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Abstract

In this paper, we introduced the notion of derivation in lattice
implication algebra, and considered the properties of derivations in
lattice implication algebras. We give an equivalent condition to be
derivation of a lattice implication algebra. Also, we characterized
the fixed set Fizq4(L) and Kerd by derivations. Moreover, we prove
that if d is a derivation of a lattice implication algebra, every filter
F is a d-invariant.
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1. Introduction

In order to research a logical system whose propositional value is given
in a lattice. Y. Xu [10] proposed the concept of lattice implication algebras,
and some researchers have studied their properties and the corresponding
logic systems. Also, in [11}, Y. Xu and K. Y. Qin discussed the properties
lattice H implication algebras, and gave some equivalent conditions about
lattice H implication algebras. Y. Xu and K. Y. Qin [12] introduced the
notion of filters in a lattice implication, and investigated their properties.
In this paper, we introduced the notion of derivation, and considered the
properties of derivations of lattice implication algebras. We give an equiv-
alent condition to be derivation in a lattice implication algebra. Also, we
characterized the fixed set Fizg(L) and Kerd by derivations. Moreover,
we prove that if d is a derivation of a lattice implication algebra, every filter
F is a a d-invariant.
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2. Preliminary

A lattice implication algebra is an algebra (L; A, V, 1, =, 0, 1) of type
(2,2,1,2,0,0), where (L; A, V,0,1) is a bounded lattice, “ /" is an order-
reversing involution and “ — ” is a binary operation, satisfying the following
axioms:

M) z=2(y=2)=y—(z—2),
(I2) z—oz=1,

Byz—-y=y' -2,

4) zoy=y—oz=1=>z=y,
15) (z=y) »y=(@y—2)>2,
(L) (zVy) 2 z=(z =2 2)A(y— 2),
(L2) (zAy) = 2z=(z > 2)V(y—2),

for all z,y,z € L. If L satisfies conditions (I1) — (I5), we say that L is a
quasi lattice implication algebra. A lattice implication algebra L is called a
lattice H implication algebra if it satisfies zVyV ((z Ay) = 2z) =1 for all
r,y,2€ L.

In the sequel the binary operation “ — ” will be denoted by juxtaposition.
We can define a partial ordering “ < ” on a lattice implication algebra L
byr<yifandonlyifz - y=1.

In a lattice implication algebra L, the following hold (see [10]):
(u)0—-z=11=z=zrandz—>1=1

2) z2y<(y—2)—(z—2).

(u3) r<yimpliesy +2<z—zandz—orz<z-y.

(ud) 2’ =z —>0.

(us) zvy=(z—2y)—y.

(u6) (y = z) = y) =zAy=(z—>y) > z).

W?) z<(z—=y)—>y.

In a lattice H implication algebra L, the following hold:

(W) zoa(z-2y) =Y.
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W) z-oy-o2)=(@—-y) —(x—2).

A subset F of a lattice implication algebra L is called a filter of L it it
satisfies:

(F1) 1€ F,
(F2) ze Fandz >y € Fimplyy € F, for all z,y € L.

3. Derivations of lattice implication algebras

In what follows, let L denote a lattice implication algebra unless otherwise
specified.

Definition 3.1.  Let L be a lattice implication algebra. Amapd:L — L
is a derivation of L if

d(z > y) = (z = d(y)) v (d(z) = )
for all z,y € L.

Example 3.2. Let L := {0,a,b,¢,1}. Define the partial order relation
onLas0<a<b<c<1, and define

z Ay = min{z,y}, z Vy := max{z,y}

for all z,y € L and “’and “—” as follows:

z |z —10 a b c 1
01 01 1 1 1 1
al c alc 1 1 11
b(b bldb ¢ 1 1 1
cla cla b ¢ 1 1
1{0 1|10 a b ¢ 1

Then (L, V, A, 1, —) is a lattice implication algebra. Defineamapd:L — L
by

1 ifz=e¢l
b ifz=a
d =
@ =Va ifz=o0
c ifz=b

Then it is easy to check that d is a derivation of lattice implication algebra
L.
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Example 3.3. Let L :={0,a,b,1} be a set with the Cayley table.

z|a —+|0 a b 1
01 o0j1 111
al b alb 1 1 1
bija bla b 1 1
110 1|10 a b 1

For any z € L, we have ' = £ — 0. The operations A and V on L are
defined as follows:

zVy=(z=y)-y zAy=((z'-y)->7y).

Then (L, V, A, 1,—) is a lattice implication algebra. Defineamapd: L — L
by

b ifz=a

d(z) = {1 ifz=0,1,b

Then it is easy to check that d is a derivation of lattice implication algebra
L.

Proposition 3.4. Let d be a derivation of L. Then we have d(1) = 1.

Proof. Let d be a derivation of L. Then we have
d1)=d(1=1)=Q1—=d(1)))v({d(l)—=1)
=d1)vli=(d(1)-1)—=21=1=1=1

Proposition 3.5. Let L be a lattice implication algebra and let d be a
derivation on L. Then d(z) =d(z) vz for all z € L.

Proof. Let z € L. Then we have
d(z) = d(1 = z) = (1 = d(z))V(d(1) = =) = (1 = d(z))V(1 = z) = d(z)Vz.

Corollary 3.6. Let L be a lattice implication algebra and let d be a
derivation on L. Then z < d(z) for all z € L.

Proof. Let d be a derivation on L. Then by Proposition 3.5, we have

z = d(z) =z = (d(z) Vz) =z = ((d(z) = z) = 7)
=(d(z) =2 z)> (z2z)=(dz)>1)—>1=1,

which implies z < d(z).
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Proposition 3.7. Let f be an expansive map on a lattice implication
algebra L, i.e., z < f(z) for all z € L. Then f(z) = y < z = f(y) for all
z,y € L.

Proof. Suppose that f is an expansive map on L and z,y € L. Then
z < f(z) and y < f(y). Hence f(z) 2 y<z—>yandz oy <z — f(y)
by (u3). It follows that f(z) = y <z — f(y).

Theorem 3.8. Let d be a map on a lattice implication algebra L. Then
the following identities are equivalent:

(i) d is a derivation of L :

(ii) d(z = y) =z = d(y) for all z,y € L.

Proof. Suppose that d is a derivation of L. Then Since z < d(z), we have
d(z) = y < z — d(y) by Proposition 3.7. Hence by (I5)

d(z = y) = (z = d(y)) V (d(z) = v)

= ((z = d(y)) = (d(z) = v)) = (d(z) = v)

= ((d(z) = y) = (z = d())) = (z — d(y))

=1-(z—>dy)=z-dy)
for all z,y € L. Conversely, suppose that d is a map satisfying d(z — y) =
z — d(y) for all z,y € L. Then d(1) = d(d(1) — 1) = d(1) = d(1) = 1,
hence we have 1 = d(1) = d(z — z) = = — d(z) for all z € L. This implies
that £ < d(z) for all z € L, and so d(z) =+ y < = — d(y) by Proposition
3.7. Hence by (I5),

diz > y) =z = d(y) =(z = d(y)) v (d(z) = y)
for all z,y € L.

Proposition 3.9. Let L be a lattice implication algebra. If dy,ds,d3, ..., dn
are derivations of L, dy odp o d3 - - - ody, is a derivation of L.

Proof. It is sufficient to prove the theorem in case of two derivations. Let
dy and ds be derivations of L and z,y € L. Then we have

(d1 0 dz)(z — y) = di(d2(z — v))
= di(z = d2(y)) = (z = d1(d2(¥)))
=z — (dy 0 d3)(y),

from Theorem 3.8. This completes the proof.
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Let d be a derivation of L. Define a set Fizq(L) by
Fizg(L) :={zx € L | d(z) =z}
for all z € L.

Proposition 3.10. Let d be a derivation of L. If x € Fizg(L), then we

have
n

rm— —
(dodod---od)(z) ==.
Proof. By definition of Fizqg(L), the proof is straightforward.

Proposition 3.11 Let L be a lattice implication algebra and let d be a
derivation on L. Then we have the following properties.

(i) If z € L and y € Fizy4(L), we have z — y € Fizq(L),

(i) fy € Fizg(L), zVy € Fizq(L) for all z € L.

Proof. (i) Let z € L and y € Fiz4(L). Then we have d(y) = y. Thus we

get
dlz - y)=z—d(y)

=zr—Yy

from Theorem 3.8.
(ii) Let = € L and y € Fizq(L). Then we get

dzVy)=d((z > y) > v)
=(z > y) > d(y)
=(z—-y) 2y =zVy

from Theorem 3.8.

Proposition 3.12. Let L be a lattice implication algebra and let d be a
derivation. If z < y and z € Fiz4(L), we have y € Fizq(L).

Proof. Let £ < y and x € Fizyg(L). Then we have z — y = 1 and
d(z) = z. Thus we get

dy)=d((l1=y)=d((z>y)>y)=dlzVvy)=zVy=y

from Proposition 3.11(ii).
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Definition 3.13. Let L be a lattice implication algebra and d be a deriva-
tion of L. If z < y implies d(z) < d(y) for all z,y € L, d is called an isotone
derivation.

Example 3.14. In Example 3.3, d is an isotone derivation of L.

Proposition 3.15. Let L be a lattice implication algebra and let d be a
derivation. If d is an endomorphism on L, d is an isotone derivation.

Proof. Let z <y. Thenz — y =1, and so
d(z) 2> d(y) =d(z - y)=d(1)=1.
This imply d(z) < d(y).

Proposition 3.16. Let L be a lattice implication algebra and d be a
derivation. Then d : L — L is an identity map if it satisfies z — d(y) =
d(z) > yforal z,y e L.

Proof. Let z,y € L be such that z — d(y) = d(z) = y. Now d(z) =
d(1 > z)=1-d(z) =d(1l) > z=1— z =z by Theorem3.8. Thus d is

an identity map.

Theorem 3.17. Let L be a lattice implication algebra and d a derivation.
Then d is one to one if and only if d is an identity derivation.

Proof. Sufficiency is obvious. Suppose that d is one to one. For every
z € L, we have
d(d(z) = z) =d(z) = d(z) =1 =d(1)

and so d(z) = = = 1, i.e,, d(z) < z. Since £ < d(z) for all z € L from
Corollary 3.6, it follows that d(z) = z, which implies that d is the identity
derivation.

Let L be a lattice implication algebra. Then, for each a € L, we define
amapd,:L— L by
do(z) =a—>z

forallz € L.

Theorem 3.18. For each a € L, the map d; is a derivation of L.
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Proof. Suppose that d, is & map defined by d,(z) = ¢ = z for each
z € L. Then for any z,y € L, we have

di(zoy)=a—-r(zoy)=c2(a—=>y) =z da(y).

Hence d, is a derivation of L by Theorem 3.8.

‘We call the derivation d, of Theorem 3.18 as simple derivation.

Proposition 3.19. Let L be a lattice H implication algebra. For every
a € L, the simple derivation d, is an endomorphism.

Proof. Let z,y € L. From (u9), we have
do(z 2 y) =a— (2> y) =(a—2z) 2 (a = y) =do(z) 2 da(y).

Hence d, is an endomorphism.

Definition 3.20. Let L be a lattice implication algebra and let d be a
derivation of L. Define a Kerd by

Kerd={z € L|d(z) =1}.

Proposition 3.21. Let d be a derivation of a lattice implication algebra
L. If d is an endomorphism on L, Kerd is a filter of L.

Proof. Clearly, 1 € Kerd. Let z,x — y € Kerd. Then d(z) = 1 and
d(z = y) = 1. Hence we have

1=d(z = y) = d(z) = d(y) =1 — d(y) = d(y),
which implies y € Kerd.

Proposition 3.22. Let L be a lattice implication algebra and let d be a
derivation. If y € Kerd, then we have zVy € Kerd for all z € L.

Proof. Let d be a derivation and y € Kerd. Then we get d(y) = 1, and
)

dzVvy)=d((z2y) 2y =(z2y) 2dy)=(z—=y)21=1

from Theorem 3.8. Hence we have z Vy € Kerd.
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Proposition 3.23. Let L be a lattice implication algebra and d be a
derivation. If £ < y and z € Kerd, then y € Kerd.

Proof. Let z <y and z € Kerd. Then we get z = y = 1 and d(z) = 1,

and so
diy) =d(l = y)=d((z>y)—>vy)

=d((y o z) > z)=(y— z) > d(z)
=(y—2z)—>1=1
from Theorem 3.8. Hence we have y € Kerd.

Proposition 3.24. Let L be a lattice implication algebra and let d be a
derivation of L. If y € Kerd, we have 2 = y € Kerd for all z € L.

Proof. Let y € Kerd. Then d(y) = 1. Thus we have
dzoy)=z-2dly)=z—=1=1

from Theorem 3.8. Hence we get £ — y € Kerd.

Definition 3.25. Let L be a lattice implication algebra. A nonempty
subset F' of L is said to be a d-invariant if d(F) C F where d(F) = {d(z) |
z € F}.

Theorem 3.26. Let L be a lattice implication algebra and let d be a
derivation. Then every filter F is a d-invariant.

Proof. Let F be a filter of L. Let y € d(F). Then y = d(z) for some
xz € F. It follows that £ — y = ¢ — d(z) = 1 € F, which implies y € F.
Thus d(F) C F. Hence F is a d-invariant.
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