Δ-Optimum Forbidden Subgraphs and Exclusive Sum Labellings of Graphs *

Jianxin Wei^{a,b}, Baoqiang Fan^b

- a. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, P.R. China
- b. School of Mathematics and Information, Ludong University, Yantai 264025, P.R. China

E-mails: weijx11@lzu.edu.cn, baoqiangfan@163.com

Abstract

The notions of sum labelling and sum number of graphs were introduced by F. Harary [1] in 1990. A mapping f is called a sum labelling of a graph G(V, E) if it is an injection from V to a set of positive integers such that $uv \in E$ if and only if there exists a vertex $w \in V$ such that f(w) = f(x) + f(y). In this case, w is called a working vertex. If f is a sum labelling of $G \cup rK_1$ for some nonnegative integer r and G contains no working vertex, f is defined as anexclusive sum labelling of the graph G by M. Miller et al. in paper [2]. The least possible number r of such isolated vertices is called the exclusive sum number of G, denoted by $\epsilon(G)$. If $\epsilon(G) = \Delta(G)$, the labelling is called Δ -optimum exclusive sum labelling and the graph is said to be Δ -optimum summable, where $\Delta = \Delta(G)$ denotes the maximum degree of vertices in G. By using the notion of Δ -optimum forbidden subgraph of a graph the exclusive sum numbers of crown $C_n \odot K_1$ and $(C_n \odot K_1)$ are given in this paper. Some Δ -optimum forbidden subgraphs of trees are studied and we prove that for any integer $\Delta \geq 3$ there exist trees not Δ -optimum summable, and a nontrivial upper bound of the exclusive sum numbers of trees is also given in this paper.

^{*}This research was supported in part by the National Natural Science Funds of China under grant numbers 11001117.

1 Introduction

We follow in general the graph-theoretic notations and terminologies of [3]. All graphs we consider in this paper are finite, simple and undirected graphs.

A mapping f is called a sum labelling of a graph G(V, E) if it is an injection from V to a set of positive integers, such that $uv \in E$ if and only if there exists a vertex $w \in V$ such that f(w) = f(x) + f(y). In this case, w is called a working vertex and the edge uv is said to be labelled by f(w). A graph G is said to be a sum graph if it has a sum labelling f, and f is said to give a sum labelling for G. In general, a graph G will require some isolated vertices to be a sum graph. The sum number $\sigma(G)$ is the smallest nonnegative integer m such that $G \cup mK_1$, the union of G and m isolated vertices, is a sum graph. These notions were introduced by F. Harary [1] in 1990. For more information about sum graphs see [7]-[12].

M. Miller, D. Patel, J. Ryan, K. Sugeng, Slamin and M. Tuga [2] defined f as an exclusive sum labelling of a graph G if it is a sum labelling of $G \cup rK_1$ for some nonnegative integer r, and G contains no working vertex. The least possible number r of such isolated vertices is called the exclusive sum number of G, denoted by $\epsilon(G)$. Obviously, $\epsilon(G) \geq \Delta(G)$ and $\epsilon(G) \geq \sigma(G)$, where $\Delta(G)$ denotes the maximum degree of vertices in G. If $\epsilon(G) = \Delta(G)$, the labelling f is called Δ -optimum exclusive sum labelling, and the graph is said to be Δ -optimum summable. The exclusive sum number of several families of graphs were determined in paper [2]: $\epsilon(K_{p,q}) = p+q-1$, for $p,q \geq 2$; $\epsilon(P_n) = 2$, for $n \geq 2$ and $\epsilon(C_n) = 3$, for $n \geq 3$. In paper [4], Caterpillars and Shrubs were shown to be Δ -optimum summable. Some Δ -optimum exclusive sum labelling of certain graphs with radius one were given in paper [6]. For more information about sum graphs see [13]-[15].

Some useful notions are presented in this paper. Suppose f and g are both exclusive sum labelling of graph $G \cup \epsilon K_1$ and uv is any an edge of G, if there exist a one-one mapping h from f to g such that $f(u) + f(v) = i \in f$ if and only if $g(u) + g(v) = h(i) \in g$, then the labelling f and g are said to be the same. If any two exclusive sum labellings of $G \cup \epsilon K_1$ are the same, then the exclusive sum labellings of the graph is said to be unique and G be labelled uniquely. Let G be a graph which has no Δ -optimum exclusive sum labellings, obviously, G must contains a subgraph H not be Δ -optimum summable, then H is called a Δ -optimum forbidden subgraph of G, where $\Delta = \Delta(H) = \Delta(G)$. We should emphasize the reason that H can not be Δ -optimum sum labelled always because the structure of G. So when we mention H is a Δ -optimum forbidden subgraph, it must be relative to some one supergraph G.

Let G_1 and G_2 are graphs and G_1 has n vertices, then $G_1 \odot G_2$ is the

graph obtained by taking one copy of G_1 and n copies of G_2 and joining the i^{th} vertex of G_1 with an edge to every vertex in the i^{th} copy of G_2 . Graph $C_n \odot K_1$ also be called crown [5], where $n \ge 3$. Given a graph G, the graph G' is called the subdivision of G if every edge $e \in E(G)$ is substituted by a path P_3 [3].

With the help of 3-optimum forbidden subgraph of $C_n \odot K_1$ and $(C_n \odot K_1)'$, the exclusive sum numbers and the exclusive sum labellings of $C_n \odot K_1$ and $(C_n \odot K_1)'$ are given in this paper. Some Δ -optimum forbidden subgraphs of trees are studied and we prove that for any integer $\Delta \geq 3$ there exist trees not Δ -optimum summable, and an upper bound of the exclusive sum numbers of trees is also given in this paper.

The exclusive sum numbers of $C_n \odot K_1$ and $(C_n \odot K_1)'$

First we give the following lemma about the exclusive sum number of $G \odot K_1$.

Lemma 2.1. Suppose $\epsilon(G) = \epsilon$, then $\epsilon(G \odot K_1) \le \epsilon + 1$.

Proof. Let f be an exclusive sum labelling of $G \cup \epsilon K_1$, $V(G) = \{u_1, u_2, \cdots, u_n\}$ and $V(\epsilon K_1) = \{p_1, p_2, \cdots, p_\epsilon\}$. In order to give an exclusive sum labelling of $(G \odot K_1) \cup (\epsilon + 1)K_1$, let $V(nK_1) = \{v_1, v_2, \cdots, v_n\}$ be the vertex set of the n copies of K_1 and add a vertex $p_{\epsilon+1}$ to $V(\epsilon K_1)$ to form the vertex set of $(\epsilon + 1)K_1$. Let f'(v) = f(v) for $v \in V(G \cup \epsilon K_1)$, $f'(v_i) = k - f(u_i)$ for $i = 1, 2, \cdots, n$ and $f'(p_{\epsilon+1}) = k$, where k = 3t and $t = max\{f(v) : v \in V(G \cup \epsilon K_1)\}$. We claim that f' is an exclusive sum labelling of $(G \odot K_1) \cup (\epsilon + 1)K_1$. Obviously, we require the following (1), (2), (3), (4) to prove the claim.

(1) For any $u, v \in V(G \cup \epsilon K_1)$, $f'(u) + f'(v) \notin \{f'(v) : v \in V(nK_1)\} \cup \{k\}$. Since $f'(u) + f'(v) < 2t \le min(\{f'(w) : w \in V(nK_1)\} \cup \{k\})$ for any $u, v \in V(G \cup \epsilon K_1)$, then $f'(u) + f'(v) \notin \{f'(v) : v \in V(nK_1)\} \cup \{k\}$. (2) For any $u \in V(G \cup \epsilon K_1)$ and any $v_i \in V(nK_1)$, if $u \ne u_i$ then $f'(v_i) + f'(u) \notin \{f'(w) : w \in V((G \odot K_1) \cup (\epsilon + 1)K_1)\}$.

Let $u \neq u_i$, then $f'(v_i) + f'(u) \geq 2t$ for any $u \in V(G \cup \epsilon K_1)$ and any $v_i \in V(nK_1)$. If $f'(v_i) + f'(u) \in \{f'(w) : w \in V((G \odot K_1) \cup (\epsilon + 1)K_1)\}$, there must exist some $v_j \in V(nK_1)$ such that $f'(v_i) + f'(u) = f'(v_j)$ or $f'(v_i) + f'(u) = k$. Suppose $f'(v_i) + f'(u) = f'(v_j)$, then $k - f'(u_i) + f'(u) = k - f'(u_j)$, so $f(u) + f(u_j) = f(u_i)$, which is impossible. Suppose $f'(v_i) + f'(u) = k$, then $f(u) = k - f'(v_i) = f(u_i)$, which is impossible. (3) For any $v_i, v_j \in V(G \odot K_1)$, $f'(v_i) + f'(v_j) \notin \{f'(w) : w \in V((G \odot K_1) \cup (\epsilon + 1)K_1)\}$.

Since for any $v_i, v_j \in V(G \odot K_1), f'(v_i) + f'(v_j) > 4t > k = max\{f'(w) : w \in V(G \odot K_1) \cup (\epsilon + 1)K_1)\}, f'(v_i) + f'(v_j) \notin \{f'(w) : w \in V((G \odot K_1) \cup (\epsilon + 1)K_1)\}.$

(4) For any $u \in V((G \odot K_1) \cup (\epsilon + 1)K_1), f'(u) + k \notin \{f'(w) : w \in V((G \odot K_1) \cup (\epsilon + 1)K_1)\}.$

For any $u \in V((G \odot K_1) \cup (\epsilon + 1)K_1)$, $f'(u) + k > k = max\{f'(w) : w \in V((G \odot K_1) \cup (\epsilon + 1)K_1)\}$, so $f'(u) + k \notin \{f'(w) : w \in V((G \odot K_1) \cup (\epsilon + 1)K_1)\}$.

It is easy to get the following corollary from the proof of lemma 2.1.

Corollary 2.2. If G is Δ -optimum summable, $G \odot K_1$ is also Δ -optimum summable.

Let G be a subgraph of H and H be a subgraph of $G \odot K_1$, then lemma 2.1 holds for H, that is, $\epsilon(H) \leq \epsilon(G) + 1$. Obviously, Corollary 2.2 holds for H if $\Delta(H) = \Delta(G)$, i.e., H is Δ -optimum summable. An example of Graph $C_{10} \odot K_1$ and one of its subgraph H (containing C_{10} as subgraph) are shown in (i) and (ii) of $Figure\ 1$ respectively.

Figure 1: (i) graph $G = C_{10} \odot K_1$ and (ii) a subgraph H of $C_{10} \odot K_1$

Since a caterpillar H is a subgraph of the graph G got from a path by continuous using lemma~2.1 for $\Delta-2$ times and path is 2-optimum summable [2], the following corollary~2.3 [4] can be proved to be right, where $\Delta=\Delta(H)$.

Corollary 2.3. Caterpillar is Δ -optimum summable.

Paper [2] showed that $\epsilon(C_n) = 3$. By this result and Lemma 2.1, the following lemma 2.4 can be proved to be right easily.

Lemma 2.4. $\epsilon(C_n \odot K_1) \leq 4$ for all positive integers $n \geq 3$.

In order to get our main results, now we need to prove lemma 2.5.

Lemma 2.5. The graph as shown in (i) of Figure 2 is a 3-optimum

forbidden subgraph of $C_n \odot K_1$ for $n \geq 7$, then $\epsilon(C_n \odot K_1) \geq 4$ for $n \geq 7$.

Proof. Suppose $\epsilon(C_n \odot K_1) = 3$, for all integer $n \geq 7$. Let $V(C_n \odot K_1) \cup 3K_1) = A \cup B \cup I$, where, $A = \{a_1, a_2, \dots, a_n\}$ is the vertex set of C_n , $B = \{b_1, b_2, \dots, b_n\}$ is the set of n copies of K_1 , $I = \{c_1, c_2, c_3\}$ is the isolated vertex set of $3K_1$ and $a_tb_t \in E((C_n \odot K_1) \cup 3K_1))$, for $t = 1, 2, \dots, n$.

Let $f = f(A) \cup f(B) \cup f(I)$ be the exclusive sum labelling of $(C_n \odot K_1) \cup 3K_1$. Since $\epsilon(C_n) = 3$, there must exists a path P_7 as the subgraph of C_n such that the edges of P_7 are exactly labelled by $f(c_1) = i$, $f(c_2) = j$ and $f(c_3) = k$, i.e., the number of the edges of P_7 be labelled by $f(c_t)$ is more than 0, where t = 1, 2, 3. Without lost generality, set $P_7 = a_1a_2a_3a_4a_5a_6a_7$. Let (t_1, t_2, t_3) denote the number that the edges of P_7 be labelled by i, j, k respectively. Let $a_1p_1a_2p_2a_3p_3a_4p_4a_5p_5a_6p_6a_7$ denote the edges $a_1a_2, a_2a_3, a_3a_4, a_4a_5, a_5a_6, a_6a_7$ be labelled by $p_1, p_2, p_3, p_4, p_5, p_6$, respectively, where $p_t \in \{i, j, k\}, t = 1, 2, \cdots, 6$. As an example $a_1ia_2ja_3ka_4ia_5ja_6ia_7$ is illustrated in (ii) of $Figure\ 2$. Since i, j and k are only symbols for three numbers, $(t_1, t_2, t_3) = (3, 2, 1)$ or (2, 2, 2). Then the labelling of P_7 perhaps are some cases as shown in the following discussions and all these cases are proved to be impossible.

Figure 2: (i) a Δ -optimum forbidden subgraph of $C_n \odot K_1$ and (ii) an exclusive sum labelling of P_7

Case 1. $(t_1, t_2, t_3) = (3, 2, 1)$. In this case, there are five subcases of the exclusive sum labelling of P_7 .

Subcase 1.1. $a_1p_1a_2p_2a_3p_3a_4p_4a_5p_5a_6p_6a_7 = a_1ia_2ja_3ka_4ia_5ja_6ia_7$. We obtain that $f(a_1) = i - f(a_2) = i - (j - f(a_3)) = i - j + (k - f(a_4)) = i - j + k - (i - f(a_5)) = k - j + (j - f(a_6)) = k - f(a_6)$, so $f(a_1) + f(a_6) = k$, a contradiction to $a_1a_6 \notin E((C_n \odot K_1) \cup 3K_1)$.

Subcase 1.2. $a_1p_1a_2p_2a_3p_3a_4p_4a_5p_5a_6p_6a_7 = a_1ja_2ia_3ka_4ia_5ja_6ia_7$. In this subcase, $f(b_3) = j - f(a_3) = j - (k - f(a_4)) = j - k + (i - f(a_5)) = j - k + i - (j - f(a_6)) = i - k + (k - f(b_6)) = i - f(b_6)$, so $f(b_1) + f(b_6) = i$, a contradiction to $b_1b_6 \notin E((C_n \odot K_1) \cup 3K_1)$.

Subcase 1.3. $a_1p_1a_2p_2a_3p_3a_4p_4a_5p_5a_6p_6a_7 = a_1ia_2ka_3ja_4ia_5ja_6ia_7$.

Since $a_1 \in V(C_n)$, it must has a neighbor vertex $u \in V(C_n \odot K_1)$ labelled by $j - f(a_1)$. Then $f(u) = j - f(a_1) = j - (i - f(a_2)) = j - i + (k - f(a_3)) = j - i + k - (j - f(a_4)) = k - i + (i - f(a_5)) = k - f(a_5)$, so $f(u) + f(a_5) = k$, a contradiction to $ua_5 \notin E((C_n \odot K_1) \cup 3K_1)$ for $n \ge 7$.

Subcase 1.4. $a_1p_1a_2p_2a_3p_3a_4p_4a_5p_5a_6p_6a_7 = a_1ia_2ka_3ia_4ja_5ia_6ja_7$.

We obtain $f(b_2) = j - f(a_2) = j - (k - f(a_3)) = j - k + (i - f(a_4)) = j - k + i - (j - f(a_5)) = i - k + (k - f(b_5)) = i - f(b_5)$, then $f(b_2) + f(b_5) = i$, a contradiction to $b_1b_6 \notin E((C_n \odot K_1) \cup 3K_1)$.

Subcase 1.5. $a_1p_1a_2p_2a_3p_3a_4p_4a_5p_5a_6p_6a_7 = a_1ka_2ia_3ja_4ia_5ja_6ia_7$.

Similar to Subcase 1.3., $a_1 \in V(C_n)$, so it must has a neighbor vertex u labelled by $j - f(a_1)$. Then $f(u) = j - f(a_1) = j - (k - f(a_2)) = j - k + (i - f(a_3)) = j + i - k - (j - f(a_4)) = i - k + (k - f(b_4)) = i - f(b_4)$, so $f(u) + f(b_4) = i$, a contradiction to $ub_4 \notin E((C_n \odot K_1) \cup 3K_1)$ for $n \ge 7$.

Case 2. $(t_1, t_2, t_3) = (2, 2, 2)$.

Subcase 2.1. $a_1p_1a_2p_2a_3p_3a_4p_4a_5p_5a_6p_6a_7 = a_1ia_2ja_3ka_4ia_5ja_6ka_7$.

By a similar argument of subcase 1.1, a contradiction that $f(a_1) + f(a_0) = k$ can be obtained in this subcase.

Subcase 2.2. $a_1p_1a_2p_2a_3p_3a_4p_4a_5p_5a_6p_6a_7 = a_1ia_2ja_3ka_4ja_5ia_6ka_7$.

We can obtain $f(b_3) = i - f(a_3) = i - (k - f(a_4)) = i - k + (j - f(a_5)) = i - k + j - (i - f(a_6)) = j - k + (k - f(a_7)) = j - f(a_7)$, so $f(b_3) + f(a_7) = j$, a contradiction to $b_3a_7 \notin E((C_n \odot K_1) \cup 3K_1)$.

Subcase 2.3. $a_1p_1a_2p_2a_3p_3a_4p_4a_5p_5a_6p_6a_7 = a_1ia_2ja_3ia_4ka_5ja_6ka_7$.

It is easy to get $f(b_2) = k - f(a_2) = k - (j - f(a_3)) = k - j + (i - f(a_4)) = k - j + i - (k - f(a_5)) = i - j + (j - f(a_6)) = i - f(a_6)$, so $f(b_2) + f(a_6) = i$, a contradiction to $b_2 a_6 \notin E((C_n \odot K_1) \cup 3K_1)$.

Subcase 2.4. $a_1p_1a_2p_2a_3p_3a_4p_4a_5p_5a_6p_6a_7 = a_1ia_2ja_3ka_4ia_5ka_6ja_7$.

Since $a_1 \in V(C_n)$, it must has one neighbor vertex u labelled by $k-f(a_1)$. Then $f(u) = k - f(a_1) = k - (i - f(a_2)) = k - i + (j - f(a_3)) = k - i + j - (k - f(a_4)) = j - i + (i - f(a_5)) = j - f(a_5)$, $f(u) + f(a_5) = j$, a contradiction to $ua_5 \notin E((C_n \odot K_1) \cup 3K_1)$ for $n \ge 7$.

Subcase 2.5. $a_1p_1a_2p_2a_3p_3a_4p_4a_5p_5a_6p_6a_7 = a_1ja_2ia_3ka_4ia_5ka_6ja_7$.

Since $a_1 \in V(C_n)$, it must has one neighbor vertex u labelled by $k-f(a_1)$. Then we get $f(u)=k-f(a_1)=k-(j-f(a_2))=k-j+(i-f(a_3))=k-j+i-(k-f(a_4))=i-j+(j-f(b_4))=i-f(b_4)$, $f(u)+f(b_4)=i$, a contradiction to $ub_4 \notin E((C_n \odot K_1) \cup 3K_1)$ for $n \geq 7$.

So the graph as shown in (i) Figure 2 is a 3-optimum forbidden subgraph of $C_n \odot K_1$ for all positive integer $n \geq 7$ and $\epsilon(C_n \odot K_1) = 3$ is

impossible, then $\epsilon(C_n \odot K_1) \geq 4$ for $n \geq 7$.

We should emphasize again that i, j, and k only general symbols, in the subcases above, we do not give the same labellings repeatedly. For example, the exclusive sum labellings $a_1ja_2ka_3ja_4ia_5ka_6ia_7$ and $a_1ia_2ja_3ia_4ka_5ja_6k$ a_7 are the same if we let i = i, k = j and i = k.

Theorem 2.6.
$$\epsilon(C_n \odot K_1) = \begin{cases} 3, n=3, 6 \\ 4, n=4, 5, 7 \cdots \end{cases}$$

Proof. First we prove that $\epsilon((C_n \odot K_1) \cup 3K_1) = 3$ for n = 3, 6. Let $f_1 = \{12, 13, 14, 16, 17, 20, 29, 30, 33\}$ and $f_2 = \{10, 17, 21, 24, 26, 28, 33, 35, 37, 42, 44, 53, 54, 61, 70\}$, it is easy to prove that f_1 and f_2 are the exclusive sum labellings of $(C_3 \odot K_1) \cup 3K_1$ and $(C_6 \odot K_1) \cup 3K_1$, respectively.

By lemma 2.4 and lemma 2.5, we know that $\epsilon(C_n \odot K_1) = 4$ for $n \ge 7$. Now we prove that $\epsilon(C_n \odot K_1) = 4$ for n = 4, 5. We have known that $\epsilon(C_n \odot K_1) \le 4$ by lemma 2.4 and $\epsilon(C_n \odot K_1) \ge \Delta(C_n \odot K_1) = 3$ for n = 4, 5. Suppose that $\epsilon(C_n \odot K_1) = 3$ for n = 4, 5 and f is the corresponding exclusive sum labellings. Just like in lemma 2.5, let $V((C_n \odot K_1) \cup 3K_1) = A \cup B \cup I$, where $A = \{a_1, a_2, \cdots, a_n\}$ is the vertex set of C_n , $B = \{b_1, b_2, \cdots, b_n\}$ is the set of n copies of K_1 , $I = \{c_1, c_2, c_3\}$ is the isolated vertex set of $3K_1$ and $a_tb_t \in E((C_n \odot K_1) \cup 3K_1))$, for $t = 1, 2, \cdots, n$ and n = 4, 5. Let $f(c_1) = i$, $f(c_2) = j$ and $f(c_3) = k$, then the edges of $(C_n \odot K_1) \cup 3K_1$ can only be labelled as shown in (i) and (ii) of Figure 3 for n = 4 and 5 respectively.

Figure 3: the edges of $(C_n \odot K_1) \cup 3K_1$ be labelled by i, j, k for n = 4, 5

From (i) of Figure 3 we can obtain $f(a_3) + f(a_4) = i$, $f(a_3) + f(b_3) = k$ and $f(a_4) + f(b_4) = j$, then $k + j = (f(a_3) + f(b_3)) + (f(a_4) + f(b_4)) = (f(a_3) + f(a_4)) + (f(b_3) + f(b_4)) = i + (f(b_3) + f(b_4))$. Since $f(a_1) + f(a_2) = i$, $f(a_1) + f(a_4) = k$ and $f(a_2) + f(a_3) = j$, then $2i = (f(a_1) + f(a_2)) + (f(a_3) + f(a_4)) = (f(a_1) + f(a_4)) + (f(a_2) + f(a_3)) = k + j$. So $2i = i + (f(b_3) + f(b_4))$, i.e., $f(b_3) + f(b_4) = i$, a contradiction to $b_3b_4 \notin E((C_4 \odot K_1) \cup 3K_1)$. So $\epsilon(C_4 \odot K_1) = 4$.

From (ii) of Figure 3 we can obtain $f(a_1) + f(a_2) = j$ and $f(a_1) + f(a_5) = i$, then $i + j = (f(a_1) + f(a_2)) + (f(a_1) + f(a_5)) = 2f(a_1) + (f(a_2) + f(a_5))$. By $f(a_4) + f(a_5) = j$ and $f(a_2) + f(a_3) = i$, then $i + j = (f(a_4) + f(a_5)) + (f(a_2) + f(a_3)) = (f(a_3) + f(a_4)) + (f(a_2) + f(a_5))$. So $f(a_3) + f(a_4) = 2f(a_1) = k$ and $k = f(a_1) + f(b_1)$, then $f(a_1) = f(b_1)$, which is impossible. So $\epsilon(C_5 \odot K_1) = 4$.

In order to give the exclusive sum number and the exclusive sum labelling of the subdivision graph $(C_n \odot K_1)'$ of $(C_n \odot K_1)$, we need the following lemma 2.7.

Lemma 2.7. The graph as shown in (i) of figure 4 is 3-optimum summable and the exclusive sum labelling of this graph is unique.

Proof. For the convenience of clarification, the graph as shown in Figure 4(i) is denoted by TG_1 . First we claim that $\epsilon(TG_1) = 3$. In fact, it is easy to prove that $f = \{31, 38, 23, 46, 40, 30, 33, 28, 36, 32, 37, 61, 63, 69\}$ is an exclusive sum labelling of TG_1 , then $\epsilon(TG_1) = 3$.

Figure 4: (i) graph TG_1 and (ii) a labelling of $TG_1[X]$

Just as shows in (i) of Figure 4, Let $V=\{o,a_1,a_2,\cdots,a_{10}\}$ denote the vertex set of TG_1 . Let $f=\{f(o),f(a_1),f(a_2),\cdots,f(a_{10}),i,j,k\}$ is any one of the exclusive sum labellings of $TG_1\cup 3K_1$, where i,j,k are the labels of the three isolated vertexes of $TG_1\cup 3K_1$. We consider the labelling of the subgraph $TG_1[X]$ of TG_1 , where $X=\{o,a_1,a_2,a_3,a_4,a_5,a_6\}$. Let (t_1,t_2,t_3) denotes the numbers of the edges of $TG_1[X]$ that be labelled by i,j and k, respectively. Let $a_1p_1a_2p_2o$ $\begin{cases} p_3a_4p_4a_3\\ p_5a_5p_6a_6 \end{cases}$ denotes the labels of the vertexes of $TG_1[X]$ be labelled meets the following: $f(a_1)+f(a_2)=p_1$, $f(a_2)+f(o)=p_2$, $f(o)+f(a_4)=p_3$, $f(a_4)+f(a_3)=p_4$, $f(o)+f(a_5)=p_5$ and $f(a_5)+f(a_6)=p_6$, where $p_t\in\{i,j,k\},t=1,2,3$. We illustrate the example of a_1ja_2ko $\begin{cases} ja_4ia_3\\ ia_5ka_6 \end{cases}$ in (ii) of Figure 4.

Similar to lemma 2.5, i, j, and k are only three symbols, so $(t_1, t_2, t_3) = (3, 2, 1)$ or (2, 2, 2). Obviously, if we prove that the exclusive sum labelling of $TG_1[X]$ is unique, then TG_1 is also unique. Now we prove the uniqueness

of the exclusive sum labelling of $TG_1[X]$ according to the following cases.

Case 1. $(t_1, t_2, t_3) = (3, 2, 1)$.

There are two subcases for the labelling form of $TG_1[X]$ in this case.

Subcase 1.1.
$$a_1p_1a_2p_2o$$
 $\begin{cases} p_3a_4p_4a_3 \\ p_5a_5p_6a_6 \end{cases} = a_1ia_2ko$ $\begin{cases} ja_4ia_3 \\ ia_5ja_6 \end{cases}$.

In this case, one of the edges a_3a_7 and a_3a_8 must be labelled by k. Suppose a_3a_8 be labelled by k, then $f(a_8) = k - f(a_3) = k - (i - f(a_4)) = k - i + (j - f(o)) = k - i + j - (k - f(a_2)) = j - i + (i - f(a_1)) = j - f(a_1)$, so $f(a_8) + f(a_1) = j$. Then $a_8a_1 \in E(TG_1)$, which is impossible.

Subcase 1.2.
$$a_1p_1a_2p_2o\left\{\begin{array}{l}p_3a_4p_4a_3\\p_5a_5p_6a_6\end{array}=a_1ia_2jo\left\{\begin{array}{l}ka_4ia_3\\ia_5ja_6\end{array}\right.$$

In this case, one of the edges a_3a_7 and a_3a_8 must be labelled by j .

In this case, one of the edges a_3a_7 and a_3a_8 must be labelled by j. Suppose a_3a_8 be labelled by j, then $f(a_8) = j - f(a_3) = j - (i - f(a_4)) = j - i + (k - f(o)) = j - i + k - (j - f(a_2)) = k - i + (i - f(a_1) = k - f(a_1),$ so $f(a_8) + f(a_1) = k$. Then $a_8a_1 \in E(TG_1)$, which is impossible.

Case 2. $(t_1, t_2, t_3) = (2, 2, 2)$.

In this case, there are also two subcases for the labelling form of $TG_1[X]$.

Subcase 2.1.
$$a_1p_1a_2p_2o\begin{cases} p_3a_4p_4a_3 \\ p_5a_5p_6a_6 \end{cases} = a_1ka_2jo\begin{cases} ia_4ka_3 \\ ja_5ia_6 \end{cases}$$

In this case, one of the edges a_3a_7 and a_3a_8 must be labelled by j. Suppose a_3a_8 be labelled by j, then $f(a_8) = j - f(a_3) = j - (k - f(a_4)) = j - k + (i - f(o)) = j - k + i - (j - f(a_2)) = i - k + (k - f(a_1)) = i - f(a_1)$, so $f(a_8) + f(a_1) = i$. Then $a_8a_1 \in E(TG_1)$, which is impossible.

Subcase 2.2.
$$a_1p_1a_2p_2o$$
 $\begin{cases} p_3a_4p_4a_3 \\ p_5a_5p_6a_6 \end{cases} = a_1ka_2jo$ $\begin{cases} ka_4ia_3 \\ ia_5ja_6 \end{cases}$.

Let i = 61, j = 63, k = 69 and f(o) = 31, then an exclusive sum labelling of $TG_1[X]$ can be given by the form of this subcase, the labelling f just as given at beginning of the proof of this *lemma*.

So the exclusive sum labelling of $TG_1[X]$ as given in Subcase 2.2 is the only one. Then the exclusive sum labelling of TG_1 is unique.

Theorem 2.8.
$$\epsilon((C_n \odot K_1)') = 4$$
, for $n \ge 3$.

Proof. For all $n \geq 3$, let $V((C_n \odot K_1)') = A \cup B \cup C \cup D$, where $A = \{a_1, a_2, \dots, a_n\}$, $B = \{b_1, b_2, \dots, b_n\}$, $C = \{c_1, c_2, \dots, c_n\}$ and $D = \{d_1, d_2, \dots, d_n\}$. $A \cup C$ is the vertex set of the subgraph $(C_n)'$ of $(C_n \odot K_1)'$ and $(C_n)' = a_1c_1a_2c_2 \cdots a_nc_na_1$. $A \cup B \cup D$ is the vertex set of the n subgraphs P_3 (not contained in $(C_n)'$) of $(C_n \odot K_1)'$ and $P_3 = a_id_ib_i$ for $i = 1, 2, \dots, n$. As an example graph $(C_9 \odot K_1)'$ is shown in Figure 5.

First, we will prove $\epsilon((C_n \odot K_1)') \ge 4$ for $n \ge 3$.

Suppose to the contrary that $\epsilon((C_n \odot K_1)') = 3$. Let $I = \{p_1, p_2, p_3\}$ is the three isolated vertexes of $(C_n \odot K_1)' \cup 3K_1$. Let $f = f(A) \cup f(B) \cup f(C) \cup f(D) \cup f(I)$ is an exclusive sum labelling of $(C_n \odot K_1)' \cup 3K_1$ with $f(p_1) = i$, $f(p_2) = j$ and $f(p_3) = k$. By lemma 2.7 we know the exclusive sum labelling of $(C_n \odot K_1)' \cup 3K_1$ can only be the following two cases.

Figure 5: the graph $(C_9 \odot K_1)'$

Case 1. $n = 2p, p \ge 2$.

Now we consider the labelling of the subgraph C'_n of $(C_n \odot K_1)' \cup 3K_1$. Without lost generality, let the edges a_1c_1 and c_1a_2 be labelled by i and j respectively, then by $lemma\ 2.7$, the other edges $a_2c_2, c_2a_3, a_3c_3, c_3a_4, a_4c_4, c_4a_5, \cdots, a_{2p-1}\ c_{2p-1}, c_{2p-1}a_{2p}, a_{2p}c_{2p}, c_{2p}a_1$ of C'_n must be labelled by $i, k, i, j, i, k, \cdots, i, j, i, k$, respectively. Then $f(a_t) + f(c_t) = i$ for $t = 1, 2, 3, \cdots, 2p$, $f(c_{2t-1}) + f(a_{2t}) = j$ for $t = 1, 2, 3, \cdots, p$, $f(c_{2t}) + f(a_{2t+1}) = k$ for $t = 1, 2, 3, \cdots, p-1$ and $f(c_{2p}) + f(a_1) = k$. So, $\sum_{t=1}^{2p} (f(a_t) + f(c_t)) = 2pi$ and $\sum_{t=1}^{p} (f(c_{2t-1}) + f(a_{2t})) + \sum_{t=1}^{p} (f(c_{2t}) + f(a_{2t+1})) + (f(c_{2p}) + f(a_1)) = \sum_{t=1}^{2p} (f(a_t) + f(c_t)) = p(i+j)$, then 2i = j + k. Further more, $f(c_2) = i - f(a_2) = i - (j - f(c_1)) = i - j - (i - f(a_1)) = 2i - j - (k - f(c_{2p})) = 2i - j - k + f(c_{2p})$, then $f(c_2) = f(c_{2p})$, which is impossible.

Case 2. $n = 2p + 1, p \ge 1$.

Suppose the edges a_1c_1 and c_1a_2 of $(C_n)'$ are labelled by i and j respectively, then by lemma2.7 the other edges a_2c_2 , c_2a_3 , a_3c_3 , c_3a_4 , a_4c_4 , c_4a_5 , \cdots , $a_{2p}c_{2p}$, $c_{2p}a_{2p+1}$, $a_{2p+1}c_{2p+1}$, $c_{2p+1}a_1$ of $(C_n)'$ can only be labelled by $i, k, i, j, i, k, \cdots, i, k, i, j$, respectively. Obviously, $f(a_1) + f(d_1) = k$. By the possibility of the label of the edge d_1b_1 , there are two subcases in this case.

Subcase 2.1. $f(d_1) + f(b_1) = i$.

In this subcase $f(b_1) = i - f(d_1) = i - (k - f(a_1)) = i - k + (j - f(c_{2p+1})) = i - k + j - (i - f(a_{2p+1})) = j - k + (k - f(c_{2p})) = j - f(c_{2p})$, then $f(b_1) + f(c_{2p}) = j$, which is impossible.

Subcase 2.2. $f(d_1) + f(b_1) = j$.

In this subcase, $f(b_1) = j - f(d_1) = j - (k - f(a_1)) = j - k + (i - f(c_1)) = j - k + i - (j - f(a_2)) = i - k + (k - f(d_2)) = i - f(d_2)$, then $f(b_1) + f(d_2) = i$, which is impossible.

So we know that $\epsilon((C_n \odot K_1)') \geq 4$ for $n \geq 3$.

Now we prove that $\epsilon((C_n \odot K_1)') \leq 4$ for $n \geq 3$. This just need to give an exclusive sum labelling for $((C_n \odot K_1)') \cup 4K_1$.

Let f be a labelling satisfied the following:

$$f(a_t) = 10n + 4t - 3, t = 1, 2, 3, \dots, n;$$

$$f(c_t) = 10n - 4t - 7, t = 1, 2, 3, \dots, n;$$

$$f(b_1) = 10n + 7$$
 and $f(b_t) = 8n - 4t + 11, t = 2, 3, \dots, n$;

$$f(d_1) = 30n + 9$$
 and $f(d_t) = 32n + 4t - 5, t = 2, 3, \dots, n$;

 $f(p_1) = 20n + 4$, $f(p_2) = 20n + 8$, $f(p_3) = 18n + 8$ and $f(p_4) = 40n + 16$, where p_t is the isolated vertexes of $((C_n \odot K_1)') \cup 4K_1$, t = 1, 2, 3, 4.

It is easy to prove that $f = \{f(a_t), f(b_t), f(c_t), f(d_t), f(p_l) : t = 1, 2, \cdots, n, l = 1, 2, 3, 4\}$ is the exclusive sum number of $((C_n \odot K_1)') \cup 4K_1$. Here we omit to prove the correctness of the labelling to save space.

From the above discussion, $\epsilon((C_n \odot K_1)') = 4$ for $n \geq 3$.

3 About the exclusive sum numbers of Trees

In this section we will show kinds of trees that are not Δ -optimum summable, and give a nontrivial upper bound for the exclusive sum number of trees.

Let TG_2 and TG_3 denote the graph shown in (i) and (ii) of Figure 6 respectively.

Figure 6: (i) TG_2 and (ii) TG_3

Theorem 3.1. TG_2 and TG_3 are 3-optimum forbidden subgraphs of trees T with $\Delta(T) = 3$. Then any tree T with $\Delta(T) = 3$ and containing TG_2 or

 TG_3 is not Δ -optimum summable.

Proof. Obviously, TG_2 and TG_3 both contain TG_1 as subgraph and $\Delta(TG_2) = \Delta(TG_3) = 3$.

Suppose TG_2 and TG_3 are both Δ -optimum summable. Since the sum labelling of graph TG_1 is unique by *lemma* 2.7, the exclusive sum labelling of TG_2 and TG_3 can easily be given.

First we claim that $\epsilon(TG_2) = 3$ is impossible. By lemma 2.7, let the edge a_6a_9 be labelled by j, so $f(a_{11}) = k - f(a_4) = k - (j - f(o)) = k - j + (i - f(a_5)) = k - j + i - (k - f(a_6)) = i - j + (j - f(a_9)) = i - f(a_9)$, then $f(a_{11}) + f(a_9) = i$, which is impossible.

By similar argument, we can also prove that $\epsilon(TG_3) = 3$ is impossible. In fact, suppose the edge a_7a_3 and a_2a_{11} be labelled by k and i respectively, then $f(a_7) + f(a_{11}) = j$, a contradiction to $a_7a_{11} \notin E(TG_3 \cup 3K_1)$.

The exclusive sum numbers of TG_2 and TG_3 both are 4. In fact, it is easy to prove that $S_1 = \{413, 468, 383, 438, 523, 394, 487, 457, 419, 542, 462, 370, 389, 832, 851, 881, 961\}$ and $S_2 = \{364, 407, 333, 440, 376, 356, 415, 384, 368, 403, 329, 337, 732, 740, 771, 847\}$ are exclusive sum labellings of $TG_2 \cup 4K_1$ and $TG_3 \cup 4K_1$ respectively.

In order to give a generalization of the above theory, we consider the exclusive sum number and the exclusive sum labelling of the tree as shown in (i) of figure 7 (denoted by TG_4), where $D = \Delta = \Delta(TG_4)$ and $\Delta \geq 3$.

Figure 7: (i) TG_4 and (ii) TG_5 .

Lemma 3.2. TG_4 is Δ -optimum summable and the exclusive sum labelling of this graph TG_4 is unique.

Proof. Obviously, TG_4 is a caterpillar, so it is Δ -optimum summable by corollary 2.3. By similar argument of lemma 2.7, we can prove that the exclusive sum labelling of TG_4 is unique. Let $i_1, i_2, \dots, i_{\Delta}$ be the isolated vertexes of $TG_4 \cup \Delta K_1$. Let f is any exclusive sum labelling for $TG_4 \cup \Delta K_1$. Without loss of generality, suppose the edge $v_t v_{\Delta}$ be labelled by $f(i_t)$ for $t = 1, 2, \dots, \Delta - 1$, vv_{Δ} be labelled by $f(i_{\Delta})$ and vu be labelled by some $f(i_l), l \in \{1, 2, \dots, \Delta - 1\}$. We claim that the edge uv_{Δ} must be labelled by $f(i_{\Delta})$. Suppose not, uv_{Δ} be labelled by

some $f(i_k), k \in \{1, 2, \dots, \Delta - 1\}$. Then there must exist an edge $u_t u_\Delta$ be labelled by $f(i_\Delta), t \in \{1, 2, \dots, \Delta - 1\}$. So $f(v_k) = f(i_k) - f(v_\Delta) = f(i_k) - (f(i_\Delta) - f(v)) = f(i_k) - f(i_\Delta) + (f(i_l) - f(u)) = f(i_k) - f(i_\Delta) + f(i_l) - (f(i_k) - f(u_\Delta)) = f(i_l) - f(i_\Delta) + (f(i_\Delta) - f(u_l)) = f(i_l) - f(u_l)$, then $v_k u_t \in E(TG_4 \cup \Delta K_1)$, which is impossible. So the labelling of TG_4 is unique.

By the proof of lenmma 3.2, the following corollary about TG_5 (as shown in (ii) of Figure 7, where $s \le D = \Delta(TG_5)$) can be obtained.

Corollary 3.3. The edges $u_s u_t$ $(t = 1, 2, \dots, s - 1)$ and $v_{\Delta} v \in E(TG_5)$ can not be labelled by the same element of any exclusive sum labelling of TG_5 .

Theorem 3.4. For any integer $\Delta \geq 3$, there exist trees T are not Δ -optimum summable.

Figure 8: (i) TG_6 , (ii) TG_7 , (iii) TG_8 and (iv) TG_9

Proof. Obviously,if there exist Δ -optimum forbidden subgraphs of trees for any $\Delta \geq 3$, then this theorem can be proved to be right. TG_t (as shown in Figure 8, where t=6,7,8,9) will be proved to be Δ -optimum forbidden subgraph of the trees T with $\Delta = \Delta(T)$. Suppose to the contrary, TG_6, TG_7, TG_8 and TG_9 all are Δ -optimum summable. Let f is the exclusive sum labelling of $TG_t \cup \Delta K_1$ (t=6,7,8,9) and the vertex set of ΔK_1 is $\{i_1,i_2,\cdots,i_{\Delta}\}$. To the convenience of the following arguments, suppose v_tv_{Δ} be labelled by one $f(i_t)$ for $t \in \{1,2,\cdots,\Delta-1\}$.

Since TG_6 and TG_7 both contain TG_4 , by lemma 3.2 we can give an exclusive sum labelling for $TG_t \cup \Delta K_1$, where t = 6, 7.

First we consider the exclusive sum labelling of $TG_6 \cup \Delta K_1$. Suppose $TG_7 \cup \Delta K_1 - \{w_1, w_2, \cdots, w_{\Delta}, w\}$ be labelled just as the same in lemma 3.2. We know that the edge ww_{Δ} must be labelled by $f(i_{\Delta})$, suppose the edge wv be labelled by $f(i_p), p \in \{1, 2, \cdots, \Delta - 1\}$. Then $f(w_{\Delta}) = f(i_{\Delta}) - f(w) = f(i_{\Delta}) - (f(i_p) - f(v)) = f(i_{\Delta}) - f(i_p) + (f(i_l) - f(u)) = f(i_l) - f(i_p) + f(i_l) - (f(i_{\Delta}) - f(u_{\Delta})) = f(i_l) - f(i_p) + (f(i_p) - f(u_p)) = f(i_l) - f(u_p)$, so $w_{\Delta}u_p \in E(TG_6 \cup \Delta K_1)$, a contradiction. So TG_6 is a Δ -optimum forbidden subgraph of trees. Now we consider the exclusive sum labelling of $TG_7 \cup \Delta K_1$. Suppose $TG_7 \cup \Delta K_1 - \{w_1, w_2, \cdots, w_{\Delta}\}$ be labelled just as the same in lemma 3.2. Then the edge vw_{Δ} must be labelled by some $f(i_l), t \in \{1, 2, \cdots, \Delta - 1\}$, and suppose the edge w_k be labelled by $f(i_{\Delta})$, then by similar argument in lemma 3.2, we have a contradiction to that w_k is adjacent with the vertex u_k . Then TG_6 and TG_7 are both not Δ -optimum summable.

Now we prove that TG_8 is a Δ -optimum forbidden subgraph. Since every edge $x_s^t x_{\Delta-1}^t(s,t=1,2,\cdots,\Delta-2)$ and uu_{Δ} can not be labelled by $f(i_{\Delta})$ by the corollary 3.3, suppose the edge uu_{Δ} be labelled by $f(i_k)$, where $k < \Delta$, and there must exist some $s,t \in \{1,2,\cdots,\Delta-2\}$ such that $x_s^t x_{\Delta-1}^t$ is labelled by $f(i_k)$. Suppose the edges $x_{\Delta-1}^t x$ and $u_{\Delta-1}u_r$ both be labelled by $f(i_l)$ and xu be labelled by $f(i_p)$, then $f(x_s^t) = f(i_k) - f(x_{\Delta-1}^t) = f(i_k) - (f(i_l) - f(x)) = f(i_k) - f(i_l) + (f(i_p) - f(u)) = f(i_k) - f(i_l) + f(i_p) - (f(i_k) - f(u_{\Delta-1})) = f(i_p) - f(i_l) + (f(i_l) - f(u_r)) = f(i_p) - f(u_r)$, i.e., $f(x_s^t) + f(u_r) = f(i_p)$, a contradiction to that $x_s^t u_r \notin E(TG_8 \cup \Delta K_1)$.

Finally we prove that TG_9 is a Δ -optimum forbidden subgraph, too. Suppose the edge vx is labelled by $f(i_r)$. By $lemma~3.2~xu_{\Delta}$ must be labelled by $f(i_{\Delta})$ and by corollary~3.3 no edges of $x_s^t x_{\Delta-1}^t (s,t=1,2,\cdots,\Delta-2)$ be labelled by $f(i_{\Delta})$, so there must exist an edge $x_s^t x_{\Delta-1}^t$ be labelled by the same $f(i_k)$ with the edge $vw_{\Delta-1}$ and must exist edges $x_{\Delta-1}^t x$ and $w_p w_{\Delta-1}$ be labelled by the same $f(i_l)$, then $f(w_p) = f(i_l) - f(w_{\Delta-1}) = f(i_l) - (f(i_k) - f(v)) = f(i_l) - f(i_k) + (f(i_r) - f(x)) = f(i_l) - f(i_k) + f(i_r) - (f(i_l) - f(x_{\Delta-1}^t)) = f(i_r) - f(i_k) + (f(i_k) - f(x_s^t)) = f(i_r) - f(x_s^t)$, a contradiction to that $x_s^t w_p \notin E(TG_9 \cup \Delta K_1)$.

Since shrubs are Δ -optimum summable [4], by lemma 2.1 and the argument above we know that $\epsilon(TG_t) = \Delta + 1$ for t = 6, 7, 8, 9.

In this final section, we shall consider the exclusive sum number of a special kind of tree. Let T_r^{Δ} denote a kind of tree if it meets the following conditions:

- a. All the vertexes of the tree has the same degree Δ except the leaves;
- b. Its center exactly just be one vertex u of this tree;
- c. d(u, v) = r, where v is any leaf vertex of the tree and r is the radius

of this tree.

As an example Figure 9 shows the tree T_4^3 . The neighbor vertexes of the center u of T_r^{Δ} are denoted by a_i^1 , $i=1,2,\cdots,\Delta$, the neighbor vertexes of a_i^1 (except the center u) are denoted by a_{ij}^2 , $j=1,2,\cdots,\Delta-1$, and the neighbor vertexes of a_{ij}^2 (except the vertex a_i^1) are denoted by a_{ijk}^3 , $k=1,2,\cdots,\Delta-1$, and so on.

Obviously, any tree with maximum degree Δ and the radius no more than r is a subgraph of T_r^{Δ} . In the next theory we will give a bound as shown in the following *Theorem* 3.5. for the exclusive sum number of the graph T_r^{Δ} by theorem 2.1, so we have a general upper bound for the exclusive sum number for trees.

Figure 9: the tree T_4^3

Theorem 3.5. For any tree T, $\Delta \leq \epsilon(T) \leq (r-1)\Delta - (r-2)$, where r is the radius of T.

Proof. Only need to prove the theory holds for T_r^{Δ} . In fact, we can get T_r^{Δ} from T_2^{Δ} by continuous using theorem2.1 for $(r-2)(\Delta-1)$ times and every time only add new edges at the leaves of the tree. Since the tree T_2^{Δ} is a shrub, it is Δ -optimum summable [4].

The following theorem shows that the exclusive sum number of a tree T can be very bigger than $\Delta(T) + 1$.

Theorem 3.6. For any
$$r, \Delta \geq 3$$
, $\epsilon(T_r^{\Delta}) \geq \lceil \frac{1}{2}(\Delta - 1) + \frac{1}{2}\sqrt{(\Delta - 1)(5\Delta - 1)} \rceil$.

Proof. Assume the exclusive sum number of T_r^{Δ} is ϵ . Let f is an exclusive sum labelling of $T_r^{\Delta} \bigcup \epsilon K_1$ and $\{i_1,i_2,\cdots,i_\epsilon\}$ is the vertex set of ϵK_1 . Since $\epsilon(T_r^{\Delta}) = \epsilon$, at least $\lceil \frac{\Delta(\Delta-1)}{\epsilon} \rceil$ edges of $\{a_i^1a_{ij}^2: i=1,2,\cdots,\Delta,j=1,2,\cdots,\Delta-1\}$ be labelled by some one of $f(i_k) \in \{f(i_1),f(i_2),\cdots,f(i_\epsilon)\}$. Suppose the edge $a_i^1a_{ij}^2$ be labelled by $f(i_k)$, by lemma 3.2 the edges $\{a_{ij}^2a_{ijk}^3: k=1,2,\cdots,\Delta-1\}$ only can be labelled by $(\epsilon-1)-(\lceil \frac{\Delta(\Delta-1)}{\epsilon} \rceil-1)$ labels of $\{f(i_1),f(i_2),\cdots,f(i_\epsilon)\}$, then $(\epsilon-1)-(\lceil \frac{\Delta(\Delta-1)}{\epsilon} \rceil-1) \geq \Delta-1$, i.e., $\epsilon \geq \lceil \frac{1}{2}(\Delta-1) + \frac{1}{2}\sqrt{(\Delta-1)(5\Delta-1)}\rceil$.

References

- [1] F. Harary, Sum graphs and difference graphs, Congressus Numerantium 72 (1990) 101-108.
- [2] M. Miller, D. Patel, J. Ryan, K. A. Sugeng, Slamin, M. Tuga, Exclusive sum labeling of graphs. J. Combin. Math. Combin. Comput. 55 (2005) 137–148.
- [3] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
- [4] M. Tuga, M. Miller, J. Ryan, Z. Ryjáček, Exclusive sum labeling of trees. J. Combin. Math. Combin. Comput. 55 (2005) 109-121.
- [5] Singh, G. Suresh, G. Santhosh, A note on integral sum crowns. Ars Combin. 66 (2003) 65-77.
- [6] M. Tuga, M. Miller, Δ-optimum exclusive sum labeling of certain graphs with radius one. in IJCCGGT 2003, Lecture Notes in Computer Science 3330(J. Akiyama et al.(Eds.)) (2005) 216–225.
- [7] M. N. Ellingham, Sum graphs from trees, Ars Combin. 35 (1993) 335–349.
- [8] Hartsfield, W. F. Smyth, A family of sparse graphs of large sum number, Discrete Math. 141 (1995) 163-171.
- [9] W. Dou, J. Gao, Some results on mod (integral) sum graphs, Ars Combin. 82 (2007) 3-31.
- [10] H. Wang, J. Gao, The sum numbers and the integral sum numbers of $\overline{C_n}$ and $\overline{W_n}$, Ars Combin. 96 (2010) 479-488.
- [11] M. Miller, J. Ryan, F. Smyth, The sum number of the cocktail party graph, Bull. Inst. Combin. Appl. 22 (1998) 79-90.
- [12] H. Nagamochi, M. Miller, Slamin, Bounds on the number of isolates in sum graph labeling, Discrete Math. 240 (2001) 175-185.
- [13] D. Bergstrand, F. Harary, K. Hodges, G. Jennings, L. Kuklinski, J. Wiener, The sum numbering of a complete graph, Bull. Malaysian Math. Soc. 12 (1989) 25-28.
- [14] M. Sutton, M. Miller, On the sum number of wheels, Discrete Math. 232 (2001) 185-188.
- [15] J. Ryan, Exclusive sum labeling of graphs: a survey, AKCE Int. J. Graphs Comb. 6 (2009)no. 1, 113-126.