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Abstract: In this paper, the estimations of maximum genus orientable embed-
dings of graphs are studied, and an exponential lower bound for such numbers are
found. Moreover, such two extremal embeddings (i.e., the maximum genus orientable
embedding of the current graph and the minimum genus orientable embedding of
the complete graph) are sometimes closely related with each other. As applications,
we estimate the number of the minimum genus orientable embeddings for complete
graph, by estimating the number of maximum genus orientable embedings for current
graph.
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I. Introduction

In this paper, all graphs are simple connected. Concepts and
terms are standard and follow from([1]. A spanning tree T in a graph
G is called optimal if the number of odd components, denoted by
w(T), of G — T is smallest among spanning trees of G. It is well
known that w(T") is much related to graph embedding, especially in
the maximum orientable embedding of graphs (or MOGE in short).
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There are many results on the maximum genus embedding, for
example, Liu[2,3] has studied those problem; M.Skoviera[4] has stud-
ied those problem. But, there are few results on the estimation of
maximum genus orientable embedding. S.Stahl[5] has proved that
the number of maximum genus orientable embeddings of almost all

graphs G is not less than (d; —5)!(d2 —5)!(d3 — 5)!(ds — 5)! H (d; — 2)!

where v is the number of vertices of G; dy,ds,...,dp 1s a sultable
recordering of the degree sequence of G; If m is a non-positive in-
teger, m! = 1. In this paper, we find an exponential lower bound
of the number of maximum genus orientable embeddings. For cubic
graphs, our results are better than the results of S.Stahl(5). For cu-
bic graphs, Theorem 4 of this paper give out an exponential lower
bound of the number of maximum genus orientable embeddings; but
the lower bound of S.Stahl[5] is 1.

In history, finding a genus embedding for a complete graph was
a long and difficult way, as surveyed in Ringel’s monograph[6], com-
pleted the proof of the well known Heawood Conjecture and gave
the birth of modern topological graph. Since then, few attention has
been payed to the estimation the number of such embedding, until
very recently some sparse, but crucial, progresses were made. In
S.Lawrencenko[7], K7 has an unique genus embedding on orientable
surfaces; S.lawrencenko, S.Negami and A.T.White[8], K19 has at
least three genus embeddings on orientable surfaces; C.P.Bonningtong,
M.J.Grannel, T.S.Griggs and J.Siran[9}, for s > 2, Kjos47 has at
least two genus embeddings on orientable surfaces; C.P.Bonningtong,
M.J.Grannel, T.S.Griggs and J.Siran[10], for n = 7, 19(mod36) and

n = 19,55(mod108), K, has, respectively, 2% -0 ang 2%5-0(n)
genus embeddings on orientable surfaces; V.Korzhik and H.J.Voss|[11],
both Kjg54+4 and Kis,47 has at least 4° genus embeddings on ori-
entable surfaces; V.Korzhik and H.J.Voss[12], for any ¢ € {1, 2,3, ...,11}-
{3,4,7}, Kio4: (for s > d(3) € 1,2,3,4), has at least h(#)4° distinct
genus embeddings on orientable surfaces; Ren and Bai[13)], the com-
plete graph K, with order n = 4,7,10(mod2) has at least Cc2% d1s-
tmct genus embeddings on orientable surfaces, where C = 1,27 7 or
2-% with respect to n = 4,7, 10(mod12), respectively.

I1I. Main Result
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Theorem 1[14,15] The maximum genus of a graph G is

G)-w(T
where 3(G) is the Betti-number of G and w(T') is the number of odd
components in an optimal tree T in G.

Theorem 2[14,15] Let T be an optimal tree in a graph G
with w(T") odd components in G — T'. Then edges of E(G) — E(T)
may be partitioned as follows

8
E(G) - E(T) = |J{ezi-1, e} J{f1, for ..r fm}
i=]
where for each i : 1 <7 < s, e2i—1(Ve2i # ¢ and {fi1, f2,..., fm} is &
matching of G and s = ym(G), m = w(T).
Theorem 3 For any graph G = (V,E),v € V,d(v) > 3, let T
be an optimal of G with an edge-partition

s

E(G) - E(T) = U{e2i—1ae2i}U{flaf2; -"7.fm}

i=1

such that e; = (zi,%:), 1 <4 < 2s and z9;—1 = z9;(1 < ¢ < s). Then
there are at least

s
4™ ] da., (z2i-1)de,, (v2i-1)da;_, (¥2:)
i=1
distinct MOGE for G,where G; = G;_1 + {62,'_1, 62,;} (1 <i< 8) and
Go=T.

Proof Consider an optimal tree T of G, vy, v, ..., v, being its
inner vertices such that each v; (1 <7 < ) has a rotation scheme ;
of edges of T incident to it. Then my,my, ..., o determine a planar
embedding of T' with a single region (face) whose boundary is Wj.
Let e; = (z4,%:)(t < i < 2s) and Zj € egj-1 ﬂegj(l < j<3s)beas
assumed in Theorem 3.

Consider the vertex z; € e; () ez and fix it at a copy of z; on Wj.
Then choose two copies of y; and ya, respectively, on Wy (note that
there are,respectively, dg (1), dg,(¥1) and d; (y2) ways to do so),
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where Gg = T. Then we find a new facial walk W, (containing Wy
and the edges ej, e2) by changing the local rotation at z; as shown

in Fig.1. Wo Wo + {e1, e2}

Fig.1 Adding a pair of “V” type of edges into a single face
will result in another one-face graph in higher surface

Now we obtain G; = Gp + {e1,e2} to have its maximum genus
embedding on surface S; with a single region (face) bounded by
edges of Wy. It is clear that there are at least d (21)dg, (y1)dc, (¥2)
ways to construct the facial walk W;. Repeat this procedure un-
til we arrive at G, and W, the since for any pair of edges f;, f; €

{fl) f2) ooy f‘m}vfi ﬂ fJ = ¢1 we see that there are dc,', (x2s+i)da, (y2s+i)(2
2 x 2 = 4) ways to add f; into W;, 1 < i < m. This completes the

proof of Theorem 3. m]
Applying Theorem 3, we have the following

Theorem 4[13] Let G be a cubic graph of order n with an
optimal tree T having a inner vertices and w(T') odd components in
E(G) — E(T). Then G has at least (v2)"+Z+*(T) MOGE for G. In
particular, if E(G) — E(T') induces an m-cycle or an m-path, then G
has at least (v/2)"+* distinct MOGE, where n = |V(G)|.

Rule A* If in line 7 has: ...jk..., then in line & must have:

Rule R* Ifinrow i has:...jkl..., then row k appears as : ...l¢j....

Each of the current graphs has the property that the given ro-
tation induces one single circuit. The circuit provides row 0, denote
row 0 by (0).

Additive Rule: (i) = (0)+ix+i=**=1z,9,2,.., 1 <i < n,
the number row (i) is obtained; the letter row ((z), (v}, (2),...) can
be obtained from number rows by Rule A*.
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Theorem 5[6] &, is an orientable surface, G can triangular
embedded into S, if and only if there exists a rotation of G such
that the scheme of this rotation satisfies Rule R*.

Theorem 6[16] Triangular embeddings is minimum genus em-
beddings.

Theorem 7 For s > 25, s is a natural number. Then n =
125 + 1, K, has at least 2°7 distinct minimum genus embeddings
on orientable surfaces.

Proof Let n = 12s — 2 and associated group is Z2 X Zgs—1
which, together with a system of rules on current graphs. At each
vertex of valency three, Kirchhoff’s Current Law holds. The first
component being represented by a heavily drawn arc if it is 1, and a
lightly drawn one if it is 0. For the first component, at each vertex of
- valence three there are either two heavily drawn arcs or none. The
distribution of the second component, which consists of the nonzero
elements of the group Zg;—;.

If s is an odd number, the currents on the rungs are

3s—-3,3s—6,...,12,9,6,3,1,35s - 3,6,9,12, ...,35s — 6.

The bar means that the orientation on the rung points down.
If s is a even number, the sequence of the currents for the rungs
is

3s-3,...,12,9,6,3,1,3s - 6,6,9,12,...,3s — 9,35 — 3.

The currents graphs are, respectively

z
N2 3a-1 5 Bl gl 38

v 33—3“ 33‘% IR l" 353, e e e
z . . »
—7 CTo THl del 45 B
= e
A A =)
352

coe 3s-17]  3s-9 o

8—2

B > M5 1

. 5
Fig.2 A current graph G with the group Zs x Zg,—1(s = 1(mod2))
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Fig.3 A current graph G with the group Z; x Zg;—1(s = 0(mod2))

The current graph G has the property that the given rotation
induces one single circuit. The log of the circuit provides row 0 and
all the other rows are determined by the additive Rule(or for the
extra row z,y,z by Rule R*). We say row 0 generates the whole
scheme. The scheme satisfies Rule R*. According to Theorem 5, the
scheme presents a triangular embeddings of the graph K, — K3 into
an orientable surface S,. We can only use one handle to connected
the vertices z,y, z with each other by an arc. We can handle it in
the following way. Consider the dual map of the embedding K, — K3
into orientable surface S,. This map has only vertices of valence 3
and the countries z,y, 2z are not adjacent to each other. Consider
another map on a torus, this map has only vertices of valence 3 and
five countries, the five countries are denoted by z,y, z,¢,0, and the
five countries are adjacent to each other. Go to the surface S, and
excise the country 0 of the dual map of the embedding K, — K3 into
Sp. Do the same with country ¢ of the torus. Identify the boundaries
of the two resulting surfaces in the obvious way. After this there is
a new country named O that is adjacent to the same countries as the
old county 0 as before. Notice that we have gained the adjacencies
between z,y and z. So we have constructed a map with n mutually
adjacent countries on the orientable surface Sp4;. Consider the dual
map of this map. We have a triangular embedding of the graph
K,, into an orientable surface Sp41. According to Theorem 6, the
triangular embedding is minimum genus embedding.

If consider an optimal tee T of the current graph G, the compo-
nent E(G) — E(T) is a path with exactly 2s — 1 vertices.It is clear
that there are 2s + 1 inner vertices in T , except two inner vertices
valency two, all other inner vertices of T having valency three.
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By Theorem 3 and 4, there are at least 2°7" distinct minimum
genus embedding on orientable surfaces. This completes the proof
of Theorem 7. O

Theorem 85 If s is a natural number, n = 125 + 9. Then K,
has at least 2T distinct minimum genus embeddings on orientable
surfaces.

Proof Consider the current graph G of Fig 4 using the group
Z12s+8, the elements 1,2, 3, ...,6s + 4 are used as currents. As usual
the notation 2 means that the element 2 is excluded. Therefore row
0 of the produced scheme doses not contain the elements 2 and —2.

6s+4 4 3{—2 38_+7 3s+1
> > > > o
67 se ) § 6Y 34 d
1
+5
€ 6543 5 3s3—-1 3s+8 35+2

Fig4 A current graph G with the group Zj2.4s

From this scheme we produce a very useful scheme by the follow-
ing operation in row j:

If j is even insert 2 + j,z,j — 2 in place of ¢ and omit d.

If j is odd insert j — 2,z,5 + 2 in place of d and omit c.

After doing this we obtain the scheme, the Rule R* holds in the
final scheme. Similar to the proof of Theorem 7, the final scheme
determines a minimum genus embedding on orientable surface.

If consider an optimal tree T of the current graph G, the compo-
nent E(G) — E(T) is a path with exactly 2s + 1 vertices. It is clear
that there are 2s + 2 inner vertices in T, except two inner vertices
valency two, all other inner vertices of T having valency three. By
Theorem 3 and Theorem 4, there are at least 2%% distinct minimum
genus embedding on orientable surface. This complete the proof of
Theorem 8. a
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