all quasi-tree graphs and quasi-forest graphs of order n. Additionally, extremal graphs achieving these values are also given.

2 Preliminary

In this section, we present some notations and preliminary results, which will be helpful to the proof of our main result in next section. For a vertex $x \in V(G)$, let $\mathrm{MI}_{-x}(G) = \{I \in \mathrm{MI}(G) : x \notin I\}$ and $\mathrm{MI}_{+x}(G) = \{I \in \mathrm{MI}(G) : x \in I\}$. The neighborhood $N_G(x)$ of a vertex x is the set of vertices adjacent to x in G and the closed neighborhood $N_G[x]$ is $\{x\} \cup N_G(x)$. The degree of x is the cardinality of $N_G(x)$, denoted by $\deg_G(x)$. Let $\triangle(G) = \max\{\deg_G(x) : x \in V(G)\}$. A vertex x is called a leaf if $\deg_G x = 1$. For a set $A \subseteq V(G)$, the deletion of A from G is the graph G-A obtained from G by removing all vertices in A and their incident edges. Two graphs G_1 and G_2 are disjoint if $V(G_1) \cap V(G_2) = \emptyset$. The union of two disjoint graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with vertex set $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and edge set $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. nG is the short notation for the union of n copies of disjoint graphs isomorphic to G. Denote by C_n a cycle with n vertices and P_n a path with n vertices.

Throughout this paper, for simplicity, let $r = \sqrt{2}$.

Lemma 2.1. ([9]) For any vertex x in a graph G, $mi(G) \leq mi(G-x) + mi(G-N_G[x])$.

Lemma 2.2. ([6]) Let x be the vertex in a graph G such that $mi(G) = mi(G-x) + mi(G-N_G[x])$, the following hold.

- (1) $mi(G-x) = |MI_{-x}(G)|$.
- (2) For a maximal independent set $I \in MI(G-x)$, $I \cap N_G(x) \neq \emptyset$.

Lemma 2.3. ([2]) If G is the union of two disjoint graphs G_1 and G_2 , then $mi(G) = mi(G_1)mi(G_2)$.

The results of the largest numbers of maximal independent sets among all trees and forests are described in Theorems 2.4, 2.5, respectively.

Theorem 2.4. ([2], [3]) If T is a tree with $n \ge 1$ vertices, then $mi(T) \le t(n)$, where

$$t(n) = \begin{cases} r^{n-2} + 1, & \text{if } n \text{ is even}; \\ r^{n-1}, & \text{if } n \text{ is odd}. \end{cases}$$

Furthermore, mi(T) = t(n) if and only if T = T(n), where

$$T(n) = \begin{cases} B(2, \frac{n-2}{2}) \text{ or } B(4, \frac{n-4}{2}), & \text{if } n \text{ is even}; \\ B(1, \frac{n-1}{2}), & \text{if } n \text{ is odd}. \end{cases}$$

where B(i,j) is the set of batons, which are the graphs obtained from the basic path P of $i \ge 1$ vertices by attaching $j \ge 0$ paths of length two to the endpoints of P in all possible ways (see Figure 1).

Figure 1: The baton B(i, j) with $j = j_1 + j_2$

Theorem 2.5. ([2], [3]) If F is a forest with $n \ge 1$ vertices, then $mi(F) \le f(n)$, where

$$f(n) = \begin{cases} r^n, & \text{if } n \text{ is even}; \\ r^{n-1}, & \text{if } n \text{ is odd}. \end{cases}$$

Furthermore, mi(F) = f(n) if and only if F = F(n), where

$$F(n) = \left\{ \begin{array}{ll} \frac{n}{2}P_2, & \text{if n is even}; \\ B(1,\frac{n-1-2s}{2}) \cup sP_2 \text{ for some s with $0 \leq s \leq \frac{n-1}{2}$}, & \text{if n is odd}. \end{array} \right.$$

The results of the second largest numbers of maximal independent sets among all trees and forests are described in Theorems 2.6 and 2.7, respectively.

Theorem 2.6. ([5]) If T is a tree with $n \ge 4$ vertices having $T \ne T(n)$, then $mi(T) \le t'(n)$, where

$$t'(n) = \begin{cases} r^{n-2}, & \text{if } n \text{ is even}; \\ 3, & \text{if } n = 5; \\ 3r^{n-5} + 1, & \text{if } n \text{ is odd}. \end{cases}$$

Furthermore, mi(T) = t'(n) if and only if $T = T_1^*(8), T_2^*(8), P_{10}$ or T = T'(n), where T'(n) and $T_1^*(8), T_2^*(8)$ are shown in Figures 2 and 3, respectively.

Figure 2: The graph T'(n)

Figure 3: The graphs $T_1^*(8)$ and $T_2^*(8)$

Theorem 2.7. ([5]) If F is a forest with $n \ge 4$ vertices having $F \ne F(n)$, then $mi(F) \le f'(n)$, where

$$f'(n) = \begin{cases} 3r^{n-4}, & \text{if } n \text{ is even}; \\ 3, & \text{if } n = 5; \\ 7r^{n-7}, & \text{if } n \text{ is odd}. \end{cases}$$

Furthermore, mi(F) = f'(n) if and only if F = F'(n), where

$$F'(n) = \begin{cases} P_4 \cup \frac{n-4}{2} P_2, & \text{if } n \ge 4 \text{ is even}; \\ T'(5) \text{ or } P_1 \cup P_4, & \text{if } n = 5; \\ P_7 \cup \frac{n-7}{2} P_2, & \text{if } n \ge 7 \text{ is odd}. \end{cases}$$

The results of the largest numbers of maximal independent sets among all quasi-tree graphs and quasi-forest graphs are described in Theorems 2.8 and 2.9, respectively.

Theorem 2.8. ([6]) If Q is a quasi-tree graph with $n \geq 5$ vertices, then $mi(Q) \leq q(n)$, where

$$q(n) = \begin{cases} 3r^{n-4}, & \text{if } n \text{ is even}; \\ r^{n-1} + 1, & \text{if } n \text{ is odd}. \end{cases}$$

Furthermore, mi(Q) = q(n) if and only if Q = Q(n) or $Q = C_5$, where Q(n) is shown in Figure 4.

Figure 4: The graph Q(n)

Theorem 2.9. ([6]) If Q is a quasi-forest graph with $n \geq 2$ vertices, then $mi(Q) \leq \overline{q}(n)$, where

$$\overline{q}(n) = \begin{cases} r^n, & \text{if } n \text{ is even}; \\ 3r^{n-3}, & \text{if } n \text{ is odd}. \end{cases}$$

Furthermore, $mi(Q) = \overline{q}(n)$ if and only if $Q = \overline{Q}(n)$, where

$$\overline{Q}(n) = \left\{ \begin{array}{ll} \frac{n}{2}P_2, & \text{if n is even}; \\ C_3 \cup \frac{n-3}{2}P_2, & \text{if n is odd}. \end{array} \right.$$

3 Main results

In this section, we determine the second largest values of mi(G) among all quasi-tree graphs and quasi-forest graphs of order $n \geq 4$, respectively. Moreover, the extremal graphs achieving these values are also determined.

For even $n \geq 6$, $Q'_e(n)$ is the graph obtained from $B(1, \frac{n-4}{2})$ by adding a C_3 and a new edge joining a vertex of C_3 and a leaf of $B(1, \frac{n-4}{2})$; $Q''_e(n)$ is the graph obtained from $Q'_e(n)$ by adding a new edge joining a vertex with degree 2 of induced C_3 of $Q'_e(n)$ and the only vertex in the basic path of $B(1, \frac{n-4}{2})$, see Figure 5.

Figure 5: The graphs $Q'_e(n)$ and $Q''_e(n)$ for even $n \ge 6$

Theorem 3.1. If Q is a quasi-tree graph of even order $n \geq 8$ having $Q \neq Q(n)$, then $mi(Q) \leq 5r^{n-6} + 1$. Furthermore, the equality holds if and only if $Q = Q'_e(n)$ or $Q = Q''_e(n)$.

Proof. It is straightforward to check that $mi(Q'_e(n)) = mi(Q''_e(n)) = 5r^{n-6} + 1$. Let Q be a quasi-tree graph of even order $n \geq 8$ having $Q \neq Q(n)$ such that mi(Q) is as large as possible. If Q is a tree, then $5r^{n-6} + 1 \leq mi(Q) \leq t(n) = r^{n-2} + 1 < 5r^{n-6} + 1$. This is a contradiction, so Q contains at least one cycle. Let x be a vertex such that Q - x is a tree. Then x is on some cycle of Q, it follows that $\deg_Q(x) \geq 2$. In addition, by Theorem 2.4, $mi(Q-x) \leq t(n-1)$.

First, suppose that $Q-x=T(n-1)=B(1,\frac{n-2}{2})$. By Lemma 2.1, we have $mi(Q-N_Q[x])\geq mi(Q)-mi(Q-x)\geq (5r^{n-6}+1)-r^{n-2}=r^{n-6}+1$. If $\deg_Q(x)\geq 4$ then $Q-N_Q[x]$ is a forest with at most n-5 vertices, by Theorem 2.5, $r^{n-6}+1\leq mi(Q-N_Q[x])\leq f(n-5)=r^{n-6}$. This is a contradiction. So we assume that $2\leq \deg_Q(x)\leq 3$. We consider the following cases:

• The vertices in $N_Q(x)$ are on only one P_2 of $B(1, \frac{n-2}{2})$. Since $Q \neq Q(n)$, there are two possibilities for graph Q. See Figure 6. By simple

Figure 6: The graphs $Q_i^{(1)}$ (i=1,2)

calculation, we have $mi(Q_i^{(1)}) \le 4r^{n-6}+1$ for i=1,2, a contradiction to $mi(Q) \ge 5r^{n-6}+1$.

• The vertices in $N_Q(x)$ are on exactly two P_2 's of $B(1, \frac{n-2}{2})$. Suppose that $N_Q(x)$ contains the only vertex in the basic path of $B(1, \frac{n-2}{2})$, then $mi(Q - N_Q[x]) = r^{n-6}$, a contradiction to $mi(Q - N_Q[x]) \ge r^{n-6} + 1$. Hence there are five possibilities for graph Q. See Figure 7. Note that $Q_5^{(2)} = Q_e^{*'}(n)$. On the other hand, by simple calculation, we have $mi(Q_i^{(2)}) \le 5r^{n-6}$ for i = 1, 2, 3, 4, a contradiction to $mi(Q) \ge 5r^{n-6} + 1$.

Figure 7: The graphs $Q_i^{(2)}$ (i = 1, 2, 3, 4, 5)

• The vertices in $N_Q(x)$ are on three P_2 's of $B(1, \frac{n-2}{2})$. There are four possibilities for graph Q. See Figure 8. By simple calculation, $mi(Q - N_Q[x]) \leq r^{n-8} + 1$, a contradiction to $mi(Q - N_Q[x]) \geq r^{n-6} + 1$.

Figure 8: The graphs $Q_i^{(3)}$ (i = 1, 2, 3, 4)

Now we assume that $Q - x \neq T(n-1)$. By Theorem 2.6, we assume that $mi(Q-x) \leq t'(n-1)$. By Lemma 2.1 and $\deg_Q(x) \geq 2$, we have

$$5r^{n-6} + 1 \le mi(Q) \le mi(Q - x) + mi(Q - N_Q[x])$$

$$\le t'(n-1) + f(n-3)$$

$$= (3r^{n-6} + 1) + r^{n-4}$$

$$= 5r^{n-6} + 1.$$

Furthermore, the equalities holding imply that $|MI_{-x}(Q)| = mi(Q - x) = t'(n-1)$ and $|MI_{+x}(Q)| = mi(Q - N_Q[x]) = f(n-3)$.

Since $|MI_{-x}(Q)| = mi(Q-x) = t'(n-1)$, by Theorem 2.6, we have that $Q-x = T'_o(n-1)$. On the other hand, $|MI_{+x}(Q)| = mi(Q-N_Q[x]) = f(n-3)$, by Theorem 2.5, we have that $Q-N_Q[x] = F(n-4)$ or $Q-N_Q[x] = F(n-3)$. We consider two following cases.

Case 1. $\deg_Q(x)=3$. By Theorem 2.5, we have that $Q-N_Q[x]=F(n-4)=\frac{n-4}{2}P_2$. Hence we obtain that $Q=Q_e^{*'}(n)$.

Case 2. $\deg_Q(x)=2$. Since $Q-x=T_o'(n-1)$ and by Theorem 2.5, we have that $Q-N_Q[x]=F(n-3)=B(1,\frac{n-4-2s}{2})\cup sP_2$ for some s with $0\leq s\leq \frac{n-4}{2}$. Hence there are seven possibilities for graph Q meeting the requirements. See Figure 9.

Figure 9: The seven possibilities for graph Q

Moreover, among these only that of Type 7 satisfies Lemma 2.2 (2), hence we obtain that $Q = Q'_e(n)$.

Theorem 3.2. If Q is a quasi-forest graph of even order $n \geq 4$ having $Q \neq \overline{Q}(n)$, then $mi(Q) \leq 3r^{n-4}$. Furthermore, the equality holds if and only if

$$Q = \overline{Q}_e'(n) = \left\{ \begin{array}{l} P_4 \cup \frac{n-4}{2} P_2 \\ Q_e(n-2s) \cup s P_2 \\ Q_e^*(n-2s) \cup s P_2 \\ Q_e^*(6) \cup \frac{n-6}{2} P_2 \\ C_3 \cup B(1, \frac{n-4-2s}{2}) \cup s P_2 \end{array} \right.$$

for some s with $0 \le s \le \frac{n-4}{2}$.

Proof. It is straightforward to check that $mi(\overline{Q}'_e(n)) = 3r^{n-4}$. Let Q be a quasi-forest graph of even order $n \geq 4$ having $Q \neq \overline{Q}(n)$ such that mi(Q) is as large as possible. Then $mi(Q) \geq mi(\overline{Q}'_e(n)) = 3r^{n-4}$. If Q is a forest and $Q \neq \overline{Q}(n)$, by Theorem 2.7, then $3r^{n-4} \leq mi(Q) \leq f'(n) = 3r^{n-4}$. Thus $Q = P_4 \cup \frac{n-4}{2}P_2$. Now we assume that Q is a quasi-forest graph with at least one cycle. Let x be a vertex such that Q - x is a forest and $\deg_Q(x)$ is as large as possible. Then x is on some cycle of Q, it follows that $\deg_Q(x) \geq 2$. By Theorem 2.5, $mi(Q-x) \leq f(n-1)$. On the other hand, $Q - N_Q[x]$ is a forest with at most n-3 vertices, by Theorem 2.5 again, $mi(Q-N_Q[x]) \leq f(n-3)$. Thus, by Lemma 2.1, we have

$$3r^{n-4} \le mi(Q) \le mi(Q-x) + mi(Q-N_Q[x])$$

$$\le f(n-1) + f(n-3)$$

$$= r^{n-2} + r^{n-4}$$

$$= 3r^{n-4}$$

Furthermore, the equalities holding imply that $|\mathrm{MI}_{-x}(Q)|=mi(Q-x)=f(n-1)$ and $|\mathrm{MI}_{+x}(Q)|=mi(Q-N_Q[x])=f(n-3)$. By Theorem 2.5, we have that Q-x=F(n-1). Note that F(n-1) is the union of a baton and some P_2 's. In addition, $Q-N_Q[x]=F(n-4)$ or $Q-N_Q[x]=F(n-3)$. Let s be an integer with $0 \le s \le \frac{n-4}{2}$. We consider two following cases.

Case 1. $\deg_Q(x)=3$. Then $Q-N_Q[x]=F(n-4)=\frac{n-4}{2}P_2$. Hence we obtain that $Q=Q_e(n-2s)\cup sP_2$, or $Q_e^*(n-2s)\cup sP_2$, or $Q_e^*(6)\cup \frac{n-6}{2}P_2$. Case 2. $\deg_Q(x)=2$. Then $Q-N_Q[x]=F(n-3)=B(1,\frac{n-4-2s}{2})\cup sP_2$. On the other hand, $\deg_Q(x)$ is as large as possible, hence we obtain that $Q=C_3\cup B(1,\frac{n-4-2s}{2})\cup sP_2$.

Theorem 3.3. If Q is a quasi-forest graph of odd order $n \geq 5$ having $Q \neq \overline{Q}(n)$, then $mi(Q) \leq 5r^{n-5}$. Furthermore, the equality holds if and

only if

$$Q = \overline{Q}_o'(n) = \left\{ \begin{array}{l} Q_o(5) \cup \frac{n-5}{2} P_2 \\ W \cup \frac{n-5}{2} P_2 \\ C_5 \cup \frac{n-5}{2} P_2 \end{array} \right.$$

where W is a bow, that is, two triangles C3 having one common vertex.

Proof. It is straightforward to check that $mi(\overline{Q}'_o(n)) = 5r^{n-5}$. Let Q be a quasi-forest graph of odd order $n \geq 5$ having $Q \neq \overline{Q}(n)$ such that mi(Q) is as large as possible. Then $mi(Q) \geq mi(\overline{Q}'_o(n)) = 5r^{n-5}$. If Q is a forest, then $5r^{n-5} \leq mi(Q) \leq f(n) = r^{n-1} < 5r^{n-5}$. This is a contradiction, so Q contains at least one cycle. Let x be a vertex such that Q - x is a forest and $\deg_Q(x)$ is as large as possible. Then x is on some cycle of Q, it follows that $\deg_Q(x) \geq 2$. Thus $Q - N_Q[x]$ is a forest with at most n-3 vertices, by Theorem 2.5, $mi(Q - N_Q[x]) \leq f(n-3)$. By Lemma 2.1, we obtain that $mi(Q-x) \geq mi(Q) - mi(Q-N_Q[x]) \geq 5r^{n-5} - r^{n-3} = 3r^{n-5} = f'(n-1)$. By Theorem 2.7, we have mi(Q-x) = f(n-1) or mi(Q-x) = f'(n-1). Hence we consider two following cases.

Case 1. mi(Q-x)=f(n-1). Then $Q-x=F(n-1)=\frac{n-1}{2}P_2$. Suppose that $\deg_Q x=2$, then $Q=\overline{Q}(n)$. This is a contradiction. Hence $\deg_Q x\geq 3$, that is, $Q-N_Q[x]$ is a forest with at most n-4 vertices. By Lemma 2.1 and Theorem 2.5, we have $r^{n-5}=f(n-4)\geq mi(Q-N_Q[x])\geq mi(Q)-mi(Q-x)\geq 5r^{n-5}-r^{n-1}=r^{n-5}=f(n-4)=f(n-5)$, it follows that $Q-N_Q[x]=F(n-4)$ or F(n-5). For the case of $Q-N_Q[x]=F(n-4)=P_1\cup\frac{n-5}{2}P_2$, then $Q=Q_o(5)\cup\frac{n-5}{2}P_2$. For the case of $Q-N_Q[x]=F(n-5)=\frac{n-5}{2}P_2$, then $Q=W\cup\frac{n-5}{2}P_2$, where W is a bow. Case 2. mi(Q-x)=f'(n-1). Then $Q-x=F'(n-1)=P_4\cup\frac{n-5}{2}P_2$. Since $Q-N_Q[x]$ is a forest with at most n-3 vertices, by Lemma 2.1 and Theorem 2.5, we have $r^{n-3}=f(n-3)\geq mi(Q-N_Q[x])\geq mi(Q)-mi(Q-x)\geq 5r^{n-5}-3r^{n-5}=r^{n-3}$. It follows that $\deg_Q x=2$. Then $Q-x=P_4\cup\frac{n-5}{2}P_2$ and $Q-N_Q[x]=\frac{n-3}{2}P_2$. In addition, $\deg_Q(x)$ is as large as possible, hence we obtain that $Q=C_5\cup\frac{n-5}{2}P_2$.

Theorem 3.4. If Q is a quasi-tree graph of odd order $n \geq 7$ having $Q \neq Q(n)$, then $mi(Q) \leq r^{n-1}$. Furthermore, the equality holds if and only if $Q = Q_1^*(7), Q_2^*(7), Q_3^*(7), Q_4^*(7)$ or $B(1, \frac{n-1}{2})$, where $Q_1^*(7), Q_2^*(7), Q_3^*(7)$ and $Q_4^*(7)$ are shown in Figure 10.

Figure 10: The graphs $Q_1^*(7), Q_2^*(7), Q_3^*(7)$ and $Q_4^*(7)$

Proof. Let Q be a quasi-tree graph of odd order $n \geq 7$ having $Q \neq Q(n)$ such that mi(Q) is as large as possible. Since $Q \neq Q(n)$ and $mi(B(1, \frac{n-1}{2})) = r^{n-1}$, then $r^{n-1} \leq mi(Q) \leq mi(Q(n)) - 1 = (r^{n-1} + 1) - 1 = r^{n-1}$. This implies that $mi(Q) = r^{r-1}$. If Q is a tree, by Theorem 2.4, $r^{n-1} = mi(Q) \leq t(n) = r^{n-1}$. This follows that $Q = B(1, \frac{n-1}{2})$.

Now we assume that Q contains at least one cycle. We claim that $\Delta(Q)=3$. Let v be a vertex of Q such that $\deg_Q(v)=\Delta(Q)$. If $Q-v=\frac{n-1}{2}P_2$, then $Q=Q_o(n)$. This is a contradiction, so $Q-v\neq\frac{n-1}{2}P_2$. Note that Q-v is a quasi-forest graph of even order n-1. By Theorem 3.2, we have $mi(Q-v)\leq 3r^{n-5}$. Hence $mi(Q-N_Q[v])\geq mi(Q)-mi(Q-v)\geq r^{n-1}-3r^{n-5}=r^{n-5}$. If $\deg_Q(v)\geq 5$, by Theorem 2.9, $r^{n-5}\leq mi(Q-N_Q[v])\leq \overline{q}(n-6)=3r^{n-9}$, this is a contradiction. If $\deg_Q(v)=4$, by Theorem 2.9, then $r^{n-5}\leq mi(Q-N_Q[v])\leq \overline{q}(n-5)=r^{n-5}$, hence we obtain that $Q-N_Q[v]=\frac{n-5}{2}P_2$. It is not difficult to see that there does not exist a quasi-tree graph Q such that $Q-v=\overline{Q}'_e(n-1)$ and $Q-N_Q[v]=\frac{n-5}{2}P_2$. On the other hand, it is obvious that $mi(C_n)< r^{n-1}$, hence we obtain that $\deg_Q(v)=3$. Since Q is a quasi-tree graph and $\Delta(Q)=3$, there exists a vertex $x\in V(Q)$ such that x is on some cycle in Q and $\deg_Q(x)=3$. It follows that Q-x is a forest of even order n-1 and Q-x contains at most two components. Since $Q-N_Q[x]$ is a forest of odd order n-4, by Lemma 2.1, Theorems 2.5 and 2.7, we have

$$r^{n-1} = mi(Q) \le mi(Q - x) + mi(Q - N_Q[x])$$

 $\le f'(n-1) + f(n-4)$
 $\le 3r^{n-5} + r^{n-5}$
 $= r^{n-1}$.

The equalities holding imply that $Q - x = P_4 \cup \frac{n-5}{2}P_2$. Since $n \ge 7$, Q - x contains exactly two components, these imply n = 7 and $mi(Q - N_Q[x]) = r^{n-5} = 2$. Hence we obtain that $Q = Q_1^*(7), Q_2^*(7), Q_3^*(7)$ or $Q_4^*(7)$.

References

- [1] Z. Jin, X. Li, Graphs with the second largest number of maximal independent sets, Discrete Math. 308 (2008) 5864-5870.
- [2] M. J. Jou, The number of maximal independent sets in graphs, Master Thesis, Department of Mathematics, National Central University, Taiwan, (1991).
- [3] M. J. Jou and G. J. Chang, Maximal independent sets in graphs with at most one cycle, Dicrete Appl. Math. 79 (1997) 67-73.
- [4] M. J. Jou and G. J. Chang, Survey on conunting maximal independent sets, in: Proceedings of the Second Asian Mathematical Conference, S. Tangmance and E. Schulz eds., World Scientific, Singapore, (1995) 265-275.
- [5] M. J. Jou and J. J. Lin, Trees with the second largest number of maximal independent sets, Discrete Math., to appear.
- [6] J. J. Lin, Quasi-tree graphs with the largest number of maximal independent sets, Ars Combin., to appear.
- [7] H. Liu and M. Lu, On the spectral radius of quasi-tree graphs, Linear Algebra Appl. 428 (2008) 2708-2714.
- [8] J. W. Moon and L. Moser, On cliques in graphs, Israel J. Math. 3 (1965) 23-28.
- [9] B. E. Sagan and V. R. Vatter, Maximal and maximum independent sets in graphs with at most r cycles, J. Graph Theory 53 (2006) 283-314.