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Abstract

Let C). denote a cycle of length k and let Sx denote a star with
k edges. For graphs F, G and H, a (G, H)-multidecomposition of
F is a partition of the edge set of F into copies of G and copies
of H with at least one copy of G and at least one copy of H. In
this paper, necessary and sufficient conditions for the existence of
the (Cx, Sk)-multidecomposition of & complete bipartite graph are
given.

1 Introduction and preliminaries

For positive integers m and n, K, , denotes the complete bipartite graph
with parts of sizes m and n. A k-cycle, denoted by Ck, is a cycle of length
k. A k-star, denoted by S, is the complete bipartite graph K k.

Let F, G and H be graphs. A G-decomposition of F is a partition of
the edge set of F' into copies of G. If F has a G-decomposition, we say
that F is G-decomposable and write G|F. A (G, H)-multidecomposition of
F is a partition of the edge set of F' into copies of G and copies of H with
at least one copy of G and at least one copy of H. If F has a (G, H)-
multidecomposition, we say that F is (G, H)-multidecomposable and write
(G,H)|F.

A great deal of work has been done on G-decompositions of graphs
(see survey articles [7, 9, 11, 14, 25] and a book [8]). In particular,
Cr-decompositions of graphs have attracted considerable attention. The
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reader can refer to [10, 13, 16] for surveys of this topic. Decompo-
sitions of graphs into k-stars have also attracted a fair share of inter-
est. Articles of interest include [12, 15, 23, 24, 26, 27]. It is natural
to consider the problem for decomposing a graph into copies of two differ-
ent graphs. The study of the (G, H)-multidecomposition was introduced
by Abueida and Daven in [2]. Abueida and Daven (3] investigated the
problem of the (K}, Sk)-multidecomposition of the complete graph K,.
Abueida and O’Neil [6] settled the existence problem of the (C, Sk-1)-
multidecomposition of the complete multigraph AK,, for £ = 3,4 and 5.
Priyadharsini and Muthusamy [17] established necessary and sufficient con-
ditions for the existence of the (G, Hy)-multidecomposition of AKX, where
Gn,Hn € {Cp,Pa1,Sn-1}. A graph-pair (G, H) of order m is a pair
of non-isomorphic graphs G and H on m non-isolated vertices such that
G U H is isomorphic to K,,. Abueida and Daven [2] and Abueida, Daven
and Roblee [4] completely determined the values of n for which AK,, admits
a (G, H)-multidecomposition where (G, H) is a graph-pair of order 4 or 5.
Abueida, Clark and Leach [1] and Abueida and Hampson [5] considered
the existence of multidecompositions of K, — F for the graph-pair of order
4 and 5, respectively, where F is a Hamiltonian cycle, a 1-factor or almost
1-factor. Recently, Shyu [19] investigated the problem of decomposing K,
into k-paths and k-stars, and gave a necessary and sufficient condition for
k = 3. In [20], Shyu considered the existence of a decomposition of K, into
k-paths and k-cycles, and established a necessary and sufficient condition
for k = 4. Shyu [21] investigated the problem of decomposing K, into
k-cycles and k-stars, and settled the case k = 4.

In this paper, we investigate the problem of the multidecomposition of
a complete bipartite graph into k-cycles and k-stars, and give necessary
and sufficient conditions for such a multidecomposition to exist.

2 Main results

First we give necessary conditions of the (Cy, Sk)-multidecomposition of
K n. Before going on, some terms and notations are introduced. Let
dege(z) denote the degree of a vertex z in a graph G. The vertex of
degree k in Sy is called the center of Sk. Suppose that G1,Ga,...,G; are
graphs. Then G1 + G2 + -+ + Gy, or Zz-—'l G}, denotes the graph G with
vertex set V(G) = Ui, V(G ), and edge set E(G) = U;_, E(G:). Thus,
if a graph G can be decomposed into subgraphs G;,Ga,...,G:, we write
G=G,+Ga+---+G,or G= Z._ G;. Since each cycle uses two edges
incident with a vertex, the following is trivial.

Lemma 2.1. If a graph G can be decomposed into cycles, then the degree
of each vertex of G must be even.
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Throughout the paper, we use (A, B) to denote the bipartition of K, ,,
where A = {ao,a1,-** ,am-1} and B = {bo, by, ++ ,bn—1}. Now we show
the necessary conditions.

Lemma 2.2. Let m and n be positive integers with m > n. If Ky, is
(Ck, Sk)-multidecomposable, then k =0 (mod 2), 4 < k < min{m, 2n} and
mn =0 (mod k). Furthermore, K n i3 not (Cy, Si)-multidecomposable in
the following cases: (1) m =1 (mod 2) andn < k, (2) (m,n) = (k,k/2+1)
for k=2 (mod 4) or (m,n) = (k, k/2).

Proof. First, bipartite graphs contain no odd cycle, hence ¥ = 0 (mod 2).
Secondly, the minimum length of a cycle and the maximum size of a star
in K n are 4 and m, respectively, we have 4 < k < m. Moreover, each
k-cycle in K, n uses k/2 vertices of each partite set, which implies that
k < 2n. Thirdly, the size of each member in the multidecomposition is k
and |E(Kmy)| = mn, the condition mn = 0 (mod k) follows. Finally, we
disprove the existence of the multidecomposition for the cases (1) and (2).
Suppose, on the contrary, that there exists a (Cl, S )-multidecomposition
9 of K » if m and n belong to one of the cases (1) and (2). Since n < k&
in those cases, each Si in 2 must have its center in B. Let Hy, Hs,..., H;
be all of the k-stars in 9. We distinguish two cases.

Case 1. m=1 (mod 2) and n < k.

Let G = K — E(Xi_, H:). Suppose that are ¢; Si’s with centers
at b; for j = 0,1,...,n — 1. Then deggb; = m — kc;, which is odd for
each b; € B since m is odd and k is even. By Lemma 2.1, G is not Ci-
decomposable, which leads to a contradiction.

Case 2. (m,n) = (k,k/2+1) for k =2 (mod 4) or (m,n) = (k,k/2).

Note that Kmn — E(X.; Hi) = Kmn-¢ + K where K7 is the com-
plement of the complete graph K;. Since n € {k/2,k/2+1} and t > 1, we
have n —t < k/2. If n — t < k/2, then K, ,_; contains none of k-cycles.
This is a contradiction. If n — ¢t = k/2, then k = 2 (mod 4). This implies
that n — ¢ is odd. Hence K n—: can not be decomposed into k-cycles by
Lemma 2.1. We obtain a contradiction. O

From now on, we will show that the necessary conditions are also suf-
ficient. The proof is divided into four cases: (i) m =0 (mod k) or n = k,
(i) m>2k and n > k, (iii) 2k >m >2n >k, and (iv) m > k > n > k/2.

The following results due to Yamamoto et al. and Sotteau are essential
for our discussions.

Proposition 2.3. (Yamamoto et al. [27]) Let m > n > 1 be integers. Then
K n is Si-decomposable if and only if m > k and

m=0 (mod k) ifn<k
mn=0 (mod k) ifn>k.
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Proposition 2.4. (Sotteau [22]) Let m,n and k be positive integers. Then
there exists a Ci-decomposition of K. n if and only if m,n and k are even,
k > 4, min{m,n} > k/2 and mn =0 (mod k).

For our discussions, more notations are needed. Suppose that G is a
graph. Let V and E be subsets of the vertex set and the edge set of G,
respectively. We use G[V] to denote the subgraph of G induced by V and
G — E to denote the subgraph obtained from G by deleting E. Moreover,
[z] denotes the smallest integer not less than x and x| denotes the largest
integer not greater than z. Let (vy,vs,...,vx) denote the k-cycle with
edges vyvs, V903, ..., Vk—1Vk, UkV1. DBefore plunging into the proof of the
sufficiency, we need a result due to Ma, Pu and Shen.

Proposition 2.5. ([18]) Let k and n be positive integers and let I be a
1-factor. Then there ezists a k-cycle decomposition of Ky, n — I if and only
ifn=1 (mod 2), k=0 (mod 2), 4 <k <2n and n(n — 1) =0 (mod k).

Lemma 2.6. Let k be a positive even integer and let p be a positive integer.
Then there exist pk/2—p edge-disjoint k-cycles in Koy x/2 (also in Kiz pi)-

Proof. 1t suffices to show the result holds for Kpi k/2. If £ = 0 (mod 4),
then k/2 is even. By Proposition 2.4, there exists a Ci-decomposition
9 of Kpii/2 with |2| = pk/2, in which k-cycles are edge-disjoint. If
k = 2 (mod 4), then k/2 is odd. By Proposition 2.5, there exists a Cj-
decomposition 2’ of Ky a,x/2 — I with |2'| = (k —2)/4. Since Ky k/2 can
be decomposed into 2p copies of Ky a2, there exist 2p|2’| = pk/2 —p
edge-disjoint k-cycles in Ky x/2. This completes the proof. a

Lemma 2.7. Let k > 4 be a positive even integer. Then K., has a
(Ck, Sk )-multidecomposition if one of the following conditions holds:

(1) m=0 (modk), k/2<n<k, and (m,n) # (k,k/2+1) for
k=2 (mod 4) and (m,n) # (k,k/2),
(2) n=k<m.

Proof. We distinguish two cases.
Case 1. m =0 (mod k), k/2 < n < k and (m,n) # (k,k/2+1) for k =2

(mod 4) and (m,n) # (k,k/2).
Let m = pk where p is a positive integer. Note that for n > 2

Km,n = ka,n = ka,n-—Z + ka.2
= Kpkn-1+ Kpk,1-

By Proposition 2.4, Ck | Kpk,n—2 When n is even and n > k/2 + 2, and
Ck | Kpk,n—1 when n is odd and n > k/2+1. By Proposition 2.3, Sk | Kpk,2

358



and Sk | Kpk,1. Thus, Ky, p, is (Ck, Sk)-multidecomposable when 7 is even
with n > k/2+ 2 or n is odd with n > k/2 +1. Since (m,n) # (k,k/2+1)
for k = 2 (mod 4) and (m,n) # (k,k/2), we have that n > k/2 + 2 for
even n and n > k/2 + 1 for odd n when m = k. So it remains to consider
the cases that m = pk with p > 2 and n =k/2+1 for k = 2 (mod 4) and
n = k/2. We distinguish two subcases according to the parity of n.
Subcase 1.1. n € {k/2,k/2+ 1} and n is even.

Note that Kmn = Kpkn = Kp-1)k,n + Ki,n. Since n is even and
n > k/2, we have Cy | K(p—1)k,n by Proposition 2.4. On the other hand,
Sk | Kk,n by Proposition 2.3, we have the result.

Subcase 1.2. n = k/2 for k =2 (mod 4).

Note that pk/2 —p=p(k—2)/22k—-2>k/2forp > 2 and k > 4.
By Lemma 2.6, there exist k/2 edge-disjoint k-cycles @1,Qs,...,Qx/2 in
Kpkk2 for p > 2. Let G = Kpi iy — E(Efﬁ ;). For each b; € B, since
degxpk_ /2 b; = pk and each Q; uses two edges incident with b;, we have
degg bj = pk—k = (p—1)k. Thus, G can be decomposed into k-stars with
centers in B. This settles Case 1.

Case2. n=k<m.

Note that K n = Kmx = Kk + Km—k k. By Proposition 2.4, Cy |
Kk, and by Proposition 2.3, Si | Km—k,k- Thus, (Ck, Sk) | Kn,» and the
proof is complete. O

Lemma 2.8. Let k be a positive even integer and let m and n be positive
integers withm > n >k > 4. If m > 2k and mn =0 (mod k) then K,
has a (Ci, Sk)-multidecomposition.

Proof. Let m = pk + r where p and r are integers with 0 < r < k. Note
that p > 2 for m > 2k, and

Km,n = KP’H"":” = K(p—l)k,n + Kk+r,n
= K(P"l)k»""l + K(p—l)k,l + Kk+r,n-

Since n > k > 4, we have n — 1 > k/2. Thus, Cy | K(p—1)k,n for even n
and Cy | K(p—1)k,n—1 for odd n by Proposition 2.4. On the other hand,
|E(Kk4rn)| = n(k+r) =0 (mod k) from the assumption mn = 0 (mod k).
This implies that Sk | Ki4r,n by Proposition 2.3. Trivially, Sk | K(p—1),1-
Hence, (Ck, Sk) | Km,» and the proof is complete. O

Lemma 2.9. Let k be a positive even integer and let m and n be positive
integers with2k > m >n >k > 4. If mn =0 (mod k), then K, has a
(Ck, Sk)-multidecomposition.

Proof. Suppose that m = k+randn =k+s. Thenk >r >s>0
from the assumption 2k > m > n > k. Let Ay = {ao,a1,...,8k/2-1},
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Ay = {ar/2,k/241s .- rak-1}, A' = A= (AU A1), Bo = {bo,b1,...,bs-1}
and B’ = B — By. Let G; = Kppn[A; UB'] for i =0,1, F = K,,, ,[A’ U B’
and H = AUBy. Then K;nn = Go+ G+ F + H. Note that Gy and G, are
isomorphic to Kz x, F' is isomorphic to K, and H is isomorphic to K, -
Since k | mn, we have k | 7s, which implies ¢t = rs/k is a positive integer.
Let pp = [t/2] and p; = [t/2). Then po =1 and p; = 0 for t = 1 and
po > p1 = 1 for t > 2. Trivially, F is Sip-decomposable. In the following,
we will show that, for 0 <i < §whered=0if py =0and §=1ifp; > 1,
G; can be decomposed into p; copies of Ci and k/2 copies of Si_zp,, and
H can be decomposed into k/2 copies of S2p, and s copies of S where the
(k — 2p;)-stars and 2p;-stars have their centers in A;. In particular, G is
decomposed into k-stars if p; = 0.

We first show the required multidecomposition of G;. Since r < k,
we have t < s . Thus, t+1 < s; in turn, pp = [t/2] < (t+1)/2 £
s/2 < k/2, which implies p; < k/2 — 1 for i = 0,1. This assures us that
there exist p; edge-disjoint k-cycles in G; by Lemma 2.6. Suppose that
Qi0, Qi1 ., Qip—1 are edge-disjoint k-cycles in G; for 0 < i < § where
§=0ifp,=0and § =1ifp; > 1. Let F; = G; — E(X0' Qi) and
X; ; = Fi[{0ikj2+j}UB’] where j = 0,1,...,k/2—1. Since degg, aix/2+; =
k and each Q;x uses two edges incident with a;x/24; for each i and j, we
have degp, aik/24; = k—2p;. Hence, X; ; is a (k —2p;)-star with the center
at Gik/245-

Now we show the required star-decomposition of H by orienting the
edges of H. For any vertex z of H, we use deg™ z (deg™ z, respectively) to
denote the outdegree (indegree, respectively) of z in an orientation of H.
It is sufficient to show that there exists an orientation of H such that, for
0<i<dwhered=0ifp =0andd=1ifp; >1,5=0,1,...,k/2 -1
and w=0,1,...,s—1,

deg'*' Qikj24+j = 2p; (1)

deg*b, = k. (2

First, the edges a,,-bz,-po, ajszpo+1, ey ajbg(j+l)p0_1, and incase p; > 1
Gk/2+5b2ip1+hpor Ok/243025p1+kpo+1s - - -1 Gk /2+3D2(j+1)py +hpo—1 8TE all ori-

ented outward from a;x/24; Where the subscripts of b’s are taken modulo
s. Note that from each @i 24;, We orient 2p; edges. Since 2p; < 2pp <
t + 1 < s, this assures us that there are enough edges for the above orien-
tation. Finally, the edges which are not oriented yet are all oriented from
By to A.

From the construction of the orientation, it is easy to see that (1) is
satisfied, and for all b, b,y € By, we have

|deg™ by —deg” bw| < 1. (3
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So, we only need to check (2).
Since deg* by, + deg™ b, = k + r for b, € By, it follows from (3) that
|deg* by, — deg™ by| < 1 for by, by € Bo. Furthermore,

8—=1 § k/2-1
Z degby = |E(Kitrs)l— Z z deg® Cik/2+]
w=0 i=0 j=0

= (k+7)s— (2po + 2p)k/2

= ks+rs—tk

= ks

where § =0 if p; =0 and § =1 if py > 1. Thus deg* b,, = k for b, € B.
This proves (2). Hence, there exists & decomposition 2 of H into k/2 copies
of Spp, with center at A; and s copies of Sk with center at By. Let X{ ; be
the 2p;-star with center at ag/24; in 9. Then X; ; + X ; is a k-star. This
completes the proof. O

Lemma 2.10. Let k£ and m be positive even integers and n be a positive
integer withm >k >n > k/222 and k{m. If mn =0 (mod k), then
Ko, has a (Ck, Si)-multidecomposition.

Proof. Let m = uk + r where u and r are integers with 0 < r < k. Since
k and m are even, r is even. Hence 2 < r < k — 2. Note that k | rn from
the assumption k | mn. In the following we will prove that K,, » can be
decomposed into rn/k copies of C and nu copies of Sk.

Let k = 2z, r = 2y and d = ged(n, ). Then d > 1 from the assumption
k | mn and k { m. Take n = dp and z = ds. Then p and s are coprime.
This implies s | y since k | rn. Let y = sq, we have rn/k = pq. Moreover,
sinceg=r/(28) and 2 < r < k-2=2ds—-2,wehavel1 < g <d-1;
in turn, kpg < kpd = kn, this assures us that there are enough edges
for constructing pq edge-disjoint k-cycles in Kj ,-subgraph of Kpyn. Let
t = min{q, |[d/2]}. Define pg Ci’s as follows. For ¢ = 0,1,...,p — 1,
j=0,1,...,t—1and h=0,1,...,9—|d/2] — 1, let

Cij = (bzit24,00,bzi42j41,01,- .-, bz(i41)42j-1,82-1), and
Cin = (brit2n @z bzitons1,0z41,- - s br(ir1)4+2r-1, 022—1) if ¢ > [d/2],

where the subscripts of b’s are taken modulo n. Let % be the set of the pq
C\’s defined above, and let H be the spanning subgraph of K, » with

s - { Y2G) - Hastm
JE(Ci; +Clp)  ifg>|d/2).

where0<i<p-1,0<j<t—1and0<h<g-|d/2]-1.
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We first check that cycles in € are edge-disjoint. Observe that in C; j,
ay is adjacent to bziy2;4+v and bziygjtvsr forv=0,1,...,2—-2,and a;_, is
adja.cent to b:i+2j and bz(i+1)+2j—1- For0 < i, i < p—l and 0 < j,jl < t-l,
l-p<i—i<p—1and2-d<2-2<2(j'—j)+6<2%—-1<d—1
where § € {0,1}. If i’ # i or j' # j, then n { z(¢' — i) + 2(j' — j) + J and
ntz(i —i+1)+2(j' —j)—1, and hence i’ + 235’ + v+ is not congruent to
zi+2j +v modulo n whenv =0,1,...,z -2, and z(i' + 1) + 25’ — 1 is not
congruent to both of z(i + 1) + 27 — 1 and 2% + 2§ modulo n. This implies
Ci j's are edge-dls_]omt Similarly, C;,’s are also edge-disjoint. Clearly,
E(Ci;) N E(C, ) = 0. Thus, cycles in ¥ are edge-disjoint.

Let G = Km, — E(H). Now we show that Sk|G. It is not difficult
to verify that each vertex in B appears in pgz/n = sq cycles in €. Thus,
degy by = 23q = 2y = r for each b, € B. It implies degg by, = m —1 = uk
and hence G can be decomposed into k-stars with centers in B. This
completes the proof. a

Now, we are ready for the main result. It is obtained by combining
Lemmas 2.2, 2.7 to 2.10.

Theorem 2.11. Let k, m and n be positive integers with m > n. Then
K n has a (Ck, Sk)-multidecomposition if and only if k =0 (mod 2), 4 <
k < min{m,2n} and mn = 0 (mod k) except for the following cases: (1)
m=1 (mod 2) andn < k, (2) (m,n) = (k,k/2+1) for k=2 (mod 4) or
(m,n) = (k,k/2).
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