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Abstract

In this article, we characterize for which finite commutative ring
R, the zero-divisor graph I'(R), the line graph L(I'(R)), the com-
plement graph I'(R), and the line graph for the complement graph
L(T'(R)) are Eulerian.
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1 Introduction

Let R be a finite commutative ring with 1. Z(R) is the set of zero-divisors of
R, and Z*(R) = Z(R)\{0}. The zero-divisor graph of R, I'(Z*(R)), usually
written I'(R), is the graph in which each element of Z*(R) is a vertex, i.e.,
V(T'(R)) = Z*(R), and two distinct vertices z and y are adjacent if zy = 0.
The complement graph I'(R) is defined on the same vertex set, but two
distinct vertices z and y are adjacent if zy # 0. For more properties of
this graph, see [4] and [5]. The line graph of G, denoted by L(G), is a
graph whose vertices are the edges of G, and two vertices of L(G) are
adjacent whenever the corresponding edges of G are, see [7]. It is clear that
if G is connected, then so is L(G), while if L(G) is connected and G has
no isolated vertices, then G is also connected. If v,w are vertices in G
and vw is an edge joining them in G, then the degree of vw in L(G) is
deg(vw) = deg(v) + deg(w) — 2. For distinct vertices z and y of a graph G,
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let d(z,y) be the length of a shortest path from z to y and let N(z) denote
the set of all neighbors of r in G. Inaring R, Ann(X)={a€R: az=0
for all z € X} and U(R) is the set of all units in R.
For any undefined terminology the reader may consult [8].

___In this article, we characterize the cases in which the graphs I'(R) and
T'(R) are Eulerian, where R is a finite commutative ring with 1. This
problem was partially solved in (6], where the authors dealt with the ring
Z,, and in [1] and [2], where the authors dealt with the ring Z,[i]. In (3},
the authors dealt with non-commutative finite rings and directed graphs,
but our results and techniques are easier than theirs. In [7], the author
characterized when L(['(R)) is Eulerian, where R is a non-local ring and
gave a partial result when R is local.

2 When is I'(R) Eulerian?

Definition 1 A graph T is called Eulerian if there ezists a closed trail
containing every edge of T'.

In this article, we will use another criterion for a graph to be Eulerian,
which was proved by Euler.

Proposition 2 (Euler) A connected graphT' is Eulerian if and only if the
degree of each vertex of T is even.

We begin with some preliminaries needed for the coming work.

Recall that if a ring R has non-zero nilpotent elements, then it has a
non-zero element z such that 2 = 0. If R is a local ring, then |R| = p" for
some prime integer p, and so Char(R) = p™, being the order of 1 in the
additive group (R, +).

One may wonder if in a local ring R with unique maximal ideal M,
the conditions M2 = {0} and z% = 0 for all z € M are equivalent. The
following example shows that this need not be true.

Example 3 Let R = Z,[X,Y]/(X2,Y2%) = Zs[z,y), where z = X +

(X2,Y?) andy = Y+(X2,Y?2). Then R is a finite local ring with Char(R) =
2. The mazimal ideal in R is M = (z,y) in which 22 =0 for each z € M,

but zy # 0.

Example 4 Let R = Zy[X,Y] /(X2 XY,Y?) = Zy[z,y], wherez = X +
(X2,XY,Y?) andy =Y + (X%, XY,Y?). Then R is a finite local ring with
Char(R) = 4. The mazimal ideal in R is M = (2,z,y) in which z2 =0 for
each z € M, but 2z # 0.
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Lemma 5 In a local ring R with mazimal ideal M, if Char(R) is neither
2 nor 4, then M? = {0} if and only if 22 =0 for all z € M.

Proof. If M? = {0}, then 2% =0 for all z € M.

Conversely, assume z2 = 0 for all z € M. If Char(R) = 2™ with n > 2,
then 0 # 4 = 22. So assume that Char(R) is an odd integer. Let z,y € M.
Then 0 = (z + y)? = 2y, and since 2 € U(R), we must have zy = 0. Thus
M2={0}). m

Theorem 6 For a finite local ring R with a mazimal ideal M, the graph
I'(R) is Eulerian if and only if |R| is even and 22 = 0 for eachz € M.

Proof. Assume R is a local ring with maximal ideal M. In this case,
|R| = p™ for some prime integer p.

Suppose that y2 # 0, for some y € M, and let 2 € M such that z2 = 0.
Then deg(z) = |Ann(z)| — 2, while deg(y) = |Ann(y)| — 1. But these two
integers cannot both be even, hence I'(R) could not be Eulerian.

Conversely, if 22 = 0 for each z € M, then deg(z) = |Ann(z)| — 2 for
each z € M — {0}. Since |Ann(z)| = p™ for some m < n, we have I'(R) is
Eulerian if R has even order. m

Lemma 7 Let R be a finite non-local ring such that |R| is even. Then
I'(R)cannot be a Eulerian graph.

Proof. Assume R = R; x R;. Since |R| is even, then |R;| is even or |R;|
is even. Assume |R,| is even, then N((0,1)) = R; x {0} \ {(0,0)}. So,
deg((0,1)) = |Ri1| — 1 which is an odd number. Thus I'(R) cannot be a
Eulerian graph. =

Theorem 8 For a finite non-local ring R, the graph I'(R) is Eulerian if
and only if R has no non-zero nilpotent elements and |R| is odd.

Proof. Assume that I'(R) is Eulerian. Then by Lemma 7, |R| is odd. If
T is 2 non-zero nilpotent element in R such that z2 = 0, then N(z) =
Ann(z) \ {0,z}, and so deg(z) = |Ann(z)| — 2, which is an odd integer.
Hence I'(R) cannot be Eulerian.

Conversely, assume that R has no non-zero nilpotent elements and |R)|
is odd. Then for each z € Z*(R), deg(z) = |Ann(z)| — 1, which is an even
integer. Hence I'(R) is Eulerian. =

Corollary 9 For a finite non-local ring R, the graph I'(R) is Eulerian if
and only if R is a direct product of fields, each of which is of odd order,

Now, one can easily deduce Proposition 1 in [3], Theorem 3.1 in [6], and
Theorem 29 in [2].
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3 When is L(I'(R)) Eulerian?

For aring R, the graph I'( R) is connected, see [4], and so is L(T'(R)). Hence
L(T'(R)) is Eulerian if and only if deg(vw) is even for each vertex vw in
L(T'(R)), if and only if deg(v) is even for each vertex v in I'(R) or deg(v)
is odd for each vertex v in I'(R). So if a ring R has non-zero nilpotent
elements z,y such that 22 = 0 and y™ = 0 with n # 2, then deg(z) and
deg(y) are not both even and are not both odd; so L(I'(R)) is not Eulerian.
Thus we have the following theorem, see also [7].

Theorem 10 (1) Let R be a finite local ring with mazimal ideal M. Then
L(T(R)) is Eulerian if and only if 22 = 0 for each x € M.

(2) Let R be a finite non-local ring. Then L(I'(R)) is Eulerian if and
only if R is a product of fields, each of which is of even order or each of
which is of odd order.

4 When is I'(R) Eulerian?

Recall that a connected graph I' is Eulerian if and only if the degree of
each vertex of T is even. If T is disconnected, then it is Eulerian if and
only if it is a disjoint union of a discrete subgraph and a Eulerian subgraph.
So a disconnected graph is Eulerian if and only if it is a disjoint union of
a discrete subgraph and a connected graph in which each vertex has even
degree.

If R is a finite local ring with maximal ideal M, then there exists a
positive integer n such that M™ = {0} and M™~! # {0}. Ifa € M™~1\ {0},
then az = 0 for each £ € M and so a is an isolated vertex in I'(R); hence
T'(R) cannot be connected.

Lemma 11 If R is a finite local ring with mazimal ideal M such that
M? # {0}, then the subgraph of I'(R) consisting of the vertices M\ Ann(M)
is connected with diameter at most 2.

Proof. Since M? # {0}, Ann(M) is a proper subset of M. Let a,b €
M\ Ann(M). If ab # 0, then a — b is a path in I'(R). If ab = 0, then
there exists 21,23 € M \ Ann(M) such that az; # 0 and bz # 0. We have
many cases:

Case (I): If z; = 25, thena — 2; — bisapathin T(R).

Case (II): If 2y # 22, and bzy #0,thena — 2z — bisapathin T(R).
If azp # 0, then a — 23 — b is a path in I'(R).

Case (III): If z) # 23,022 =0 and bz; =0, thena — (z;+23) — bis
a path in I'(R). Note that in this case, z; + 22 is not equal to 0,a nor b.
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Thus the subgraph is connected and has diameter less than or equal to
2. Note that in this case, the vertices of Ann(M) \ {0} are isolated. m

If R is a finite local ring with maximal ideal M and M2 = {0}, then
T(R) = |[M*| K,, and so it is Eulerian. If M2 # {0}, but 22 = 0 for all
z € M\ {0}, then N(z) = M\ Ann(z) and deg(z) = |M|— |Ann(z)| which
is always even, and so T'(R) is Eulerian. If there exists £ € M such that
z? # 0, then N(z) = M\ (Ann(z) U {z}) and deg(z) = M| — |Ann(z)| -1,
which is always odd. Thus I'(R) is cannot be Eulerian. The following
theorem summarizes the above work.

Theorem 12 Let R be a ﬁmte local ring with maximal ideal M. Then
T'(R) is Eulerian if and only if 22 =0 for allz € M.

The following theorem was proved in [1].

Theorem 13 Let R be a finite ring that is a product of two rings with at
least one_of them not an integral domain. Then T'(R) is connected with

diam(T(R)) < 3.

Now, we will discuss the cases in which I'(R) is not connected when R
is a finite non-local ring. Assume R = Zy x R, with R an integral domain.
Then in I'(R), (1,0) is isolated, while the elements {(0,a) : a € R3} form
the subgraph Kl R So T(R) is Eulerian if and only if |Ry| is even. If
R = Ry x Ry with R; and R; integral domains and |R;| > 2 for i = 1,2,
then I'(R) is K| |Rt] UK |R3)’ which cannot be Eulerian.

Now, we discuss the cases in which T'(R) is connected.

Theorem 14 If R is a finite non-local ring with odd order, then -I‘—(ﬁ—) 18
not Eulerian.

Proof. Assume R = R; x R; with |R| odd and R, not an integral domain.
Then I'(R) is connected. If R has a non-zero nilpotent element (z,y),
then N((z,y) = Z(R)\ Ann((z,y)) and N((z,1)) = (Z(R) \ Ann((z,1)))\
{(z, 1)}, which implies that deg((z, y)) and deg((z, 1)) cannot both be even,
and so I'(R) is not Eulerian. If R has no non-zero nilpotents, then R is a
product of fields, and to get a connected graph, R must be a product of

at least 3 fields, say R = H R; with m > 2. For each k, U(Ry) =
has an even number of elements, which implies that Z(R) = R\ (U(R)) =
R\ H U(Ry), which has an odd number of elements. Now for each (zx) €

k=1
Z*(R), N((z«)) = (Z(R)\ Ann((z«))) \ {(zx)} which always has an odd
number of elements; so ['(R) is not Eulerian. m
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Theorem 15 If R is a finite non-local ring with even order, then TI'(R)
is Bulerian if and only if R = Z3 x Ry with Ry an integral domain of even
order or R is a product of at least 3 fields, each of which has even order.

Proof. The case of a non-connected graph was proved in the paragraph
after Theorem 13. Assume R = R; x R, with |R| even and R; not an
integral domain. Assume first that |R,| is even and |Rj| is odd. Then
Ann((1,0)) = {0} x Ry and Ann((0,1)) = R; x {0}; so deg((1,0)) =
|Z(R)| — |Rs| — 1 and deg((0,1)) = |Z(R)| — |R1| — 1, which cannot both be
even, hence I'(R) is not Eulerian. Now we can assume that R is a product
of local rings, each of which has order 2™ with n; > 1 for each k. If R has
a non-zero nilpotent element (z,y), then N((z,y) = Z(R)\ Ann((z,y)) and
N((z,1)) = (Z(R) \ Ann((z,1))) \ {(z,1)}, which implies that deg((x,y))
and deg((z,1)) cannot both be even, and hence I'(R) is not Eulerian. So
assume that R is a product of at least 3 fields, each of order 2™¢. For
each k, U(Rx) = R}, has an odd number of elements, which implies that

Z(R) = R\ (U(R)) =R\ H U(Rk) has an odd number of elements. Now

for each (zx) € Z*(R), N( (-’rk)) = (Z(R) \ Ann((z«))) \ {(zx)} always has
an even number of elements; so I'(R) is Eulerian. m

Now we can deduce Theorem 8.2 in [6] that ['(Z,,) is Eulerian if and
only if n = p? for some prime p.

5 When is L(T'(R)) Eulerian?

If R is a finite local ring with maximal ideal M, then L(T'(R)) is connected,

since I'(R) is the union of the discrete subgraph Ann(M) and the connected

subgraph M \ Ann(M). Clearly if M has an element y such that y2 #£0,

then L(T(R)) cannot be Eulerian; hence L(T(R)) is Eulerian if and only if
=0 for all z € M.

If R is a product of local rings and has non-zero nilpotent elements,
then L(T(R)) cannot be Eulerian. So R must be a product of fields. If R is
a product of two fields with neither of them is Z;, then L(T(R)) cannot be
Eulerian. If these fields have even and odd orders, then the degrees of the
vertices of L(I'(R)) are odd and even, and so L(I'(R)) cannot be Eulerian.
So, assume that R is a product of fields with all of their orders even or all
odd. Hence we have the following result.

Theorem 16 (1) Let R be a finite local ring with mazimal ideal M. Then
L(T(R)) is Eulerian if and only if 2 = 0 for each z € M.
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(2) Let R be a finite non-local ring. Then L(T'(R)) is Eulerian if and
only if R =172y x F, where F is a field or R is a product of at least 3
fields, each of which is of even order or each of which is of odd order.
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