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Abstract

An L(2, 1)-labelling of a graph G is a function f from the vertex
set V(G) to the set of all nonnegative integers such that |f(z) —
f@W) 2 2if d(z,y) = 1 and |[f(z) - f(¥)| 2 1 if d(=,y) = 2,
where d(z,y) denotes the distance between = and y in G. The
L(2,1)-labelling number AM(G) of G is the smallest number k such
that G has an L(2,1)—labelling with max{f(v) : v € V(G)} = k.
Griggs and Yeh conjecture that A(G) < A? for any simple graph
with maximum degree A > 2. This article considers the graphs
formed by the cartesian product of n(n > 2) graphs. The new graph
satisfies the above conjecture (with minor exceptions). Moreover, we
generalize our results in [19].

1 Introduction

The frequency assignment problem is assigning frequencies one to each radio
transmitter so that interfering transmitters are assigned frequencies whose
separation is not in a set of disallowed separations. Hale [12] formulated
this into a graph vertex coloring problem.

In a private communication with Griggs, Roberts proposed a variation
of the channel assignment problem in which "close” transmitters must re-
ceive different channels and ”very close” transmitters must receive channels
that are at least two channels apart. To translate the problem into the lan-
guage of graph theory, the transmitters are represented by the vertices of
a graph; two vertices are "very close” if they are adjacent and ”close” if
their distance is two in the graph. Motivated by this problem, Griggs and
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Yeh [11] proposed the following labelling on a simple graph. An L(2,1)-
labeling of a graph G is a function f from the vertex set V(G) to the set
of all nonnegative integers such that |f(z) — f(y)| = 2 if d(z,y) = 1 and
|f(z) — f(¥)| 2 1if d(z,y) = 2, where d(z,y) denotes the distance between
z and y in G. A k-L(2,1)-labeling is an L(2, 1)-labelling such that no label
is greater than k. The L(2,1)-labelling number of G, denoted by A(G), is
the smallest number k such that G has a k-L(2, 1)-labelling.

There are considerable articles studying the L(2,1)-labellings (See refer-
ences.) Most of papers are considering the values of A on particular classes
of graphs. Griggs and Yeh [11] found an upper bound A? 4 2A for a general
graph with the maximum degree A. Later, Chang and Kuo [4] improved
the bound to A2+A. Recently, Krél’ and Skrekovski [14] reduce the bound
to A2 + A — 1. If the diameter of G is two, then A\(G) < A?. The upper
bound is attainable by Moore graphs (diameter 2 graph with order A% +1).
(Such graphs exist only if A = 2,3,7, and possibly 57.) (cf. [11]) Thus
Griggs and Yeh [11] conjectured that the best bound is A? for any graph
G with the maximum degree A > 2 (cf. [11]). (It is not true for A = 1.
For example, A(K32) = 1 but A(K2) = 2.) To determine the value of A is
proved to be NP-complete. (cf. [11])

Graph products play an important role in connecting many useful net-
works. In [19], we considered the graph formed by the cartesian product and
the composition of two graphs and prove that the L(2,1)-labelling number of
graph is bounded by the square of its maximum degree. Hence Griggs and
Yeh'’s conjecture holds in both cases (with minor exceptions). In this arti-
cle, we study the graph formed by the cartesian product of n graphs. The
L(2,1)-labelling number of graph is bounded by the square of its maximum
degree that satisfying Griggs and Yeh's conjecture (with minor exceptions).

Moreover, we generalize our results in [19].



2 A Labelling Algorithm

A subset X of V(G) is called an i-stable set (or i-independent set), if the
distance between any two vertices in X is greater than i. An l-stable
(independent) set is a usual independent set. A mazimal 2-stable subset
X of aset Y is a 2-stable subset of Y but X is not a proper subset of any

2-stable subset of X.
Chang and Kuo [4] proposed the following algorithm to obtain an upper

bound of the A-numbers of a given graph.
Algorithm 2.1.

Input: A graph G = (V, E).

Output: The value k is the maximum label.

Idea: In each step, find a maximal 2-stable set from these unlabelled ver-
tices that are distance two away from those vertices labelled in the previous
step. Then label all vertices in that 2-stable with the index i in current
stage. The index i starts from 0 and then is increasing 1 in each step. The

maximum label k is the final value of i.
Initialization: Set X_; =0; V =V(G); i =0.
Iteration:

1. Determine Y; and X;.

o Y, ={z € V:zis unlabelled and d(z,y) > 2 for all y € X;_,}.
e X; a maximal 2-stable subset of ¥;.
o IfY; = 0 then set X; = 0.

2. Label these vertices in X; (if there is any) by i.
3. V<V\X,.
4. V£ O theni« i+1, go to Step 1.

5. Record the current ¢ as k (which is the maximum label). Stop.
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Thus k is an upper bound on A(G). Analogously to the chromatic
number x(G), we would like to find a bound in terms of the maximum
degree A(G) of G.

Let z be a vertex with the largest label k obtained by Algorithm 2.1.
Denote

II={i:0<i<k—1andd(z,y) =1 for some y € X;}

L={i:0<i<k-—1and d(z,y) < 2 for some y € X;}

I3={i:0<i<k-—1andd(z,y) >3 forall y € X;}

It is clear that |I3| + |I3]| = k.

For any i € I3, = ¢ Y;; otherwise X; U {z} is a 2-stable subset of Y},
which contradicts the choice of X;. That is, d(z,y) = 1 for some vertex y
in X;_1; i.e., i—1€ L. So, |I3| < |I1]. Hence k = |I3| + |Ia| < |I2| + |I1].

In order to find k, it suffices to estimate B = |I;| + |I2] in terms of
A(G). We will investigate the value B with respect to different cases. For
convenience’s sake, the notations used in this section are the same as in the

following sections.

3 The Cartesian Product of Graphs

The cartesian product of two graphs G and H is the graph G O H with
vertex set V(G) x V(H), in which the vertex (v, w) is adjacent to the vertex
(v/,w) if and only if either v = v’ and w is adjacent to w’ or w = w’ and
v is adjacent to v’. (See Figure 1 for an example.)

This product (that is commutative and associative in a natural way) is
among the most important graph products, with potential applications.

Let Pg, = G1, Pg, Ga,....c. = P1,Ga.....G41 BGr, k = 2, ..., n, the carte-
sian product of n(n > 2) graphs Gi, Ga,..., Gn, Pg,,G,,...G. is the graph
G, O G, O ...0G, with vertex set V(G;) x V(G3) x ... x V(G,) which is
a natural generalization of the cartesian product of two graphs.

Whittlesey et al. [20] first consider the labeling on product of paths.
Later, Jha et al. {13] gave some values of A for product of a path and a cycle
as well as product of cycles. The product of complete graphs has also been
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considered by Georges et al. [9]. Chang et al. [6] considered the no-hole
2-distant coloring of Hamming graphs which are the product of complete
graphs.

In this section, we obtain an upper bound in terms of the maximum

degree on the cartesian product of any n graphs.

Theorem 3.1 LetA, Ay, Ag, ..., Ay, be the mazimum degree of Pg, q,,....G..,
G1, Ga,..., Gy, respectively. For Ap,k = 1,2,....,n, let t of them be 1 and
others be equal or greater than 2. Then M(Pg,,c,,...c.) < A2~ (n-2)A+
t(2n—t—1) .

2

Proof. We first apply Algorithm 2.1 to label the graph Pg, g,,...c.
and let k£ be the maximum label obtained by the algorithm. Let z =
(u1,ug, ..., un) in V(G;) x V(G2) % ... x V(G,,) be a vertex with the label
o, (T) = degg,(u1) + degg,(u2) + ... + degg, (un).
Denote d = degpg, q,.....0. (Z), d1 = degg, (u1), d2 = degg,(u2), ..., dn =
degg, (un). A1 = A(Gy), A2 = A(G2), ..., Ap = A(Gh).

Hence d = dy+da+...+d, and A = A(Pg, g,,....¢..) = A1+Ag+...+A,,.

A neighbor (uj,u),...,up,) of (u1,us,...,us) is called a Gp-neighbor if
ug = ug in Gg,q = 1,2,..,n,q # p and v, is adjacent to uy in G,. For
each Gp-neighbor of z, there is an G4-neighbor of = such that they have a

common neighbor other than z in Pg, g,,....c, Where ¢ = 1,2,...,n,q # p.
k<l

By the definition of Pg, g,,..c., we have Y~ did; such “common
ki=12,...,n

k. Then degpg, o,

.....

neighbors”.

Let the number of vertices that are distance 2 from = be d(A—1) —r for
some 7 > 0. (The number d(A — 1) is the best possible.) If two neighbors
of z has one common neighbor other than z then it will contribute 1 to r.

Hence the number of vertices that are distance 2 from z is at most
k<l

k<l n n
da-1)- Y ddi=0Q_d)Q Ac-1)- > didr.
kl=12,..,n k=1 k=1 kl=1,2,...,n

k<l k<l
Hence |I| € d, || < d+d(A-1)— S didi=dA— 3  dpdy.
k, k

1=1,2,...,n A=1,2,...,n
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k<t k<t
Then B = |L1|+|[5] £ d+dA— Y dpdy = d(A+1)—- Y dpdy =
k,l=1,2,...,n k,l=12,..n

(E dk)( E Ak + 1) El dkdz. Define

k,l=1,2,...,n
. n n k<t
flz1, 22,0 2n) = (X ze)(X Ax+1) — Y oz
k=1 k=1 k,l=1,2,....n
And let
, n k#p

fp(xl:xZ;--wxn)=(Z Ak+1) —k 122: Tk
-(Z Ak-i-l)—(Za:k—a:p)—O where p=1,2,.

Then

n n
Elzk—( Y Ar+1)=zp(=2z1 =22 = ... = Tp) =>nxp—-(kz A +1)=
=1

Tp =Tp = (Z Ak +1)/(n - 1)=>nzp = (327)( El Ar+1)> (kZI A +1)
But 0 <z, < Ap=0 < nzp < Z A. By contradiction, there doesn’t
k=1

exist (z1, T2, ..., Zn ) in the domain of z, 73, ..., T, such that f;,(:zl, Z9y ey Ty) =
0, where p = 1,2, ...,n. Hence f(zi,%,...,Z,) has the absolute maximum
at the boundary (A1, A, ..., An) on [0,A;] x [0, Az] x x [0,Ay).

f(A1, s, ..., An) = (E Ak)(Z Ag +1) - Z AA = A(A +

A=1,2,....n
k<l
1) - > ArA.
k,l=1,2,...,n
k<l
Then M Pg,,G,,....G.) Sk < B<A?2+A- > JAYWAYR
kl=12,..n

Case 1. If one of Ag or A; is 1 then
(A —1D)(A1—1) =0k - A - A=A +1=0.
This implies A + A; — Ap - Ay =1,

Case 2. Suppose A > 2 and A; > 2. Then

(A =1)(A1=1)=Ar - Ay =B —Ar+121.

This implies Ax + Ay — Ak - A; £ 0.

For Ag,k=1,2,...,n, let t of them be 1 and others be equal or greater
than 2, by the analysis of of Case 1 and Case 2, then



%l (Ak-l-Az-Ak'Az)St(n—1)+t(n—t)=t(2n—t—1)

k,l=1,2,...n
#1 n ksl
But z (Ar+A1—Ar-A)) = 2(n-1) E Ap— Z A =
kil=1,2,...,n k=1 ki=12,..,n
Tkt
2(n—1)A - z AkAt
kl=1,2,.
k£l
Hence Y AxAr22(n-1)A-t(2n—-t-1)
k,=1,2,..,n
k<!
Hence Y  AyAr>(n—-1)A—Hrotl)
kd=1,2,...,n
Hence i<t
AMPGy,GaynGn) SATHA— Y ApAy £ A2—(n—2)A4H2n2t2D)

kl=1,2,...,n
Therefore the results follow. B

For Ay 2 1,k=1,2,..,n, then A > n.

Define g(t) = —(n — 2)A + -t-(z-—";‘—_ll, where 0 <t < n.

Let g'(t) = 22=2t=1 = 0, then t = n — .

Notice that ¢ is an integer and g(n) = g(n — 1) = —(n — 2)A + ﬂf‘-{—l)-,

hence

1 (n=2)
—(n—-2)A+¥22t=l) <« _p(n-g)42ml - 229 L 0 (n=3)
<0 (n=>4)

<A%?+1  (n=2)
Hence A(Pg,,c,,....c.)4 =< A? (n=23) .
<A2_L28A (n>4)
Moreover, if we require that Ax > 2,k = 1,2,...,n, then A(Pg, q,,...c.) <
A2 — (n-2)A.
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Figure 1. (Cartesian) product of 2 Graphs
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