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Abstract

In this paper, we present two criteria for a sequence lying along
a ray of a combinatorial triangle to be unimodal, and give a correct
proof for the result of Belbachir and Szalay on unimodal rays of the
generalized Pascal’s triangle.
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1 Introduction

A sequence {a;}:>0 of nonnegative numbers is called unimodalif ap < a; <
v+ L 0mo1 € m 2 amqy 2 --- and log-concave if for all i > 1, aj-10i41 <
a?. It is well known that a log-concave sequence {a; };>0 of positive numbers
is unimodal (see [6]), and a sequence of positive numbers {a;}:>o is log-
concave if and only if a;_1a;41 < aa; for j > i > 1 (e.g., see [3, Proposition
2.5.1]). Unimodal and log-concave sequences often arise in combinatorics
and other branches of mathematics. See survey articles 3, 4, 6].

Recently the binomial sequences in the form of {(3°17)}:>0 have been
shown to share various unimodality properties (see [1, 2, 8, 10]). Arrange a
binomial coefficient (}) as a lattice point in two-dimensional plane. Clearly,

the sequence {(}°X:%)}i»0 locates along a ray of Pascal’s triangle and the
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corresponding ray starts with (’,:") and its slope is determined by two pa-
rameters ¢ and b. When a = 0 and b = 0, we get the rows and the columns
of Pascal’s triangle respectively.

In this paper, we present two criteria for a sequence lying along a ray
of a combinatorial triangle to be unimodal. As an application, we give a
correct proof for the results of Belbachir and Szalay [2] on the unimodal
rays of the generalized Pascal’s triangle.

2 Two criteria for unimodal rays

Many combinatorial numbers form a doubly indexed array {T(n,k)},, k>0

of positive numbers, such as {(})}nk>0 (the ordinary Pascal’s triangle).
We call this kind of arrays a combinatorial triangle, in which the indices
n=0,1,2,..., and the indices k form an arithmetic progression with the
first term 0. The generalized Pascal’s triangle in next section is such a
triangle that its column-indices form an arithmetic progression.

Given a combinatorial triangle {T(n,k)},, x>0, it is not difficult to see
that a sequence lying along certain a ray of the triangle has the form of
{T(’no — ia,ko + ib)}izo with a,b > 0, or {T(no + ia, ko + ib)};zo with
b > a > 0. In this section, we will show two criteria for these two kinds of
sequences to be unimodal.

Theorem 1. Suppose a combinatorial triangle {T(n, k)},, 1>, satisfies:
(i) every row is log-concave;
(ii) every column is log-concave;
(iii) T(n - 1,k)T(n,k —1) < T(n -1,k — 1)T(n,k).

Then the sequence {T'(no — ia, ko + ib)}i>0 is log-concave, where a,b > 0
and ng > ko > 0.

Proof. By the definition of log-concavity, it suffices to prove that
T(n—a,k+bT(n+a,k—b) <T(n,k)? fora,b>0.

Let n, k and ! be fixed nonnegative integers and k < ! < n. We first
show that for all @ > 0,

T(n-a,l+1)T(n+a,k—1) <T(n—a,)T(n+a,k). (1)

We proceed by induction on a. The case that a = 0 follows from the
condition (i). Now suppose (1) holds for a = j, i.e.,

T(n—j,l + )T(n+ 4,k — 1) < T(n — 4, )T(n + j, k).
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By condition (iii), we have
Tn—50)Tn-j-1,14+1)<T(n—-j-1,0)T(n-j41+1),
Tn+5,k)T(n+j+1,k=1)<T(n+45,k-1)T(n+j+1,k).
Multiplying these two inequalities together and cancelling, we have
Tn-j-L1+1)T(n+j+1,k-1)<T(n-5-1,)T(n+3j+1,k).

Thus (1) holds for all a.
Then (1) yields a series of inequalities as follows,

Tn-a,k+b)T(n+a,k-b)<T(n—a,k+b-1)T(n+a,k-b+1)
< <Tn—-a,k+1)T(n+a,k—-1)<T(n-a,k)T(n+a,k).
By condition (ii), we have

T(n—a,k)T(n+a,k) <T(n—a+1,k)\T(n+a—1,k)<--- < T(n, k)2

Hence
T(n-a,k+bT(n+a,k—b) <T(n—a,k)T(n+a,k) < T(n, k)2

as desired. O

Theorem 2. Suppose a combinatorial triangle {T(n, k)}, ,> satisfies:
(i) every row is log-concave; B
(ii) the sequence {T(n + i,k +i)}i>o0 is log-concave for fixzed n,k > 0;
(iii) T(n -1,k — 1)T(n,k+1) <T(n - 1,k)T(n,k).

Then the sequence {T'(no + ia, ko + ib) }i>o0 is log-concave, where b >a >0
and ng > ko.

Proof. It suffices to show that
T(n—a,k—bT(n+a,k+b)<T(nk)> forb>a>0.
Next we will prove that for fixed a > 0 and all k < [,
Tn-a,k—a—-1)T(n+a,l+a+1) <T(n-a,k—a)T(n+a,l+a). (2)

The case that a = 0 follows from condition (i); Suppose the above
inequality holds for a = j, i.e.,

Tn—-j4k=-j—1T(n+51+5+1) <T(n—j, k- H)T(n+351+7).
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By condition (iii),
T(n—j-1,k—j—2)T(n-jk—j)
<T(n-j-1,k—j-1)T(n-5k-j-1),
Tn+jil+)T(n+j+1,14+5+2)
<T+jl+i+1)T(n+5+1,1+5+1).

Multiplying the previous two inequalities and cancelling, we have
T(n—j-1,k—j-=2)T(n+j+1,l4+j+2) < T(n-j-1,k—j—1)T(n+j+1,14+j+1).

Thus (2) holds for fixed a > 0 and all k < [.
Then (2) and condition (ii) yield a series of inequalities as follows,

Tn—a,k=bT(n+a,k+b) <T(n—a,k-b+1)T(n+a,k+b-1)
<...<T(n-a,k—a)T(n+a,k+a)
<T(n-a+l,k—a+1)T(n+a—1,k+a-1)

<.+ <T(n-1,k=1)T(n+1,k+1) < T(n, k)

a

3 The correct proof for the unimodal rays of
the generalized Pascal’s triangle
The generalized binomial coefficient (7;°), also known as polynomial coef-
ficient (see [5]), is given by
ns—n n.s
2 “1yn _ AW
Q+z+2++2 = ( 4 )a: .
k=0
It satisfies the following recurrence relation
n,s\ _ ’z—f n-—1,s

and has the symmetry property

<n1’cs) - (ns - ’:- k)'
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When s = 2, it is the ordinary binomial coefficient. When s = 3, we get
the triangle {{™?)}22, of trinomial coefficients:

1
111
123 2 1
136 7 631

Clearly, the column indices of the generalized Pascal’s triangle {(",;’) Ink>0
form an arithmetic progression with the common difference s — 1.

The following propsition was proved by Belbachir and Szalay, which is
equivalent to the original result in [2] by the symmetry of the generalized
binomial coefficient.

Proposition 1. The sequence { (“,g;'_:?g")} o i log-concave, with a,b > 0.
‘-—

Nevertheless, their proof for Proposition 1 is wrong. Taking the ordinary
Pascal’s triangle for instance, Belbachir and Szalay [2] prove Proposition 1
in the following way. They notice that: (a) The ordinary convolution pre-
serves log-concavity, that is, if two positive sequences {a;} and {b;} are
both log-concave, then so is the sequence ¢; with ¢; = Z;-=0 a;jbi_; (e.g.,
see [9]); (b) By Vandermonde’s convolution formula,

, i ,
np —ia\ i\ (o —i(a+1)
(k0+ib)—j§(j)(ko+ib—j ) @)
Then 'they claim that {(’,:g;:::)},-zo is the convolution of {(;) }5=0 and
{(Poat1)y };=0» and is therefore log-concave by the log-concavity of the

ko+ib—j
latter two sequences. However, the equation (3) is not the ordinary convo-

lution since it belongs to the following type of equations
(8 : ® gt
i i 3
cH = Zo ABY..
=l

Next we will give a correct proof for Proposition 1. The following lemma
is needed.

Lemma 1. If a sequence xg, 21, -+ ,Z2s—2 Of positive numbers is log-concave,
then .
s=1 25-2 2 s
LN IEES D oy E @
=0 j=0 J
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Proof. Note that

5—112 22,8 26—2—7
(1+$+...+x ) =Z A I,

i=o \J

By setting z; = 2* (i = 0,1,---,2s — 2), we see that the numbers of the
terms in the expansions of

s—1 2 252
Z-’Bj and o Z ( } )223—2—1'
j=0

3=0

are equal. Then there is a bijection from the terms of (Z’_é :z:,) to the
terms of zg Z?ioz (23'.") Tgs—2—; under the rule

ZiT; — ZToZitj-

By the log-concavity of the sequence {z; ?;32, we have 1oz < ZiT;, no

matter i > j or i < j. Then the required inequality (4) follows.
]

Now we are in a position to prove Proposition 1 by Theorem 1.

The proof of Proposition 1. It suffices to verify three conditions in Theo-
rem 1 for the generalized Pascal’s triangle respectively.

Condition (i): From the polynomial (1 + z + z% + -+ + z°~1)", the
n-th row is the n-convolution of the sequence 1,1,...,1(the number of 1’s
is s). Since the ordinary convolution preserves log-concavity, every row of
the generalized Pascal’s triangle is log-concave.

Condition (i): Note that

(¥) -0
(E6) - EE)

Let z; = "k__lj"’), j=0,1,--+,2s —2. Clearly, the sequence {z; }j_0 is
log-concave. By Lemma 1, we claim that the difference (%) ("71*) (*+})
is nonnegative. Thus every column of the generalized Pascal’s triangle is

log-concave.
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Condition (iii): We have
(nk—_lis) (n’;s) _ ('n -1 s) (knls1)
() ()7 (Be)
= :1 ()0 -C0)EE)

3=0

20,

where the last inequality follows from the log-concavity of the (n — 1)-th
row in the generalized Pascal’s triangle. |

Remark 1. Proposition 1 also can be derived from Theorem 2. Moreover,
many other combinatorial triangles can be shown to have unimodal rays by
Theorem 1 and Theorem 2, such as the Stirling’s triangles of two kinds.
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