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Abstract

In [11], Zhu, Li and Deng introduced the definition of implicit
degree of a vertex v, denoted by id(v). In this paper, we consider
implicit degrees and the hamiltonicity of graphs and obtain that: If
G is a 2-connected graph of order n such that id(u) +id(v) 2 n —1
for each pair of vertices u and v at distance 2, then G is hamiltonian
with some exceptions.

Keywords: Implicit degree; Hamiltonian cycles; Graph

1 Introduction

Throughout this paper, we consider only finite, undirected and simple
graphs. We will generally follow the notation and terminology of Bondy
and Murty in [3]. For a graph G = (V(G), E(G)), V(G) and E(G) denote
the vertex-set and edge-set of G respectively. Let H be a subgraph of G,
G|H) denotes the subgraph of G induced by V(H). The neighborhood in H
of a vertex u € V(G) is Ngy(u) = {v € V(H) : wv € E(G)} and the degree
of uin H is dy(u) = |[Ng(u)|. If H = G, we can use N(v) and d(v) in place
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of Ng(v) and dg(v), respectively. Let Na(v) = {u € V(G) : d(u,v) = 2},
where d(u, v) indicates the distance from u to v in G. A and B being the
subsets of V(G), e(A, B) is the number of edges ab of G with a € A and
b€ B. We write e(A, b) instead of e(A, {b}).

For a cycle (or a path) C in G with a given orientation and a vertex
y in C, y* and y~ denote the successor and the predecessor of y in C,
respectively. Define y(#+1)+ = (yh+)+ for every integer h > 0, with ¢+ =
y. y"~ is defined analogously. And for any I C V(C), let

I"={y:ytel} and I*={y:y" €I}.

A cycle (or a path) containing all vertices of G is called a hamiltonian
cycle (or a hamiltonian path). A graph G is called hamiltonian if it contains
a hamiltonian cycle. A cycle C is called an l-cycle if [V(C)] = 1.

In order to give the results of this paper, we define some special graphs.

(1) The join of two disjoint graphs G and H, denoted by GVH, is defined
as: V(GVH)=V(G)UV(H) and E(GVH)=E(G)UEH)U{uw:ue
V(G),ve V(H)}.

(2) Let n > 7 be an odd integer. By ¥, we denote the family of graphs
such that G € ¥, if and only if |V(G)| = n and the vertex-set of G is the
disjoint union of the sets A;, A2, B1, B2 and {a;,a3,b} so that

(i) |[AsUBi| = 232,i=1,2;

(iii) G[A: U B;] and G[A; U {a;}] are both complete subgraphs of G for
i=1,2and j=1,2

(iv) e(a1,a2) < 1;

(v) |41 U Az| > 252 —e(ay,a2); and

(vi) d(b) = 2 and the neighbors of b are a; and ay. (See Fig.1.)

(3) H is the graph of order 9 depicted in Fig.2.

(4) 9%, = (kK U 2K2_§-_:_k) V Kpt1.

(5) Let n > 7 be an odd integer. %, denotes the family of graphs such
that G € @B, if and only if |[V(G)| = n and V(G) is the disjoint union
of the sets A;, A2, By, B2 and {a;,a3,b} so that they satisfy the above
(i),(iv),(v),(v1) and

(vii) G[A; U {a;}] is complete subgraph of G and uv € E(G) for any
vertex u € A; and any vertex v e B; fori=1,2and j=1,2;

(viii) |Ai| = max{2,|{b: d(b) < 252 and b€ B;}| +1},i=1,2.

The hamiltonian problem is an important problem in graph theory.
Various sufficient conditions for a graph to be hamiltonian have been given
in terms of degree conditions. We have two classic results due to Dirac and

Fan respectively.

Theorem 1. ([6]) If G is a graph of order n > 3 such that d(u) > % for
each vertez u in G, then G is hamiltonian. The bound is sharp.
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Theorem 2. ({8]) Let G be a 2-connected graph of order n > 3 such that
max{d(u),d(v)} > § for each pair of vertices u and v at distance 2, then
G is hamiltonian. The bound is sharp.

In order to generalize Theorems 1 and 2, Zhu, Li and Deng proposed
the concept of implicit degrees of vertices in [11] as follows.

Definition 1. ([11]) Let v be a vertez of a graph G. If Na(v) # @ and
d(v) > 2, then set k = d(v) — 1, m§ = min{d(u) : u € Np(v)} and M7 =
max{d(u) : u € Na(v)}. Supposed] < dj <---<dj, ; <--- is the degree
sequence of vertices of N(v) U Na(v). Let

my, ifd} <m};
d*'(v) =9 diy Hdiy, > M3
dy, otherwise.
Then the implicit degree of v, is defined as id(v) = max{d(v),d*(v)}. If
Na(v) =0 or d(v) < 1, then we define id(v) = d(v).

Clearly, from the definition of implicit degree, we have id(v) > d(v) for
every vertex v. The authors in [11] gave a sufficient condition for a graph
to be hamiltonian with implicit degrees.

Theorem 3. ([11]) Let G be a 2-connected graph such that id(u)+id(v) > ¢
for each pair of nonadjacent vertices u and v in G. Then G contains either
a hamiltonian cycle or a cycle of length at least c.

Chen [4] extended Theorem 3 as follows.

Theorem 4. ({4]) Let G be a 2-connected graph such that max{id(u),
id(v)} = ¢/2 for each pair of vertices u and v at distance 2. Then G
contains either a hamiltonian cycle or a cycle of length at least c.

In 1987, Benhocine and Wojda [1] extended the result of Fan as follows.

Theorem 5. (f1]) Let G be a 2-connected graph of order n > 3 with
independent number a(G) < % such that max{d(u),d(v)} > 25 for each
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pair of vertices u and v at distance 2, then either G is hamiltonian or
Ge¥4,UH.

Recently, Cai and Dai extended Theorem 3 as follows.

Theorem 6. ([5]) Let G be a 2-connected graph of order n > 3 with
independent number a(G) < % such that id(v) > 251 for each vertez v,
then either G is hamiltonian or G € 8B, U H or G is a subgraph of 5%,.

Motivated by the results of Theorems 4 and 5, we study implicit degrees
and the hamiltonicity of graphs and extend Theorem 6 as follows.

Theorem 7. Let G be a 2-connected graph of order n > 3 such that id(u)+
id(v) > n—1 for each pair of vertices u and v at distance 2, then either G
is hamiltonian or G € B,UH or G is a subgraph of 7, U (21K, VKai).

Remark. The graph G depicted in [11] (see Fig.3) does not satisfy the con-
dition of Theorem 5. It can, however, be easily verified by using Theorem

7 that G is hamiltonian.
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2 Lemmas

Lemma 1. ({7]) Let G be a 2-connected graph of order n, and let P(a,b)
be a longest path of G with d(a) + d(b) = n, then G is a hamiltonian.

Lemma 2. ({1]) If a graph G of order n has a cycle C of length n — 1,
such that the vertez not in C has degree at least %, then G is hamiltonian.

Lemma 3. ([11]) Let G be a 2-connected graph and P = z,x3---z, be a
longest path of G. If d(z1) < id(z1) end z1z, ¢ E(G), then either

(1) there is some z; € N~ (z1) such that d(z;) > id(x,); or

(2) N(z,) = {22,23, " , Td(z,)+1} and id(z1) = m3'.
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The proof of the following Lemma is trivial, we omit it here.

Lemma 4. Let P = 123+ z, be a path and y1,y2 be two vertices not in
V(P). If Np(y1) " Np(y2) = 9 and 191 € E(G), then

dp(y1) +de(y2) < [V(P)I.

Lemma 5. Let G be a 2-connected, non-hamiltonian graph of order n with
id(u) +1id(v) > n—1 for each pair of vertices u and v at distance 2 and for
every (n — 1)-cycle C in G, the vertez not in C has degree at most -";—2
Then either G € B, or G is isomorphic to H or G is a subgraph of 5%,.

Proof. By Theorem 4, G contains an (n—1)-cycle. Choose an (n—1)-cycle
C such that the degree of the vertex not in C is as large as possible. Let
z be the vertex of G not in C. We must have 2 < d(z) < -"-;—2, thus n > 6.
Choosing an arbitrary orientation on C, define y1,y2, - ,yx+1(k = 1) to
be the neighbors of z. Since {z,y;,v5, - ,y;:“} is an independent set,
d(z,yf)=2foreveryi=1,2,--- ,k+1.

Claim 1. id(z) > 251

Proof. Suppose to the contrary that id(z) < 25%. Since d(z,y}) = 2 for
every i = 1,2,--+ ,k+1, we have id(y}) > 25 for each i. We consider the
following hamiltonian path

P =gty it yayydtel 0 o,
where h and ! are the minimum integers such that y* = y; and vt =yr
respectively. For convenience, let P = z1z3 - z,, where z; = y{,z2 =
y2*, and so on.

Clearly, we have z,z, ¢ E(G). By Lemma 1, we can assume, without
loss of generality, that id(z;) > d(z1). Since yi'y1 € E(G) and yi z ¢ E(G),
we have N(z1) # {z2,%3, "+ ,Zd(z;)+1}. By Lemma 3, there exist some
z; € N~ (z,) such that d(z;) > id(z1). Let P! = zp2pn_1 - Zip12122 - - - 24,
and note that P’ is another hamiltonian path of G. If id(z,) = d(z.), we
have d(z,) + d(z;) > id(zp) + id(z1) > n — 1, and hence by Lemma 1, G
contains a hamiltonian cycle, a contradiction. Similarly, if d(z,) < id(z,),
there is some z; € Np,(z,) such that d(z;) > id(z,). If j <3, let

Py =zTj 1 T1Zi41Ti42 " TnTj41Tj42 - - - Ti;
and if j > i+ 1, let

Pz =ZjTj41 " Tnlj-1Tj—2°* Ti41T1T2 " - T4,
Since d(z;)+d(z;) > id(z1)+id(z,) > n—1, by Lemma 1 again, G contains
a hamiltonian cycle, a contradiction. m]

By the assumption of Lemma 5 and Claim 1, we know d(z) < id(z).
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Since d(z,y}) = 2, |[Na(z)| = k + 1. By the definition of implicit degree,
we can easily get that id(z) # di,,. We consider the following two cases.

Case 1. id(z) =

Since d(z,y;}) =2 for each i = 1,2,--- ,k + 1, we have d(y;") > 251.

Since G is not hamiltonian, it is easy to check that

(1) e(y1 y2H) + e(y2 ,2)<lforeveryz€e A= {y1 ,y -+, yP*}, and

(2) e(y7, 2)+e(yf, 2t) < 1 forevery z € B = {yf, 42", ,yé*}, where
h and ! are defined as in Claim 1.

As yfz ¢ E(G) and y5z ¢ E(G), (1) and (2) imply

n-1 < d(yf)+dy)
= > le(,zt) +e(@F, )] + D le(wi, 2) + e(vF, )]

zEA z€B
+e(yi, n) + e(y3 , v2)
< h+4l42=n-1,

which 1mphes that all the inequalities above are equalities. In particular,
d(yt) = d(yF) = 25! and n is odd.

If d(:r:) > 3, we have e(yy,u¥) +e(yf,v3%) = 1. Asyiyd ¢ E(G), we
deduce y; y§+ € E(G). Then G has a cycle of length n — 1 avoiding y7
whose degree is at least “‘ , contrary to the hypothes1s of Lemma 5. (An
analogous argument shows that y7 3t € E(G) and y5y?* ¢ E(G).) So we
can assume that d(z) =2 and h > 2,1 > 2.

By the choice of C, we can assume that for any an (n — 1)-cycle, the
vertex not in the cycle has degree 2.

Observe that yi and y; have degree precisely ’—'—‘—- and are joined by a

hamiltonian path P in G, where P = y}y?t .. ygxyly"*'y(' “DF Lt

For convenience, let P = z1z2 - - T, where :1:1 =yt zy = y1+, and so
on. We may easily deduce the following useful properties:

(i) e(z1, Tit1) + €(Tn,zi) =1 for every i =1,2,--+ ,n —1;

(ii) If e(z1,Zi+1) + e(Tn,zi-1) = 2 for some i = 2,3,---,n — 1, then
d(z;) = 2. Moreover, similarly as Claim 1, we can get that zd(:z:,) > "‘ .
Therefore, by the definition of 1mp11c1t degrees, we have d(z;_2) > zd(:c,) >
221 and d(zi42) > id(z:) > 25

(iii) z1Zn-1 ¢ E(G) and znz2 ¢ E(G).

Since z1z3 = y7 y3* € E(G),y{ 1 € E(G) and yfz ¢ E(G), only two
cases can arise.

Case 1.1. There are i and 7,5 > i+1, such that 1:11:,_1 € E(G),z1z541 €
E(G) and z,z, ¢ E(G) for each s = 4,1+ 1,-

370



Choose such 7 such that i is as small as possible. We have i > 4 and
J £n—3by (i) and (iii); zaz, € E(G) forall s =i —1,4,---,5 — 1 by (i);
d(z;) = 2, d(z;-2) > 25! and d(z;42) > 251 by (ii).

Using similar arguments as in (1], we can get the following Statement.

Statement. If 2125 -- z, is a hamiltonian path of G such that there are i
and Jﬂ +1<j, z1zi) € E(G), 212541 € E(G), 212, ¢ E(G) for s =1i,i+
1,---,j andd(z) > 253, then j = i+1, d(zi43) > 25 and d(z;_y) > 251

Case 1.1.1. d(z) > 5L,

By the Statement, we have j = 1 + 1, d(zi+3) = 252 and d(z-;) >
Let P/ = 2125+ Ti_1TnTn-1 . Since xlx, 1 € E(G),z1z, ¢
E(G) T1ZTn-1 & E(G),:z:l:z:,.,.z € E(G) and d(a:n) > 251, we have ;2,5 €
E(G) and d(zn_3) > 25! by the Statement. Moreover, d(zn—1) = 2 since
ziTn € E(G). Then usmg P we can obtain z,z,_3 ¢ E(G).
If i + 3 < n — 2, then considering the hamiltonian path
ZTi-1Ti-2 ' " T1Ti42Ti+1TiTnTn—1 " - - Ti4+ 3,
we can get z;_1Z,_2 € E(G) by (i). So taking the hamiltonian path
T1Z2° " Zi—1Tn-2Tn-1TnTiTi41 - " Tn-3,
and observing that z,_3z, ¢ E(G) implies z,z; € E(G) by (i), but this
contradicts the hypothesis of Case 1.1.
Assume i+ 3 = n— 2, then 7 is even. Referring to the hamiltonian path
TiZTip1Ti42L122 -+ Ti—1Ti45Ti4+4Ti43,
we have z;z;;2 € E(G) by (i).

Since z:zisa € E(G),z12: ¢ E(G),z21: ¢ E(G) (for d(z1) > 251),
z;%i—y € E(G) and d(z;) > 25!, we have by the Statement z;z3 € E(G)
implying d(z2) = 2 (z1zi43 € E(G)). If i = 4, we obtain n =9 and G is
isomorphic to H.

Then suppose i > 6. We have d(z4) > 25* and d(z42) > 251. Teking
the hamiltonian path

Zit2Zi41TiT3T2T1Ti+3Ti+4Ti4+5Ti—1Ti—-2* * * Tq,
by (i) and the fact d(z;44) = 2, we obtain z;;22;15 € E(G). A hamiltonian
cycle is then Ziyo%iq1 +* » T1Ti43Ti+4Ti4+5Ti4+2, & contradiction.

Case 1.1.2. d(z;) < 252

We have z;_sz; ¢ E(G), for £,zi-1 € E(G),z1z;_1 € E(G) and G is
not hamiltonian.

Claim 2. d(z;_2) < 251,

Proof. Suppose to the contrary that d(z;_3) > 27*. By considering the
hamiltonian path
Ti—2Ti-3 ' T1Zj41T5 " Ti—1TnTn-1 """ Tj42,
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and using the fact that z;_»z, ¢ E(G), we deduce z;42z;_y € E(G). Then
122 Li-1T542%543 * * TnZiTity1 - Tj41T0,
is a hamiltonian cycle of G, a contradiction. a

Claim 3. j=i+1.

Proof. Suppose j > i + 2. By considering the hamiltonian path
Tj—2Tj-3° " T1T;j41%5Tj-1TnTn-1" " Tj42,
and using the fact z,z;_3 ¢ E(G), we deduce ;4272 € E(G). Then
Tj+1Z5  * TiTnTn—1 ** * Tj4+2T2T3 ** " Ti—1T1Tj+1,
is a hamiltonian cycle of G, a contradiction. O

Claim 4. 7,2, € E(G) forany4 <s<i—-2.

Proof. Suppose to the contrary that there exists some 4 < s < 1 — 2 such
that z;z, ¢ E(G). We can get that z;z,_; € E(G) and z1z,4, € E(G).
By (i), Tnzs—1 € E(G) and z,z,—2 ¢ E(G) by the choice of i; by (ii),
d(z,) = 2, thus d(z,42) > id(z,) > 25+ and d(z,_3) > id(z,) > %5, So
21252 € E(G). We consider the following two case.

(a) 717542 € E(G).

Then z,z,41 € E(G) by (i). Since d(z,42) > 52;1-, we have 712,13 ¢
E(G) by (ii). So znzs+2 € E(G) and z,7,44 € E(G). By the choice of i,
we have i = s + 2, contrary to d(z;) < "—;l

(b) z1%442 € E(G).

Then z,z5+1 € E(G) by (i). By considering the hamiltonian path
T3-2T35-3°**T1T5—1TsTs41" " Tn,
we deduce z,_3x542 € E(G). Then
T5—2T5-3 " "T1T541T5T5~1TnTn—1 " L542T5-2
is a hamiltonian cycle of G, a contradiction.
This completes the proof of Claim 4. o

Claim 5. Z31Zi43 € E(G)

Proof. Otherwise, z,Tiy2 € E(G) by (i) and d(z:y3) > 25* by (ii).
Considering the hamiltonian path
T1Z2 - ZiTi+1Ti4+2ZnTn—1 """ Ti43,
and using the fact z;z:41 ¢ E(G), we deduce z;z;13 € E(G). Then
T1Z2 - Li—1TnTn-1 " Ti43TiTi+1Ti42T1,
is a hamiltonian cycle of G, a contradiction. a

Claim 6. 71z, ¢ E(G) for any s =7+ 4,7+5,--- ,n.
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Proof. Suppose that there is some s with i 44 < s < n such that z;2, €

E(G). Clearly, s # n — 1,n. We choose such s such that s is as small as

possible. If s = ¢ + 4, then considering the hamiltonian path
Ti43Ti42Ti41TiTi—1 " L1Ti4+4Ti45 " Ty,

and using the fact that z;112, € E(G), we deduce z;z;+3 € E(G). Then
T1T2: ' Ti—1TnTn-1" " Ti4+3TiTi+1Ti4+2T1,

is a hamiltonian cycle of G, a contradiction.

So we assume i +5 < s <n —2. By (i) and (ii), we get d(z,41) = 252,

By considering the hamiltonian path
Lic1Ti-2 L1Z5T3—~1" " TiTnTn—1 "~ Ts41,

and using the fact z;_1z;41 ¢ E(G), we deduce z;43%,41 € E(G). Then

Ti42Ti41 " X1TsTs-1 " " Ti43TnTn—1 ** * Ts41Ti4-2,
is a hamiltonian cycle of G, a contradiction. m]

We can get that e(zn, {Ti—1,Zi, Tit3, Titay -+ zn_l}) =n—i—1by
Claim 6 and (i). The degrees of z; and z,, impose i = "; For every s < i—
2 and t > i+4, we have z,1: ¢ E(G),z,2; ¢ E(G) and z,z:4+2 ¢ E(G), for
TeTg—1° " T1Te41T942 " Tt—1TnTn-1""" Tty ToTs-1" ' L1Tp41Ts42" " Ti-1
TnTn_1'- Ti, TeTt4l - TnTe—1Te—2°** Ti43T1T2 - - Ti+2 are hamiltonian
paths of G, respectively. We deduce that {z;_1,z;, Tiy1Zit2, Zi+3} is a
cut-set of G. Let Uy = {z1,22, - ,Zi-2} and Uy = {i44,Zivs, " ,Tn}y
we see that |U1| |Us| = ""5. By the above discussion, we can get
that d(z,) < 25~ 1 for any z, e Ui U Uy, and if d(z;) = ";1 for some
z, €U U Uz, then N(z,;) = (U1 \ {zs}) U {zi=1,Zit2, Tit+3} When z, € U
and N(z;) = (Uz\ {z:}) U {zi-1,2i, Ziy3} when z, € Us.

Claim 7. id(z;) > 25%.

Proof. Suppose id(z;) < 231, then id(z;_3) > 23%. Considering the
hamiltonian path
Pl =m;_ozi3- ETi-1Ti T = 2122 2y
since z; € Na(z;—2) and d(z;) < 25~ "“ by Lemma 3, there must exist a
. vertex z, € N~ (z1) such that d(zs) > zd(zl) > 2zl Let
P" = zy251- 2125412542 zm

which is a hamiltonian path with d(z;) + d(z,,) >azlynzl—p—1 By
Lemma 1, there is a hamiltonian cycle in G, a contradiction. m}

Claim 8. If z;z, € E(G) for some z: € Us, then z;2:,1,Tize42 & E(G).

Proof. Otherwise, we can get that d(z;) > 25} and d(ze41) > 25L or
d(xe42) > 251, Therefore, 2i43%i44- x:x;xs+1zz+zx1zz DA TnTm1 -

Ter1Tipaisa hamlltoman cycle, OF Ti43Titd «  * TeTiTit1Ti42T1T2 « - * Tim1Te42
Tt43** TnTit3 is an (n — 1)-cycle of G avoiding z;41 with d(z¢+1) > 3, a
contradiction. (m]
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Let d(z;) = s + 1. By the above, we can get that (N~ (z;) UN*(z;)) N
Uy C Ny(z;) and N~ (z;) N N*(z;) = 0. Thus, [N~ (z;) U N*(z;)| >
25 —3 > s and d(z;) < 23! for any x; € N~(z:) U N*(z;). It is contrary
to the definition of implicit degree.

Case 1.2. z1z;_; € E(G),z12i+1 € E(G) and z1z: ¢ E(G) for some
i€ [4,n-13].

Choose such ¢ such that i is as small as possible, then e(z), {z2,23,- -,
z;—1}) =i —2 and e(zn, {T1,22, - ,Ti=2}) = 0.

By (i), znzi-1 € E(G) and z,z;—2 ¢ E(G); by (ii), d(z;) = 2, thus
d($i+2) > D—;—J" and d(z.-_g) > P—;—l-

Considering the hamiltonian path

Ti—2%Ti-3"  T1Zi—1Ti"* * Tn,
and noting that z,z; ¢ E(G), we get that r;_2zi11 € E(G) by (i); but
since
T1Z2 *** Ti-2Ti41TiTi-1TnTn-1 """ Ti42,

is a hamiltonian path of G, we must have z1z;42 € E(G). Therefore,
znzip1 € E(G) by (i) and zyz;43 ¢ E(G) by (ii) . Now, we can sup-

pose that e(z1, {Tit+2,Zit3, ** ,Zn}) = 0, otherwise Case 1.1 holds. Thus
e(zn, {ZTi+1,Tig2, ** , Zn-1}) = n—i—1. The degrees of z; and z, impose
i=otl,

For every s <i—2 and t > i+ 2, we have z,z, ¢ E(G) for sz, 21
Tg41Tg42 " * Ttm1TnTn—1 - * Tt is a hamiltonian path of G. We deduce that
{Zi-1,Zi, Tip1} is a cut-set of G, and d(u) < 25! for any u € V1 U V4,
where V; = {:1:1,:1:2, <, zi—g} and V = {Ziy2, Tiy3, -+ ,Tn}. We see that
Vil = |Vz| = 252

Claim 9. id(zi—1) > 252 and id(ziy1) > al

Proof. Suppose, without loss of generahty, that id(z;—;) < 2 2 . Then,

there exists some vertex, say z;, in {z2,3, -+ ,Ti—1} such that d(:c, yTim1) =
2. Then id(z;) > 25* Considering the hamiltonian pa.th
P = :II:,:L'J 1" 1T 41Z542 = 2122 * 2n,

using the fact that z;_; € Na(z;) and d(x1_1) < &z2 1 we can get that
there exists some vertex z, € N~ (z;) such that d(z,) > id(z) > 5= ""1 by
Lemma 3. Let

Pl =225 1+ 2125412542 " * Zn;»
is a hamiltonian path with d(z,) + d(2,) > n — 1. Then we can get a
Hamilton cycle by Lemma 1, a contradiction. D

Claim 10. d(z;_;) > 25} and d(z:41) > 25

Proof. Suppose, without loss of generality, that d(z;—1) < 1‘-;—1 Then
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d(.'L‘,;_l) < id(l‘i_l) by Claim 9.

Let d(zi—;) =t + 1. We know IN(xg_l) U Na(zi—1)| = n — 1. Since all
the vertices with degree at least -"—'2—'- must be adjacent to z;—; and z;41, we
get that d(u) < 25! for each u € Na(z;—1). Therefore, |Np(zi=1)| >t + 1
It is contrary to the definition of implicit degree.

For j = 1,2,V; can be partitioned into A; U B; such that d(a) > 25!
for each a € A; U Az and d(b) < 23t for each b € B, U B,. Smce
Z1,%i-2,Ti+2, Tn have degree at Ieast o=l we have |4;] = 2,7 = 1,2.
Moreover, taking a € A; U A3, we must ha,ve that a is adjacent to both
z;—1 and z;+1. Which implies that e(As, {zi—1, Zi+1}) = 2|42|.

If ByuBy = @, then G € &,.

So suppose By U By # 0. Clearly, e{By U By, {z;_1,Zi+1}} = 0. So
d(zi—1) = d(ziy1) = |A1]| + |A2] + 1 + e, where e = e(zi—1,Ti4+1). Since
d(zi—1) = d(ziy1) > 25, we get |A1|+]|Az|+1+e > 251, So |A)|+|Az| >

n—
5 —6€

Claim 11. For any two vertices a,b € By, if ab ¢ E(G), then id(a) > %53=
and id(b) > 25*. Similar for B,.

Proof Suppose a,b are two vertices in B; with ab ¢ E(G), but id(a) <
221 or id(b) < 251. We assume, without loss of generality, that id(a) <

. Since d(a,b) = 2, id(b) > 2= "" . Then 1d(b) # mm{d(u) u € Na(b)}.
Con51dermg the hamiltonian pa.th bb—b2~ ... z1btb%* ... z,, we can get
a hamiltonian cycle of G by Lemma 3, & contradiction. O

Choose a vertex b in B;UB5;. By the symmetry, we may assume b € B;.
If No(b)n By = 0. Let d(b) = s+ 1. And let |A1| =m,|Nb)NBi|=m
and [N2(b) N By| = na. Then ny +ng+m = 532 S and s+1=m+n;.
Since d(zi-1,b) = 2, d(zi—1) > 25* and d(u) < 25* for any u € N(b), we
can easily check that id(b) # d5, ;. If n = 0, then G|A1U B, is complete
subgraphs. If ng # 0, then id(b) # m3. So id(b) = d®, then d® > m$ and
d,, < M}. Therefore, n1+n2 < s—1=n1+m~2. Thenl < ng <m-2.
By the arbitrary of b, we have |4;| > max{|Na(b)) N By|+2:b€ By} =
[{b: d(b) < 252 and b € B,}| +1. Similarly, |Az| > |{b: d(b) < 25% and
be By} +1. Consequently, G € PBy.

Case 2. id(z) =

Then df > mj and k > 2. Let Wy = {y; : yf =y} and W = {y; :
v # v} Set |Wi| = w;,i = 1,2. Then w; + we = k + 1. Moreover,
{vf, vii1 t vi € W} U {yf : yi € W1} C Na(z), so |[Na(z)| = wy + 2ws.

By the hypothesis of Lemma 5, we can get that d(y}) < d(z) < 23 ”‘1
for any y; € W). Since id(z) = df, there are at least we + 2 vertices m
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{vf vYip1 Ui € W} with degree at least id(z).
Claim 12. w; = 2.

Proof. It is easy to check that wg > 2, otherwise, G contains an (n — 1)-
cycle avoiding a vertex with degree at least l.;—l- By the contrary, suppose
wo > 3, then there are at least three vertices in {y;+ : i € Wi} with degrees
at least id(z) or at least three vertices in {y;; : i € W2} with degrees
at least id(z). Without loss of generality, suppose there are at least three
vertices in {y} : y; € W} with degrees at least id(z) > "‘ . Similarly as
Case 1, we can get an (n — 1)-cycle such that the remaxmng vertex with

degree at least 251, a contradiction. a
gr 3

By Claim 12, we assume W3 = {u;, yk41}. Then d(y]"), d(v;3,), d(vi,,)
> id(z) and d(y;) = id(z).

Claim 13. id(y}) > 23! for any y; € Wi.

Proof. Otherwise, id(z) > 232. Then d(y; ) > id(z) > 252 and d(y,,) 2
id(z) > 25%. But yFyt . yk,,.lxy,yt cyf s a ha.rmltonlan path, by
Lemma 1, there is a hamiltonian cycle in G, a contradiction. a

Claim 14. N(y]) = N(z) for any y; € W1.

Proof. We assume y; € W;. We just need to prove N(y}) = N(z). Let
d(y}) =s+1. Sincez € Ng(y1 ), d(z) < 25 and G is not hamiltonian, we

can get that id(y]") # m2 , df_‘H Then zd(yf) — &% . If there exxsts some
vertex y; such that y.y7 € E(G) and 44137 € E(G) or yg_.lyl ¢ E(G)
then by similar argument as m Claim 12, we can get that d(y) > id(yT) >
"21, a contradiction. Since yiy; € E(G), we have y7ys € E(G) for each
§=2,3,-++,1.

If yf yi+1 € E(G), we can get that yfy; ¢ E(G) for each t =i +2,i+
3,:-.,k+ 1. Then we can get that there is a vertex yf with1<t<i—1
with d(y;") > id(y{) > 252, a contradiction. So ¥{yi+1 € E(G). Similarly,

yT y: € E(G) for each i +2,i+3,--- ,k + 1. Therefore, N(y§) = N(z). O
Claim 15. N(z) C N(u) for any v € {y},v31, %007 }

Proof. By symmetry, we just prove N(z) C N(y}). Considering the
Hamilton path P = yfy*.. yk.,,;:cy,y, y;™---yi,, and using the fact
d(y}) > Eg— and d(y}, ;) > 5%, we deduce d(y‘ ) = d(yt,,) = 25
Since y} y,c_i_1 ¢ E(G) for any y, € W, and :z:yk+1 ¢ E(G), we have
N(z)\{yi+1} € N(¥).
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By Claim 14, v, 9%, -+ 1%y 1Yy, - Virr¥T ¥ T -+ - ¥7, is & hamil-
tonian path, then y,‘:'_'_ly,.’_,_1 ¢ E(G). Then by using P, we get that y; y;41 €
E(G). Therefore N(z) C N(y}). m]

Let Ci = Clyf,yi1),C2 = Clyf1,97) and Gz = Clyisr,ya41) U
C[y1,y:). By Claim 15, we can get that y;c"_,_ly;_] ¢ E(G). Since G is non-
hamiltonian, we have Né:l (yi,,) N Ne, (y) = 0, by Lemma 4, we can get
that de, () +de, (yit1) < IV(C1)| - 1. Similarly, de, () +de, (yify,) <

[V(C2)| -1, dc, (yi31) +de, (y7) < [V(C2)| -1 and de, (vi3,) +de, (v7) <
[V(C1)| — 1. By the above discussion and Claim 15, we get

An—1) < do(y!) +de(i,) +de(yin,) + de(yr)

3
Z dc, (yz ) +dc, (yk+1) +dg, (yz+1) +dc, (v1)

4k +1) +2(V(C1)] - 1) +2(V(Ca)| — 1)
2(n —1),

IA A

which implies that all the inequalities are equalities. If there exists some
vertex z, € V(C1) such that y},,z, € E(G), then yrzT,yrzd, v,
y1y2* ¢ E(G) and yj;,7; ¢ E(G). By Lemma 4, we can get that
de, (yiz1) + de, (7)) < |C1| = 1, a contradiction. Hence, N, (¥,) = 0).
Similarly, we can get that Ng, (y7') = 0, Ne,(yF) = 0 and Ne,(vi,) =
Hence, dc, (yf) = |[V(C1)| — 1 and dy(c,)(¥i41) = [V(Ca) - L. Slnce
d(y;") = "—‘—— and d(ka) = 251, we can get that [V(Cy)| = [V(C2)| =
—k. Therefore, we can get that G is the subgraph of J%,.

3 The proof of Theorem 7

Let G be a non-hamiltonian graph satisfying the hypothesis of Theorem 7.
By Theorem 3, G contains a cycle of length n — 1. We choose an (n — 1)-
cycle C such that the degree of the vertex not in C is as large as possible.
Let C = 7122+ --Tn_1 and = be the vertex of G not in C. By Lemma 2,

d(z) < l'zi
If d(z) = "‘1, we can suppose N(z) = {z1,%3,%5, * ,Zn—2}. Then
{z, 3,24, ,a:,._l} is an independent set of G with —3'— elements. It is

easy to check that G is the subgraph of 21K, V Ku_1 net

So we can assume that for every cycle C’ of length n— 1, the vertex not
in C’ has degree at most 252. Theorem 7 follows by Lemma 5. i
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