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Abstract

The following two theorems are proved: A closed knight’s tour exists
on all m x n boards wrapped onto a cyclinder so that the m rows go
around the cylinder, with one square removed, with the ezception of
the following boards:

(a) n is even,

(b) m € {1,2}

(c) m = 4 and the removed square is in row 2 or 3;

(d) m > 5, n = 1, and the removed square is in row 2, 3, ...,

orm - 1.

A closed knight’s tour ezists on all m x n boards wrapped onto a
torus with one square removed except boards with m and n both even
and 1 X 1, 1 x 2, and 2 x 1 boards.

1. Introduction

We consider m x n boards with m rows and n columns of squares.
Square (%, j) is in the ith row and the jth column using matrix nota-
tion. A knight’s move is two squares in either the vertical or horizon-
tal direction, followed by one square in the perpendicular direction.
An otherwise unoccupied board is available to the knight. The steps
in a knight's path are designated 1, 2, ..., mn - 1 on the boards,
as in Figure 1. A tour of a board visits every square exactly once,
except that the first and the last squares may be the same. A closed
tour is a tour in which the last square visited is the first square. For
simplicity, a board with one square has no tour. Taking the squares
as the vertices and the possible knight’s moves as the edges creates
a graph. A closed knight’s tour is a Hamiltonian cycle of the graph.
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Investigating knight'’s tours on chessboards is an old problem.
Euler used a technique that is used today, including in the present
proofs. The idea is to create paths on two or more boards and to at-
tach or stitch together the boards into the required board by knight’s
moves from one board’s knight’s path to another board’s path and
back again. The history and general discussions of knight’s tours
appear in [1], [3], and [7] and their many references.

Schwenk [5] discovered which sizes of at rectangular boards have
closed knights tours. Watkins [6] and Watkins and Hoenigman (8]
found which sizes have closed tours when the boards are wrapped
onto a cylinder or a torus. Interest in boards on cylinders may be
very old [3, p. 173]. Watkins points out that allowing a knight to
reenter a board from the opposite side after leaving from the other,
as if it were wrapped onto a cylinder or a torus, is not a surprise to
video gamers [6, p. 118], [7, p. 9]. Besides their intrinsic interest
and mathematics, closed knight’s tours of a torus have been used to
create magic squares [2], [7, p. 56].

For the last two decades, there has been interest in boards with
one or more squares removed. The knight is allowed to pass over,
but not land on, a removed square. DeMaio and Hippchen [4] de-
vised a function giving the minimum number of squares that must be
removed from an m X n flat board so that there is a closed knight'’s
tour. The function has value 0 for sizes of boards that have a closed
knight’s tour in Schwenk’s theorem.

Our concern is with m x n boards that are wrapped onto a cylin-
der or a torus and have each one of its squares removed in turn.
Cylindrical boards are investigated in Section 2, and toroidal boards
are investigated in Section 3. In Section 4, we consider bipartite
graphs and knight’s tours.

2. Boards with one square removed and wrapped
onto a cylinder

In this section, we show that all m x n boards that are wrapped
onto a cylinder and have one square removed possess a closed knight’s
tour, except those in Lemma 1.
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Lemma 1. An m x n chessboard wrapped onto a cylinder so that
the m rows go around the cylinder and one square is
removed does not have a closed knight’s tour if one or
more of the following conditions hold:

(a) n is even;

(b) me {1,2};

(c) m = 4 and the removed square is in row 2
or 3;

(d) m 2 5, n = 1, and the removed square is in
row 2, 8, ..., orm - 1.

Proof. For n even, the wrapping does not disturb the standard
perity argument, which is often used for flat boards. For m > 2,
before wrapping, alternately color the squares black and white with
the (1,1) square colored black. Each row has n/2 squares of each
color, and n/2 is an integer. A knight’s move is from a white to a
black or from a black to a white square. When a white or a black
square is removed, there is one more square of the other color, so that
the tour cannot be closed. For m = 1, there is just one direction for
the knight to move for any n, but the knight requires two directions.
For m = 2 and n = 1, removing a square leaves just one square. For
m = 2 and n > 3, beginning in square (1,1), the only move is to
squares (2,3) or (2,n - 2). Without loss of generality, move to (2,3),
which forces all subsequent moves. If no square is removed, a closed
knight’s tour is obtained. Removing a square irreparably breaks the
tour.

For m = 4 and the removed square in rows 2 or 3, a parity
argument can be made. In order to have a closed knight’s tour, each
of the 2n squares in rows 1 and 4 must have a move in and out for
a total of 4n moves. All of those moves must be to or from a square
in rows 2 or 3, requiring at least 2n squares in rows 2 and 3. But,
after the removal of a square, rows 2 and 3 together contain only 2n
- 1 squares.

For m > 5 and n = 1, if the removed square is in rows 2 through
m - 1, going over the removed square is irreversible, since it must be
accomplished from a square next to the removed square and go to
the other square next to the removed square. Both of those squares
have been visited. The proposed tour cannot go back to the initial

329



square in order to be completed. l

The proof of Lemma 2 is by construction. Wrapping flat boards
with knights’ tours onto a cylinder creates boards with knights’ tours
on cylinders. For many sizes, flat boards are available. For boards
wrapped onto a cylinder, for each row, the column from which the
square is removed is immaterial, since the cylinder can be revolved
to move the removed square to any column.

Lemma 2. All 8 x n boards with n > 8 and n odd, wrapped onto a
cylinder with the rows going around the cylinder and one
square removed, have a closed knight’s tour.

Proof. Since boards with a square removed from row 3 can be
obtained by inverting the boards that have a square removed from
row 1, only removal of squares from rows 1 and 2 is considered.
Figure 1 displays closed knight’s tours on 3 x n boards for n < 13
and n odd. The removed square is designated “Hole.” Some sizes
require that the boards be wrapped in order to have the tour, while
others can be at boards. In Figure 1, boards (d), (h), (i), (k), (1),
(m), and (n) can be flat.

Boards for n > 15 are created by attaching copies of the 3 x 4
board in Figure 2 from the right to boards (k), (1), (m), and (n) in
Figure 1. The 3 x 4 board, called an extender board, has an open
knight’s tour that can be joined to each of the flat boards. Copies
of the 3 x 4 extender board can be attached to each other, adding
four additional columns to the board with each attachment. The
extender board in Figure 2 was used similarly in [7, p. 46].

Two extender boards can be joined to create a 3 x 8 extender
board with the path: 1 — 7 in the left board, 12 — 1 in reverse
numerical order in the right board, then 8 — 12 in the left board. “1
— 7" indicates 1, 2, 3, 4, 5, 6, then 7. This process can be continued
to create an 3 x 4k extender board for k=1, 2, 3, ... .
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1147110
12972 ] 5
31611 8

Figure 2: The 3 x 4 extender board, which is used to create boards with a
larger numbers of columns

An extender board can be attached from the right to the 3 x 11
and 3 x 13 boards (k), (1), (m), and (n) in Figure 1. For example,
as shown in Figure 3, for (k), a path is: break the tour in (k) at 14,
go to 1 — 12 in the extender board, then 15 — 32 in (k). Similarly,
break the tours in boards (1), (m), and (n) at 17, 16, and 29, re-
spectively. By attaching additional extender boards from the right,
closed knight’s tours can be created for all 3 x n boards with one
square removed for n > 15 and n odd. B

Hole | 1 [ 4 [23[20]29] 8 [27 (18 | 156 ] 12
5 2213127 ]24119]10]13]26] 17
32 316 (21]3)]9 |28[25|16]11] 14

1147110
1219 2 | 5
3 16|11} 8

Figure 3: Joining the 3 x 4 extender board in Figure 2 and the 3 x 11
board in Figure 1(k) to create a 3 x 15 board

Lemma 3. A closed knight’s tour ezists on all 4 X n boards, n odd,
n > 8, wrapped onto a cylinder so that the rows go
around the cylinder with one square removed from rows
1or 4.

Proof. Remove a square in row 1 without loss of generality. A
closed knight’s tour is created on the 4 x n wrapped board without
any square removed, using the pattern in Figure 4. Since n is odd,
the path visits every square and is closed. Figure 5 contains these
boards for n < 11 and =» odd.
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4 8 | and so forth —
2 6 10
3 7

Figure 4: The pattern for the closed knight’s tour on a 4 x n wrapped
board, n odd, with no square removed

Square (1,3), which is step 5 in the tour, is removed from each
board and a new closed knight’s tour is constructed. For n > 11, the
closed knight’s tour is

1—4,

7, 8, then 11, 12, ..., to 2n - 11, 27 - 10 in pairs,

4dn - 2 = 2n - 9 in reverse numerical order,

2n-12, 2n- 13, then 2n- 16, 2n - 17, ..., to 10, 9, in pairs,

6, 4n - 1, 4n to 1, completing the tour.
For example, the 4 x 11 and 4 x 13 boards have tours 14, 7, 8,
11, 12,42 — 13,10, 9, 6, 43,44, 1 and 1 — 4, 7, 8, 11, 12, 15, 186,
50 — 17, 14, 13, 10, 9, 6, 51, 52, 1, respectively.

The closed knight’s tours for the 4 x 3,4 x 5,4 x 7,and 4 x 9
boards are similar, but abbreviated in their formats, because of the
boards’ smaller sizes. For them, tours are: 1 — 4, 10 — 6, 11, 12, 1;
154,7,818—59,6,19,20,1;1 54,26 —6,27,28,1;and 1 —
4,7,8,34 -9, 6, 35, 36, 1, respectively. B

Lemma 4. A closed knight’s tour exists on all m x 1 boards,
m > 4, wrapped onto a cylinder so that the m rows go
around the cylinder, with one square removed from rows
1 orm.

Proof. Removing a square from row 1 or row m leaves an (m - 1)
x 1 board. Starting in row 1 of the reduced board and noticing that
the knight can move either one or two rows, move two rows at each
step to the odd numbered rows 3, 5, and so forth. If m is even, when
reaching row m - 1, make a move to row m - 2, then two rows at a
time move to row 2, from which a one-row move reaches row 1. If m
is odd, when reaching row m - 2, make a move to row m - 1, then
move two rows at a time to row 2.
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Figure 5: Wrapped 4 x n boards, n < 11, n odd, with closed knight’s tours,
constructed using the pattern in Figure 4

Lemma 5. A closed knight’s tour ezists on all m x n boards, m and
n odd, m > 5, n > 8, wrapped onto a cylinder so that
the rows go around the cylinder, with one square re-

moved.

Proof. The 3 x n boards in Lemma 2 are the starter boards. Figure
1 displays closed knight’s tours for » < 13. Extender boards are
attached above and below the starter boards. The extender boards
are 2 X n and wrapped around the cylinder. Their tours are just a
knight moving to the right. There is no choice for each move. Figure
6 contains a 2 x 9 extender board.

The attachment can be accomplished since the boards have se-
quential squares, which allow the joining in a manner analogous to
Figure 3. All starter boards in Figure 1 have sequential steps in
certain squares, which make the boards very flexible. Separately, in
the top two rows and the bottom two rows of each board, there is

334



a pair with squares that are two columns apart with a rising slope
and a pair with the falling slope. For example, in the 3 x 9 starter
board in Figure 1(i), in the top two rows, pairs are 11 rising to 10
and 4 falling to 5, and in the bottom two rows, pairs are 3 rising to 2
and 11 falling to 12. There are numerous other pairs. An additional
adaptation of the boards is to rotate them around the cylinder to

align pairs for joining.

115|117 |3 |17[13| 9 | 5
10/ 6|2 |16|12| 8 | 4 |18 14

Figure 6: Wrapped, extender board for n =9

To illustrate the joining process, join two 2 x 9 extender boards
from Figure 6. Using falling pairs in both boards, a path is: 1 in the
upper board, 15 — 16 in reverse numerical order in the lower board,
then 2 — 18 in the upper board. Alternatively, using rising pairs
in both boards, a path is: 18 in the upper board, 4 — 5 in reverse
numerical order in the lower board, then 1 — 17 in the upper board.

Join u extender boards above and v extender boards below the
starter board with m = 2u + 2v 4+ 3, u and v non-negative integers.
To arrange for a hole in row r # m, select u = (r- 1)/2 for r odd and
u= (r-2)/2 for reven and v = (m - 2u - 3)/2. The starter board
has the hole in row 1 if r is odd and in row 2 if r is even. For r = m,
turn the board top-to-bottom and call the row with the hole row 1.

For example, for r = 6, u = (6 - 2)/2 = 2. Two extender boards
are attached above, the starter board has a hole in its row 2, and v
= (m - 7)/2 starter boards are attached below. B

Lemma 6. A closed knight’s tour exists on all m x n boards, m
even and n odd, m > 6, n > 8, wrapped onto a cylinder
so that the rows go around the cylinder, with one
square removed.

Proof. The proof is similar to the proof of Lemma 5. Three cases

are considered separately. One is r even and r > 4. Another is 7 odd

and 7 # m - 1. The third contains the cases r=2 and r= m - 1.
For r even and r > 4, the 4 X n boards in Lemma 3 with the
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hole in row 4 are the starter boards. The extender boards are 2 x
n extender boards and are the same ones used in Lemma 5. Attach
u extender boards above and v extender boards below the starter
board with m = 2u + 2v+ 4, and u, v € {0, 1, 2, ...} . Select u =
(r-4)/2 and v = (m - r)/2. For example, for m = 14 and r = 10,
we have u = 3 extender boards attached above and v = 2 extender
boards attached below.

For r odd and r # m - 1, the 4 X n boards in Lemma 3 with
the hole in row 1 are starter boards. The extender boards are the
same 2 X n extender boards. Attach u extender boards above and
v extender boards below the starter board with m = 2u + 2v + 4.
Select u = (r-2)/2 and v = (m - r- 3)/2. For example, for m = 12
and 7 = 7, we have u = 3 extender boards attached above and v =
1 extender board attached below.

The third case does not fit these patterns since the 4 x n starter
board cannot have a hole in row 2 or row 3 by Lemma 1. For r = 2,
use a 6 x n starter board. These new 6 x n starter boards can be
created by attaching a 3 x n extender board below a 3 x n starter
board with a hole in its row 2 from Lemma 2. An example of a 6
x 9 starter board is created by attaching the 3 x 9 extender board
in Figure 7 from below to the board in Figure 1(j). The attachment
is done with the path 1 — 2 in the upper starter board, 8 — 7 in
reverse numerical order in the lower extender board, then 3 — 26
to 1 in the upper board. All the 3 x n extender boards are created
with the pattern in Figure 7. Finally, using this 6 x n starter board,
attach v 2 x n extender boards from below with v = (m - 6)/2. If
r= m- 1, turn the board top-to-bottom to place the hole in row 2. B

1[4 7[10[13[16]19]22] 25
8|11 ]14)17]20({23|26| 2 | 5
3169 ]12|15[18 21|24 |27

Figure 7: Wrapped, 3 x 9 extender board with a closed knight’s tour for
the case r = 2 of Lemma 6

Combining Lemmas 1 through 6 gives Theorem 1.
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Theorem 1 (Cylinders) Ezcept for those boards listed in Lemma
1, a closed knight’s tour ezists on all m x n boards
wrapped onto a cylinder so that the m rows go around
the cylinder, with one square removed.

3. Boards with one square removed and wrapped onto
a torus

A board on a torus is created by wrapping a flat board onto a
cylinder and joining the ends of the cylinder without twisting. Any
board on a cylinder that has a closed knight’s tour continues to have
a tour when it is joined so that it is on a torus. We must examine
only boards that do not have tours on cylinders, which are listed in
Lemma 1.

Any square can be moved to any other square’s position by ro-
tating the cylinder and spinning the torus. Hence, the factor that
determines whether a board on a torus has a tour is its size, not the
location of the removed square before the board was formed onto a

torus.

Theorem 2 (Tori) A closed knight’s tour exists on all m x n
boards wrapped onto a torus with one square removed,
except:

(a) boards with m and n both even;
(b) 1 x 1,1x 2, and 2 x 1 boards.

Proof. The standard parity argument says that both m and n cannot
be even. By Lemmas 5 and 6, for n odd, n > 3, m > 5, there is a
tour.

On a cylinder, boards with m = 1 do not have tours. The distinc-
tion between rows and columns is lost on the torus, so 1 x n boards
are the same as n x 1 boards. The removed square can be moved to
row 1. Lemmas 3 and 4 say that there is a tour, unless n = 1 or 2.

On a cylinder, m x n boards with m = 2 do not have tours.
However, for n > 3 and n odd, they have tours on a torus. Tours are
easy to construct. Figure 8 has a closed knight’s tour on a 2 x 13
board, which illustrates the pattern for tours on boards for n > 9.
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Steps 1 through 6 are in row 1, then steps 7 through 12 are in row
2, in pairs the steps 13 and 14 are in row 1, steps 15 and 16 in row
2, and so forth. Boards with n = 3, 5, and 7 containing tours are in
Figure 9.

1]2]3]4|5]6]13[14]17]18| 21| 22| Hole
23124257 |8}9]10|11[12]15]16]19 | 20

Figure 8: 2 x 13 board on a torus with a closed knight’s tour

Hole
10

Hole|[1]2]|3]|4|Hole|] 1 [ 2| 3
3|14 5 6l5[9(|8 7 [[11112]13]7 |8

[y
[

[~
($4}
=1~

Figure 9: 2 x 3,2 x 5, and 2 x 7 boards on a torus with closed knight’s
tours

On a cylinder, if m = 4 and the removed square is in rows 2 or
3, there is no tour. But, Lemma 3 says that a closed knight’s tour
exists if m = 4 and the removed square is in rows 1 or 4. On the
torus, the removed square could have come from rows 2 or 3, since
squares in rows 1 and 4 can be moved to positions in row 2 or 3.

There is no tour on a cylinder if m > 4 and n =1 and the removed
square is in rows 2 through m - 1, inclusively. But, on a torus the
removed square can be moved to a position in row 1 or row m, for
which there is a tour by Lemma 4.

All other boards on a torus have a closed knight’s tour except
boards that do not have a sufficient number of squares for two moves,
that is 1 x 2 and 2 x 1 boards, which have only one square after
removal of a square, and 1 x 1 boards, which have no square after a
square is removed.

4. Bipartite graphs and knight’s tours

A graph is bipartite if its vertices are the union of two disjoint sets
such that there are no edges connecting vertices that are in the same
set. If there is a knight’s tour on a board, it creates a graph with the
vertices being the visited squares and the edges being the knight'’s
moves. If a board possessing a knight’s tour has an even number
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of squares, the tour produces a bipartite graph. The knight visits
squares in the two sets alternatively. If there are an odd number of
squares, the graph is not bipartite.

The standard parity argument shows how all knights’ tours on m
x n flat chessboards produce a bipartite graph and also that some
boards do not have a knight’s tour. Color the squares, alternat-
ing black and white. Since a knight’s move is always from one col-
ored square to a differently colored square, in order to have a closed
knight’s tour, there must be the same number of black and white
squares. The black squares comprise one of the sets, and the white
squares comprise the other set in the bipartite graph. Using this rea-
soning, no rectangular flat board with both m and n odd can have a
closed knight’s tour 7, pp. 8, 9, and 142].

This parity argument was used in Lemma 1 to show that some
wrapped boards do not have a tour. However, wrapping can make
this parity argument ineffective. In Lemma 3, consider a 4 x 3 board,
wrapped around a cylinder with a square removed in row 1, so that it
has 11 squares. This board has a knight’s tour. If it were colored in
the usual way and subsequently wrapped, squares of the same color
would be joined, destroying the coloring scheme.

For wrapped m x n boards with one square removed and pos-
sessing a knight’s tour, the graph is bipartite if and only if mn- 1is
even, since the knight enters and leaves each square once and there
is an even number of squares.

For example, in Lemma 3 the 4 X n boards, n odd, n > 3, with
one square removed from rows 1 or 4, have tours but do not yield
a bipartite graph since mn - 1 is odd. On the other hand, all the
boards described in Lemma 5 have mn - 1 even, so the corresponding
graph is bipartite. The alternating black and white coloring scheme
that might be imposed before the wrapping does not give the two
sets. The sets are defined by the knight’s moves used in the tour.

In Theorem 2, for boards on a torus with a knight’s tour, there are
different combinations of having a bipartite graph and the possibility
of successfully coloring the board with alternating colors, depending
on the dimensions m and n being odd or even. If both m and n
are odd, then the board cannot be colored with alternating colors
because of the joining and a bipartite graph is created by the tour,
since mn - 1 is even. If one of m and n is odd and the other is even,
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then the board cannot be colored with alternating colors because of
the joining of the odd sides and a bipartite graph is not created by
the tour, since mn - 1 is odd. The third possibility for these boards
is that both m and n are even, then the board can be colored with
alternating colors and a bipartite graph is not created by the tour,
since mn - 1 is odd.
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