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Abstract

This paper investigates the number of boundary cubic inner-forest maps
and presents some formulae for such maps with the size (number of edges)
and the valency of the root-face as two parameters. Further, by duality,
some corresponding results for rooted outer-planar maps are obtained. It
is also an answer to the open problem in [15] and corrects the result on
boundary cubic inner-tree maps in [15].
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1. Introduction

The concept of rooted map was first introduced by Tutte. His series of
census gapers (21-24] laid the foundation for the theory. Since then, the
theory has been developed by many scholars such as Arqués [1], Brown
7,8], Mullin et al. [20{,' Tutte [25], Bender et al. [2-6], Liskovets et al.
13,14}, Gao [9,10] and Liu [16-19].

In 2007, Wenzhong Liu, Yanpei Liu and Yan Xu [15] investigated the
enumeration of boundary cubic rooted planar maps and obtained some
formulae for the number of boundary cubic rooted planar maps with the
valency of the root-face and the size (number of edges) as two parameters.
But the formula for the number of boundary cubic inner-forest maps with
the size and the root-face as parameters could not have been obtained at
that time and the result on boundary cubic inner-tree maps is error.
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Now, on the basis of what was obtained in {15] we obtain the parametric
expressions of the functional equations presented as by (2.8) and (2.12) in
15]. By employing Lagrangian inversion [11,26] the solutions may be found.
rther, formulae for the numbers of boundary cubic inner-forest maps and
boundary cubic inner-tree maps with the size and the valency of the root-
face as two parameters can be obtained. One of these formulae corrects the
result on boundary cubic inner-tree maps in [15]. In addition, by duality,
some corresponding results for rooted outer-planar maps are also obtained.
Now, we define some basic concepts and terms. A map on an orientable
surface is a connected graph cellularly embedded on the surface. A map is
rooted if an edge and a direction along the edge are distinguished. If the
root is the oriented edge from u to v and then u is the rooi-vertez while
the face on the oriented side of the edge is defined as the root-face. In this
paper, maps are always rooted and planar (that is, imbedded on a sphere).
An outer-planar map is a planar map such that the boundary of the
root-face contains all the vertices. A boundary cubic map is a map such
that all the vertices on the root-face boundary are of valency 3. A boundary
cubic inner-forest map is a boundary cubic map such that the map obtained
by deleting all the edges on the root-face boundary is a forest. A boundary
cubic inner-tree map is defined similarly.

For a boundary cubic map M, we operate on it as follows: the edges
on the boundary of the root-face are contracted to a point. This operation
continues until the boundary of the root-face becomes a vertex. The map
M' obtained by this operation is called the contracted map of M, where
the vertex obtained is the new root-vertex and the edge incident with the
root-vertex of M and not on the boundary of the root-face of M is the new
root-edge.

Conversely, a map M’ with the valency m(M’) of the root-vertex can
be extended to a boundary cubic map M by splitting the root-vertex into
m(M’) vertices and joining the vertices by new edges in turn, where the new
vertex incident with the root-edge of M’ is the root-vertex of M and the
added edge incident with the root-vertex and along the orientable direction
is the root-edge of M. The map M is called the extended map of M’'.

For convenience, we introduce the following generating function for the
set M, the set of rooted planar maps:

fM(zvShz): Z z”‘(M)y‘(M)zn(M),
Mem

where m(M), |(M) and IT{L}M ) denote the root-vertex valency, the root-face
valency and the size of M, respectively. In addition, we write that

FM(.‘D,Z) = fM(mv 1,2), HM(‘y,Z) = fM(lvy,z)s hM(Z) = fM(l, 1, Z).

For the power series f(z), f(z,y) and f(z,y, z), we employ the following
notations:

orf(z), OIf(z,y) and 8uyn)f(,9,2)
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to represent the coefficients of z™ in f(z), 2™y’ in f(z,y) and z™y'2" in
f(z,v, 2), respectively. Terminologies and notations not explained here can
be found in [16].

2. Boundary cubic inner-tree maps

Let .#’ be the set of all boundary cubic inner-tree maps and .#¢ be
the contraction of .#’, that is, the set of all the rooted maps obtained by
contracting all the members of .#’. In this section we will solve the the
following functional equation with three variables as shown by (2.12) in

[15]):

(1—y+zy2)f o =(1—y)riyz + x—(1-2;y—)(1 —V1- 4yzz)

+ zy?2F (1)

#
where F o =7 . (z,1,2).
Before stating our results, we introduce the following lemma.

Lemma 1 (Liu [15]). Let .#(m,n) and £(m,n) be the sets of all planar
maps of size n with root-vertex valency m and all boundary cubic maps of
size n with root-face valency m for m,n > 1, respectively. Then

| #(m,n) |=| Z(m,m +n) |, 2

ax)ld there exists a 1-to-1 correspondence between .#(m,n) and Z(m,m +
n).
Let £ be the root of the characteristic equation of (1) solved for y. Then
we have

{ 1-€+€xz=0;

(1-geat+ S0 Imam) 4 mar . =0 @)

By (3) we get
pz= 521 Fﬂc:—x2z=(g_l)(l'\'l"’{z")' (4)

¢’ 2622
If we introduce a new parameter @ such that
6(1—8
-2 ). (5)
then the second part of (4) becomes
Fyo —z%2= §_—; (6)

1-—-
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Further, let £ = 1+7. By (4-6), one may find the parametric expression
of F 4o = F 4o (,2) as follows:

__n _oa-6) _2, 1
a:z-1+n, z—(1+n)2, F,. Tz =75 (7
By (7) we have
o 0 1-2¢
= |1+7 e
oo =7 12| = Trna-0) ©

Applying Lagrangian inversion with two parameters [{11], from (7) and
(8) one may find that

Himk) (m=1,k) (1 + 7)™ 2k-1(1 — 20)
(FJI"' —- X Z) 3 n.9) (1 9)k+2

:z:zz)
=(m+2k—1)6k 1-26

m-1 )¥a-opm

(2K (m+2k-1
—k!(k-i-l)!( m—1 )

Let n = m + k. Then we have
(2n—m-—1)!

(n-m)(n—m+ D{(m -1 9)

6((;" z?) (Fpe —2°2) =

which proves
Theorem 1. The enumerating function F 4. determined by (1) has the
following explicit expression:

F4 '-1+a:z+zz (2n —m—1)! z™y". (10)

n>1m=1 (n m)|(n m+1)|(m ]')|

By substituting m and n for | and n — [, respectively, from Lemma 1
and (3{0) we can obtain

Theorem 2. The number of boundary cubic inner-tree maps with size n
and the root-face valency ! is

(2n — 31— 1)!
(n—20)(n =21+ 1)1(1 —1)!
for1<iL 551 forl=2,n=3.
By (1) we have

(1 —y)z?yz + zy?zF 4o z T
fae = TpE— +2(1+ )( -V1i-4y z). (12)

(11)
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Now, let

(1 —y)2?yz + zy?2F 4o 13
1-— * ( )
Y+ Yz

P(z,y,z) =
By introducing another parameter A such that
y=A1+ T’)) (14)

from (7), (13})) and (14) one may find the following parametric expression
of the function P(z,y,z

=—1_ y=Al+n),

147
6(1-6) Nn2(1+7)
A9 p- AR/ LV 15
arr POtV Tsaaon 19)
from which we get
1.0 0
1+9 1-26
A = 1 0 |=7--—"7rr——ro. 16
(:2.8) : . 1=20/ (1+m)(1-96) (16)
-8

By employing Lagrangian inversion with three variables [11], from (15)
and (16) one may find that

lmlik) (m=2,1-2,k) (1 + 7)™ +2-1(1 — 20)
(P - a'yz) —8 (m:2,6) (1-0)%+2(1 - ))

:r:zyz)
=(m+2k—l)ak 1-29

m-2 )Aaapm
(k) [m+2k—1
—k!(k+1)!( m—2 ) (1)

Let n = m + k. Then we get

m,,n (2 -2 )' Mm—-—m—1
Obm (P — 22yz) = = m;(n = Y ( o ) (18)

In addition, we have

(2n — 2m)!

T m—1 !
51+ 2 )( VI-4%) = ; Z( D A= mIDim—m)
(e oo
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Combining (12),(13),(18) with (19), we can obtain

Theorem 3. The enumerating function f 4 = f 4 (z,9, 2) has the fol-
lowing explicit expression:

(2n — 2m)!

f,{{c (:z:,y,z) —1+$ yz + Z Z:
nl>2m—-2 -m !(n m+ 1)'

2n—m-—1 m. l.n
X( m—29 ):z: yz

m— (2n — 2m)!
+ 2 Z D T m e i =)

l>2n—m+lm—1
[+2m —-2n-3\ .. |.n
x(l+m—2n—1)w yz". (20)

3. Boundary cubic inner-forest maps

Let .# be the set of all boundary cubic inner-forest maps and .#°
denote the set each of whose elements is the contracted map of some map in
A . In this section we will solve the following equation with three variables

as shown by (2.8) in [15]:

{(1 -v) [1 It ; — 4%2) +(1- :c)xyzFJ,c] + xyzz}f,{c

=1—y+zyzF 4, (21)

where F ge(z,2) = f.q-(z,1,2).
Lemma 2. The enumerating function H 4 = H 4<(y, 2) satisfies the
following equation:

1-+/1-—4y2z
[(1 -y)(l _ -—2-—y—) + yzz]H,,c —1-y+yrhee, (22)
where H g = f.uc(1,9,2),hae = fae(1,1,2) = F.q<(1, 2).
Proof. It follows immediately from (21) by putting = = 1. a

Let a be the root of the characteristic equation of (22). Then we get

1-+v1-4a%z 2. o
(1—a)(1——2—-)+a z2=0; (23)
1—a+azh g =0.

By (23) we have
o’z =(a-1)2-a), shae=2"1. (24)
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Now, let a = 1+7. By (24) we have the following parametric expression
of the function h e = h ge(2):

n(1 —n) n
="V hge= —.
z (1 77)2 2N ¢ 14 7 (25)

Theorem 4. The enumerating function h_g- = h_g-(z) has the following
explicit expression:

hae(z) = Z %n%‘)l'—)! (26)

Proof. By employing Lagrangian inversion with one parameter [26] for
(25), one may find that

zn—l dn—l (1+17)2n—2
h c\lZ) =
we(2) g n! dpm-l (1-9p)»

n=0

i ikt len-2)!

=i (n—1)In!

27 (2n)!
s

This completes the proof of Theorem 4. a

Let .#, denote the dual set of the contraction set .#¢ of all the boundary
cubic inner-forest maps. It is seen that .4 is the set of all outer-planar

maps.
Corollary 1. The number of rooted outer-planar maps with size n is

2" (2n)!
nl(n + 1)1 27)

forn > 0.
Proof. It follows easily by duality and (26). m]
By (22) we have

1—y+yzh ye [ (l—y)(l—\/l 4y z)] 28)

1-y)2-vy)+v2%2 2y%z

Hye =

Now, let

y+yzh,,,c
Q) = e (29)
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By introducing a new parameter 7 such that
y=XA1+n), (30)
one may find from (25) and (29) that
1
Qw2 =X+

By (25), (30) and (31), we have the parametric expression of Q = Q(y, 2)
as follows:

(31)

- al-mn 5 1
y—)\(1+fl), z= (1+77)2’ Q"2_,\(1+3n) (32)

By (32) we get

A ll * 1-3p
= 1-3 = .
AT sl A+n)A-n)

By employing Lagrangian inversion with two variables [11], from (32)
and (33) one may find that

_am o _ atmy (L)1 - 3n)
B(l,n) =0, ,Q = 8 @ — "2 — X1+ 3n)]

(1+1)2*~'=1(1 + 3n)'(1 — 3n)

(33)

2l+1 24 1 =)+t
—min{l,n} 1 ( )aﬂ—‘ 1+ n)2n—1—1(1 —37)
- l—i+1 — nyn+l
1=0 2 + (1 ") +
mm{l n} n—i . _
S () e
= =27 J (1-m)

T S S0 P S )

“on 2o T iiG - Ditn— o (34)

In addition, we have

SO0 VImWT) s (26)

2%z (k+ 1)'k!y

k20
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Let
Hye(y,2)=1+ Z Al n)y'z". (36)

In>1

By (28), (29), (34), (35) and (36), we have

LIy
A(l,n) =B(, n)+z (k+1)|k!B(l—2k,n—k)
! ()
- ,; Uc-(ﬁ))—!k—!B(z-zk-Ln—k), (37)

which proves
Theorem 5. The enumerating function H 4 = H_g4(y, z) has the follow-
ing explicit expression:

Hae(yz)=1+ ) Aln)y's", (38)
ln2>1

where

L3)
A(l,n) =B(l,n) + z (kf';)),k| B(l — 2k,n— k)

1552
(2k)!
- g FrnmB¢-2k=1n-k), (39)

in which
g MRl on
P ig] Z; =G - Difn -9

i=

(40)

B(l,n) =

Now, we present a corollary of Theorem 5.
Corollary 2. The number of rooted outer-planar maps with size n(n > 1)
and the root-vertex valency m(m > 1) is

13
A(m,n) =B(m,n) + E 0 (42-161))!%‘ B(m — 2k,n — k)
L=
B :Z: (k (-fkl))!!kIB(m —2k—1,n—k), (41)
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where

m P gp—ioy

gm=n+ip] ; (m—)li—-Dln—

B(m,n) = (42)

Proof. By duality a.nd substituting ! for m, from (38-40) the corollary
can be obtained.
Let 6 be the root of the characteristic equation of (21). Then we have

{ (1_9)[1_11:(1—\/1—_49-72)

2 .
5 +6(1— a:):czF_dc] +6°zz=0; (43)
1-0+0zzF 4. =0.

By the second part of (43) we get
z2F e = ﬂ;—l. (44)

Now, by introducing a new parameter § such that

1—
from the first part of (43), (44) and (45) one may find that
: (46)

£+0—1480

Further, let § = 1 + &n. By (44-46) we have the following parameter
expression of the function F.ge = F g(z, 2):

__ n(1+4n) Lo 50-8
1—€+&n+&n? 1 +é&n)?

from which we get

_ &
.’L‘ZFI: = —-—'—1 +§7), (47)

{ 1-€)(1+26n—¢€n° - ell—n’
+¢n _1—2£+£n+En +én 1_;§j€n+fn
1+&n 1-£)(1+&n
- _ 2
_ 1-26-¢n - (48)
A+&n)(1—-€E+En+€n?)

Theorem 6. The enumerating function F gc = F_g4<(z, z) has the follow-
ing explicit expression:

Apne) =

2n—1min{m,n} min{m—k,n—k} ml
Fyc(z,z) =1+ —— -
#e(2,2) ;2; kzso Z_; (m = k)Ylil(n— k —i)!
(2n — m — 1) n(k, %) i, (49)
(n m+k)(m—k—1)!2k+i—-m4+2)! !
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where

Tmm(k, i) =(2k +i—m)(2k +i—m+1)2k+i—m+2)
—(n—k—i)(m—k—d)(m—k—i-1). (50)

Proof. Applying Lagrangian inversion with two parameters [11] to for-
mulae (47) and (48) we obtain

m—1,n-1) (1 =€ +&n+&n®)™ "1 (1 + &n)>n~m 2
Fye(z,2) = Z>16((ﬂ-5)1 X 1-¢&r

x (1 -2 — gn?)z™ 12"

mmy (1 — € +&n + €)™ (1 4 &n)>n—m—1
= Z a((ﬂrf)) (1 _ §)ﬂ+l

m,n>0

x (1 -2 - &n?)z™2"
=1+ ) miﬂ{zm'"} (m) pim=kn—k) (L +n)* (A + &n) "™~

(n.€) _ gyn—m+k+1
sl koo \EJT 1=+

x (1 - 2¢ — &n?)z™2"

mn>l k=0 i=0 k :
(m—k—in—k—i) (1 +7)*(1 — 26 — €n?)
X B(mo (1 — g)ﬂ-m+k+1 xMn
min{m,n} min{m—k,n—k}
m\/2n-m—1
~x oy x (0T
mmn>21l k=0 1=0
« |gim=k-in—k-i) (1+m)k@1 -2)
(n€) (1 = g)n—m+k+l
(mek—i-2n—k—i-1) (1 +n)*
~ One) (1= &)n-m+k+1 z™ 2"
min{m,n} min{m-k,n—k}
m\2n-m-1
-1+ % > @)
mn>1 k=0 =0

k n—k—i 1-2¢
(ki) g

_ (m _ k’i i 2) 8g—k-i—1(1 _ 5)—(n—m+k+l):| M "
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min{m,n} min{m—k,n—k}
m\{2n-m-1
R n oy B0
mmn21l k=0 =0
9 @Cn—-m-i—1)(2k+i—m) k
(n—k—-19(n—-m+k)! m—k—i

_ k 2n-m—-i-1 ™"
m—k—i-2/\n-k—-i-1 !

which is equivalent to the theorem. o

By duality and substituting m for !, from (49) and (50) we can obtain
Corollary 8. The number of rooted outer-planar maps with size n(n > 1)
and the root-face valency (1 <1 <2n—-1)is

min{l,n} min{{—k,n—k} 1(on —1—1)!
= pard (=-klln—k-d(n-l+k)\(l-Fk—13)
x EE%%%W (51)
where
Jin(k,t) =2k +i-D2k+i—-1+1)2k+i-1+2)
—(n—k-9)(l-k-d)(l-k—-i-1). (52)

Theorem 7. The number of boundary cubic maps with size n(n > 2)
and the root-face valency [(1 <1< |287L]) is

min{l,n—!{} min{l—k,n—1—-k} I
kg 2s  U-RE(n-1-k—9)
(2n = 31 = 1)1Ry n(k, i)

XA+ — k=2 +i-T+2)’ (53)
where
Ryn(k,i) =2k +i-DQ2k+i—-1+1)(2k+i—1+2)
—(n=l-k—-d(l-k-)(l-k-i-1). (54)
Proof. According to Lemma 1, (49) and (50), the theorem can be deduced
by substituting m and n for ! and n — [, respectively. a
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