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Abstract

The notions of sum labelling and sum number of graphs were
introduced by F. Harary {1] in 1990. A mapping f is called a sum
labelling of a graph G(V, E) if it is an injection from V to a set of
positive integers such that uv € E if and only if there exists a vertex
w € V such that f(w) = f(z) + f(y). In this case, w is called a
working vertez. If f is a sum labelling of GUr K for some nonneg-
ative integer r and G contains no working vertex, f is defined as an
exclusive sum labelling of the graph G by M. Miller et al. in paper
[2]. The least possible number r of such isolated vertices is called
the ezclusive sum number of G, denoted by ¢(G). If ¢(G) = A(G),
the labelling is called A-optimum exclusive sum labelling and the
graph is said to be A-optimum summable, where A = A(G) de-
notes the maximum degree of vertices in G. By using the notion
of A-optimum forbidden subgraph of a graph the exclusive sum
numbers of crown Cr ® K1 and (Ca ® K1) are given in this paper.
Some A-optimum forbidden subgraphs of trees are studied and we
prove that for any integer A > 3 there exist trees not A—optimum
summable, and a nontrivial upper bound of the exclusive sum num-
bers of trees is also given in this paper.
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1 Introduction

We follow in general the graph-theoretic notations and terminologies of
[3]. All graphs we consider in this paper are finite, simple and undirected
graphs.

A mapping f is called a sum labelling of a graph G(V, E) if it is an
injection from V to a set of positive integers, such that uv € E if and only
if there exists a vertex w € V such that f(w) = f(z)+ f(y). In this case, w
is called a working vertexz and the edge uv is said to be labelled by f(w).
A graph G is said to be a sum graph if it has a sum labelling f, and f is
said to give a sum labelling for G. In general, a graph G will require some
isolated vertices to be a sum graph. The sum number ¢(G) is the smallest
nonnegative integer m such that G UmKj, the union of G and m isolated
vertices, is a sum graph. These notions were introduced by F. Harary [1]
in 1990. For more information about sum graphs see [7]-[12].

M. Miller, D. Patel, J. Ryan, K. Sugeng, Slamin and M. Tuga [2] defined
f as an exclusive sum labelling of a graph G if it is a sum labelling
of G U rK; for some nonnegative integer r, and G contains no working
vertex. The least possible number r of such isolated vertices is called the
exclusive sum number of G, denoted by €(G). Obviously, (G) > A(G)
and ¢(G) > o(G), where A(G) denotes the maximum degree of vertices
in G. If ¢(G) = A(G), the labelling f is called A-optimum exclusive
sum labelling, and the graph is said to be A-optimum summable. The
exclusive sum number of several families of graphs were determined in paper
[2): e(Kpq) =p+q—1,forp,q > 2; €(P,) =2, forn > 2 and ¢(C,) =3, for
n 2 3. In paper [4], Caterpillars and Shrubs were shown to be A-optimum
summable. Some A-optimum exclusive sum labelling of certain graphs
with radius one were given in paper [6]. For more information about sum
graphs see [13]-[15].

Some useful notions are presented in this paper. Suppose f and g are
both exclusive sum labelling of graph GUeK; and uv is any an edge of G, if
there exist a one-one mapping h from f to g such that f(u)+ f(v)=i€ f
if and only if g(u) + g(v) = h(i) € g, then the labelling f and g are said
to be the same. If any two exclusive sum labellings of G U eK; are the
same, then the exclusive sum labellings of the graph is said to be unique
and G be labelled uniquely. Let G be a graph which has no A-optimum
exclusive sum labellings, obviously, G must contains a subgraph H not be
A-optimum summable, then H is called a A-optimum forbidden subgraph
of G, where A = A(H) = A(G). We should emphasize the reason that
H can not be A-optimum sum labelled always because the structure of G.
So when we mention H is a A-optimum forbidden subgraph, it must be
relative to some one supergraph G.

Let G, and G, are graphs and G; has n vertices, then G; © G is the
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graph obtained by taking one copy of G; and n copies of G2 and joining the
ith vertex of G; with an edge to every vertex in the i** copy of G2. Graph
C',1 ® K also be called crown [5], where n > 3. Given a graph G, the graph
G’ is called the subdivision of G if every edge e € E(G) is substituted by
a path P [3].

Wlth the help of 3-optimum forbidden subgraph of C,, ® K; and (C, ®
K1)', the exclusive ssum numbers and the exclusive sum labellings of C,, ®
K, and (Co, O K 1) are given in this paper. Some A-optimum forbidden
subgraphs of trees are studied and we prove that for any integer A > 3
there exist trees not A—optimum summable, and an upper bound of the
exclusive sum numbers of trees is also given in this paper.

2 The exclusive sum numbers of C, ® K; and
(Cn O K 1),

First we give the following lemma about the exclusive sum number of G ®
K.

Lemma 2.1. Suppose €(G) =¢, then (GO K;) <e+1.

Proof. Let f be an exclusive sum labelling of GUeK;, V(G) = {uy,ug, -+,
un} and V(eK:) = {p1,p2, - ,Pe}. In order to give an exclusive sum
labelling of (G ® K1) U (e + 1)K, let V(nK;) = {v1,v2, -+ ,un} be the
vertex set of the n copies of K and add a vertex pey; to V(eKy) to form
the vertex set of (e + 1) K. Let f (v) f(v) for ve V(GUeKy), f (%) =
k— f(u) fori = 1,2,-- ,n and f (Pes1) = k, wherek— dtand t =
maz{f(v) : v € V(G UeK;)}. We claim that f is an exclusive sum
labelling of (G ® K;) U (e + 1)K;. Obviously, we require the following
(1),(2),(3), (4) to prove the clalm
(1)For any u,v € V(GUeK)), f (u) + f (v) € {f (v) : v € V(nK1)} U{K}.

Since f'(u) + f (v) < 2t < 'mm({f (w) : w € V(nK1)} U {k}) for any
u,v € V(GUeKy), then f'(u) + £ (v) ¢ {f (v) : v € V(nK1)} U {k}.
(2)For any u € V(G UeK;) and any v; € V(nK)), if u # u; then f (v;) +
fu) ¢ {f(w):weV({(GoK)U(e+ 1)K}

Let v # u;, then f (w) + O] > 2t for any u € V(G UeK)) and any
% € VK. If f(w)+ fu)e{f(w):we V((GoKyu (e—l— 1)K1)},
there must exist some v; € V(nKl) such that f ('v,) +f(w) = ('u,) or
f'(vi) + f'(u) = k. Suppose f'(v;) + f'(u) = f (v;), then k — f (us) +
f'(u) k— f'(u;), so f(u) + f(u;) = f(u.), which is impossible. Suppose

f () + f'(u) = k, then f(u) = k— f (v) = (u.), which is impossible.

(3)For any vi,v; € V(GO K1), f (i) +f (v) ¢ {f (w) : w € V((GOK1)U
(e+1)Ky)}.
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Since for any v;,v; € V(GOK1), f (vi)+f (v;) > 4t > k = maz{f (w) :
weV(@EOK)U(e+ 1)K}, f (w)+f (v;) ¢ {f (w) :we V(GO K1)U
(e+1)K1)}

(4)For any v € V(GO K) U (e + K1), f () +k ¢ {f (w) :

V(G K1)U (e +1)K1)}.

For any u € V((G © K1) U (¢ + 1)K)), f (v)+k>k= maz{f (w) : w €
V(GO K1) U (e+1)K1)} 50 f'(u) +k ¢ {f (w):we V(GO K1) U(e +
1)K1)}.

It is easy to get the following corollary from the proof of lemma 2.1.

Corollary 2.2. If G is A-optimum summable, G® K is also A-optimum

summable.
Let G be a subgraph of H and H be a subgraph of G® K, then lemma

2.1 holds for H, that is, e(H) < ¢(G) + 1. Obviously, Corollary 2.2 holds
for H if A(H) = A(G), i.e., H is A-optimum summable. An example of
Graph Cjo ® K and one of its subgraph H (containing Cyo as subgraph)
are shown in (¢) and (é%) of Figure 1 respectively.

® )

Figure 1: (4) graph G = C10 ® K and (i) a subgraph H of Ci0 ® K1

Since a caterpillar H is a subgraph of the graph G got from a path
by continuous using lemma 2.1 for A — 2 times and path is 2-optimum
summable [2], the following corollary 2.3 [4] can be proved to be right,
where A = A(H).

Corollary 2.3. Caterpillar is A-optimum summable.
Paper [2] showed that €(Cy) = 3. By this result and Lemma 2.1, the

following lemma 2.4 can be proved to be right easily.

Lemma 2.4. ¢(C, © K1) < 4 for all positive integers n > 3.
In order to get our main results, now we need to prove lemma 2.5.

Lemma 2.5. The graph as shown in (i) of Figure 2 is a 3-optimum
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forbidden subgraph of C, ® K1 forn 2 7, then (C, ® K1) > 4 forn 2 7.

Proof. Suppose €(C, ® K;) = 3, for all integer n > 7. Let V(C, ®
K;)U3K;) = AUBUI, where, A = {a1,a2,---,a,} is the vertex set
of Cp, B = {b1,ba,- ,bn} is the set of n copies of Ky, I = {e1,c2,c3}
is the isolated vertex set of 3K; and a:b; € E((Cr ® K1) U 3K))), for
t=12,---,n.

Let f = f(A)U f(B) U f(I) be the exclusive sum labelling of (C, ®
K,) U3K];. Since ¢(C,) = 3, there must exists a path P as the subgraph
of C,, such that the edges of P; are exactly labelled by f(c1) =1, f(c2) = J
and f(cz) = k, i.e., the number of the edges of P; be labelled by f(c:)
is more than 0, where t = 1,2,3. Without lost generality, set P; =
ajasagasasasay. Let (t1,%2,t3) denote the number that the edges of P; be
labelled by ¢, j, k respectively. Let a1p1asp2a3p3aspsaspsaepear denote the
edges a)ap,aza3,asas,asas, asas, agar be labelled by pi,p2,ps,p4,ps, e,
respectively, where p; € {¢,7,k},t =1,2,.--,6. Asan example a)iazjazka,
iasjagiay is illustrated in (i%) of Figure 2. Since i, j and k are only symbols
for three numbers, (t1,%2,t3) = (3,2,1) or (2,2,2). Then the labelling of
P; perhaps are some cases as shown in the following discussions and all
these cases are proved to be impossible.

] | I | l i J k i J 1
*r———0———0——0—9

L] Gq 9 a, ay a, a

® ()

Figure 2: (i) a A—optimum forbidden subgraph of C, ® K and (i¢) an exclusive
sum labelling of Py

Case 1. (t1,t2,t3) = (3,2,1). In this case, there are five subcases of the
exclusive sum labelling of P;.

Subcase 1.1. a1p1a2p2a3p3aspsaspsaspear =ariazjaszkasiasjasiar.

We obtain that f(a1) = i— f(a2) = i— (- f(as)) = i—j+(k— f(ad)) =
i—j+k—(i—f(as)) = k—j+(j— f(as)) = k— f(as), so f(a1)+ f(as) = k,
a contradiction to ajag ¢ E((Cn ® K1) U3KH).

Subcase 1.2. a1p1a2p203p3a4paaspsaspear =ayjaziazkasiasjasiar.

In this subcase, f(bs) = j—f(as) = j—(k—f(a4)) = j—k+(i—f(a5)) =
Jj—k+i—(j—f(ag)) = i—k+ (k- f(bs)) = i— f(bs), so f(b1) + f(be) =1,
a contradiction to by1bg ¢ E((Cr ® K1) U3K)).

Subcase 1.3. a1p;azpra3psaspsaspsaspear =ajiazkasjagiasjagiar.
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Since a; € V(C,), it must has a neighbor vertex u € V(C,0K}) labelled
by 7— f(a1). Then f(u) = j— f(a1) = j— (i~ f(a2)) = j—i+(k— f(as)) =
J—i+k—(i—f(a4)) = k—i+(i— f(as)) = k— f(as), so f(u)+ f(as) = k,
a contradiction to uas ¢ E((C, © K1) U3K)) forn > 7.

Subcase 1.4. Q1P102P203P304P4A5P5A26P60T =a1ia.2ka3ia4ja5ia6ja7.

We obtain f(bz) =37 - f(a2) =j — (k- f(a3)) =5 — k+ (i — f(aq)) =
j—k+i—(j— f(as)) = i—k+(k— f(bs)) = i— f(bs), then f(b2)+ F(bs) = i,
a contradiction to b1bg ¢ E((Cr ® K1) U 3K,).

Subcase 1.5. a1p;azpza3p3espaaspsaePear =a1kaziazjaqiasjagiar.
Similar to Subcase 1.3., a1 € V(Cy,), so it must has a neighbor vertex
u labelled by j — f(a1). Then f(u) = j — f(a1) = j — (k — f(az)) =
j—k4 (i f(@s)) = j+i-k— (i — f(ag)) = i—k++ (k= f(be)) = i~ f(b),
so f(u)+ f(bs) = i, a contradiction to ubs ¢ E((C, ©®K1)U3K;) forn > 7.

Case 2. (tl,tz,tg) =(2,2,2).

Subcase 2.1. a1p1a2P203P304P405P526P607 =01ia2jazkayiasjaskar.
By a similar argument of subcase 1.1, a contradiction that f(a;) +
f(ag) = k can be obtained in this subcase.

Subcase 2.2. a1p1a2p2a3p3a4P4a5PsaePear = a1iazjazkasjasiagkay.

We can obtain f(bs) = i— f(as) =i—(k— f(as)) =i—k+(j—f(as)) =
i—k+j—(i— f(ag)) = j—k+(k—f(a7)) = j— f(a7), so f(b3)+ f(az) =,
a contradiction to bzar ¢ E((Cn © K;) U3K)).

Subcase 2.3. a1p1a2p2a3p3a4PaasPsaePedr =a1tazjasiaskasjaskar.

It is easy to get f(b2) = k— f(a2) = k—(j—f(a3)) = k—j+(i—f(as)) =
k—j+i—(k—f(as)) = i—35+ (- f(as)) = i— f(as), s0 f(b2) + f(as) = 1,
a contradiction to beag ¢ E((C, ® K1) U 3K;).

Subcase 2.4. a1p1a2P203P3a4P405Psa6P6eaT =a1tajazkasiagkagjar.

Since a; € V(Cy,), it must has one neighbor vertex u labelled by k —
f(a1). Then f(u) = k—f(a1) =k —(i— f(az)) = k— i+ (j - f(ag)) =
k—i+j—(k—f(as)) =j—i+ (- f(as)) = — flas), f(v)+ f(as) =7,
a contradiction to uas ¢ E((Cn © K1) U3K,) forn > 7.

Subcase 2.5. a1p1azp2a3p3a4PaasPsasPetr =a1jaziazkagiagkagjaz.
Since a; € V(C,), it must has one neighbor vertex u labelled by k —
f(a1). Then we get f(u) = k— f(a1) = k—(j—f(az)) = k—j+(i- f(a3)) =
k—jti— (k- f(ag) =i+ (i — F(ba)) = i — F(ba), F(u) + F(ba) = 4,
a contradiction to uby ¢ E((Cr, ® K1) U3K,) forn > 7.
So the graph as shown in (i) Figure 2 is a 3-optimum forbidden sub-
graph of C,, ® K, for all positive integer n > 7 and ¢(Cr. © K1) = 3 is
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impossible, then ¢(C, ® K1) >4 forn > 7.

We should emphasize again that ¢, j, and k only general symbols, in the
subcases above, we do not give the same labellings repeatedly. For example,
the exclusive sum labellings a; jaskasjasiaskagiar and ajiazjaziaskasjagk
ay are thesame if we let j =i, k=jandi=k. n]

Theorem 2.6. ¢(C, © K;)= { z’ Z:i’g 7e.

Proof. First we prove that ¢((Cp © K1) U3K,) =3 for n = 3,6. Let fi=
{12,13,14,16,17,20,29, 30,33} and f> = {10,17,21, 24, 26, 28, 33, 35, 37,42,
44,53,54,61,70}, it is easy to prove that f, and f; are the exclusive sum
labellings of (C3 ® K1) U3K; and (Cs ® K1) U 3K, respectively.

By lemma 2.4 and lemma 2.5, we know that ¢(C, ©K;) =4 forn > 7.

Now we prove that ¢(C, © K;) = 4 for n = 4,5. We have known
that €(Cr © K;) < 4 by lemma 2.4 and ¢(C, ©® K;) 2 A(C, © K;) =3
for n = 4,5. Suppose that €(C, ® K1) = 3 for n = 4,5 and f is the
corresponding exclusive sum labellings. Just like in lemma 2.5, let V((C, ®
K1) U3K,) = AUBUI, where A = {a1,a2,'++ ,a,} is the vertex set of
Cn, B= {bl,bz, ces ,bn} is the set of n copies of Ky, I = {61,62,63} is the
isolated vertex set of 3K; and a;b; € E((C,©K;)U3K,)),fort=1,2,--- ,n
and n = 4,5. Let f(c;) = 1, f(c2) = j and f(cs) = k, then the edges of
(Cn ® K1) U3K, can only be labelled as shown in (¢) and (i) of Figure 3
for n = 4 and 5 respectively.

b LY
- U r L LY [ T
i i YA [ 12
a, a,
% [ 5] L I}
5 5
(0] )

Figure 3: the edges of (Cn © K1) U 3K be labelled by 4,5,k for n = 4,5

From (%) of Figure 3 we can obtain f(a3)+ f(as) =%, f(as)+ f(bs) = k
and f(as) + f(bs) = J, then k + j = (f(aa) + f(b3)) + (f(aa) + f(ba)) =
(f(a3) + f(as)) + (F(b3) + f(bs)) = i + (f(ba) + f(ba)). Since f(a1) +
f(a2) = i, f(a1) + f(as) = k and f(az) + f(as) = j, then 2i = (f(a1) +
f(a2)) + (f(as) + f(as)) = (fa1) + f(ad)) + (f(az) + f(as)) = k +J.
So 2i = i+ (f(bs) + f(ba)), i.e,, f(b3) + f(bs) = %, a contradiction to
bsbs ¢ E((C4 © K1) U3K}). So €(Cs © K1) = 4.
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From (ii) of Figure 3 we can obtain f(a1) + f(az) = j and f(a;) +
flas) = 4, then i + j = (f(a1) + f(a2)) + (f(a1) + f(as)) = 2f(a1) +
(f(az) + f(as)). By f(as) + f(as) = j and f(a2) + f(a3) =i, then i+ j =
(f(aa) + f(as)) + (f(az2) + f(a3)) = (f(as) + f(ad)) + (f(a2) + f(as)). So
f(a3) + f(as) = 2f(a1) =k and k = f(al) + f(b1), then f(a;) = f(b1),
which is impossible. So ¢(Cs ® K;) =

In order to give the exclusive sum number and the exclusive sum la—
belling of the subdivision graph (C, ® K;)' of (C, ® K}), we need the
following lemma 2.7.

Lemma 2.7. The graph as shoun in (i) of figure 4 is 3—optimum summable
and the exclusive sum labelling of this graph is unique.

Proof. For the convenience of clarification, the graph as shown in Figure4(s)
is denoted by T'G;. First we claim that ¢(T'G;) = 3. In fact, it is easy to
prove that f = {31, 38,23, 46, 40, 30,33, 28, 36, 32,37, 61,63,69} is an ex-
clusive sum labelling of T'G;, then (TG,) = 3.

a a,

a o a4 o ay a4 4 a 4 o ay a,

@) ()

Figure 4: (i) graph TG and () a labelling of TG1[X]

Just as shows in (i) of Figure 4, Let V = {o0,a;,a2,-:- ,a10} denote
the vertex set of TGy. Let f = {f(0), f(a1), f(a2),- -, f(@a10),1,5,k} is
any one of the exclusive sum labellings of TGy U 3K, where i, j, k are the
labels of the three isolated vertexes of TG1U3K;. We consider the labelling
of the subgraph T'G1[X] of TGy, where X = {0, a1, a2,a3,a4,a5,06}. Let
(t1,t2,t3) denotes the numbers of the edges of TG;[X] that be labelled by
. . P3aspaas
%,J and k, respectively. Let aipjasp20 PsasPeds denotes the labels of
the vertexes of T'G1[X] be labelled meets the following: f(a1)+ f(a2) = p1,
f(a2) + f(0) = p2, f(0) + f(as) = p3, f(as) + f(as) = p4, f(0) + f(as) = ps
and f(ag) + f(as) = ps, Where p; € {i,j,k},t = 1,2,3. We illustrate the
Jjagias
iaskag

Similar to lemma 2.5, i, j, and k are only three symbols, so (¢;,12,%3) =
(3,2,1) or (2,2,2). Obviously, if we prove that the exclusive sum labelling
of TG, [X] is unique, then T'G is also unique. Now we prove the uniqueness

example of a; jasko in (i) of Figure 4.
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of the exclusive sum labelling of T'G1[X] according to the following cases.

Case 1. (t1,t2,t3) = (3,2,1).
There are two subcases for the labelling form of T'G;[X] in this case.

Subcase 1.1. aypjagpgo { P3P  _ 4 iasko _?'a41:a3 .
1P1a2p2 {Paaspeas 1552 tagjas

In this case, one of the edges aza7y and asas must be labelled by k.
Suppose agag be labelled by k, then f(ag) =k — f(az) = k — (i — f(ag)) =
k—i+(j—f(o)) =k—i+j—(k—flaz)) =j—i+(i—f(a1)) = j— f(ar),
so f(as) + f(a1) = j. Then aga; € E(TG,), which is impossible.
P3@4P4C3 - kagiag

1.2, = iasjog
Subcase a1p1G2P20 { psaspeas 113270 { iasjae

In this case, one of the edges asay and azag must be labelled by j.
Suppose azag be labelled by j, then f(as) =7 — f(az) =5 — (¢ — f(aq)) =
j—i+(k—f))=j—i+k—(-flaz)) =k-i+(i- f(a1) = k- f(a1),
so f(ag) + f(a1) = k. Then aga, € E(TG,), which is impossible.

Case 2. (t;,12,13) = (2,2,2).
In this case, there are also two subcases for the labelling form of TG, [X].

P3a4Pa@3  _ .| iagkas
Subcase 2.1. a;piazp20 { Pr0sDs0s =ajkagjo { jagicg °

In this case, one of the edges asa; and azas must be labelled by j.
Suppose azag be labelled by 7, then f(ag) = j — f(as) = j — (k- f(as)) =
J=k+(@=fl0))=j—k+i-(j—f(a2)) =i—k+ (k- f(a1) =i—f(a1),
so f(as) + f(a1) = i. Then aga; € E(TG,), which is impossible.

P3a4p4a3  _ .| kagias
Subcase 2.2. a;pyazpa0 { Pa5Peds —alkazjo{ iagioe

Let ¢ = 61,5 = 63,k = 69 and f(o) = 31, then an exclusive sum
labelling of TG4 [X] can be given by the form of this subcase,the labelling
f just as given at beginning of the proof of this lemma.

So the exclusive sum labelling of TG;[X] as given in Subcase2.2 is the
only one. Then the exclusive sum labelling of T'G; is unique. (]

Theorem 2.8. ¢((C, © K1)') =4, forn > 3.

Proof. For all n > 3, let V((Cp © Kl)') AU BUC U D, where
A= {al:a2v . ’an} B = {bl’bZa : bﬂ}) {Cl,Cz, : 1011} and D =
{d1,da,- -+ ,dn}. AUC is the vertex set of the subgraph (C,) of (C,®K;)’
and (C, ) = @1€1Q3C3 - AnCna]. A UBUD is the vertex set of the n
subgra.phs P;(not conta.med in (Cn) } of (Cr ) Kl) and P; = a;d;b; for
i=1,2,..- ,n. As an example graph (Cs @ K; 1) is shown in Figure 5.
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First, we will prove ((Cr, ® K;)') > 4 for n 3.

Suppose to the contrary that e((Cp, ® Kl) ) = 3. Let I = {p1,p2,p3}
is the three isolated vertexes of (C,, ® K1)  U3K). Let f = f (A f(B)u
f(C)U f(D)U f(I) is an exclusive sum labelling of (C, ® K1)  U3K; with
f(m) =i, f(p2) = j and f(pa) = k. By lemma 2.7 we know the exclusive
sum labelling of (C, ® K;) U 3K, can only be the following two cases.

Figure 5: the graph (Cs © K1)’

Case 1. n=2p,p > 2.

Now we consider the labelling of the subgraph C of (Ch O K 1) U3K;.
Without lost generality, let the edges ¢1¢; and ¢ aq be labelled by i and j
respectively, then by lemma 2.7, the other edges azCz, €203, A3C3, €304, G4C4,
C405, ,agp_l Cap—1, C2p—102p, G25C2p) C2p01 of C’ must be labelled by i, &,
i,4,4,k, -+ ,%,7,1, k, respectively. Then f(ag)+f(0:) =ifort=1,2,3,-
2P, f(c2t—1) + f(a2t) = J for t = 1’2,37 ARy f(CZt) + f(a2t+l) =k fOI‘
t=1,2,3,---,p—1and f(czp) + f(a1) = k. So, T2, (f(ae) + f(cr)) = 2pi
and 3°7_, (f(cze-1)+ f(aze)) + 20, (f(cae) + fazes1)) + (f(c2p) + f(a1)) =
Zt.,l(f(a,:) + f(ct)) = p(i + j), then 2i = j + k. Further more, f(c2) =
i-flag)=i-(G—=fla))=i-j—(i-fla1)) =2i—j— (k- flcop)) =
2i — j — k + f(czp), then f(c2) = f(czp), which is impossible.

Case 2. n=2p+1,p2> 1.
Suppose the edges ajc) and ¢ja; of (Cn) are labelled by ¢ and j respec-
tlvely, then by lemma2.7 the other edges asca, €203, G3C3, €304, G4C4, C40s5,
a2p62p, 02pazp+1,a2p+162p+1, Cop4+1Q1 of (Cn) can only be labelled by
i, k i,7,4,k,--- ,1,k,1,J, respectively. Obviously, f(e;) + f(di) = k. By
the possibility of the label of the edge d;b;, there are two subcases in this
case.
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Subcase 2.1. f(d;) + f(b1) = 1.
In this subcase f(b1) = i — f(d1) = z —k—fla)=i—-k+({F-
Flezpr1)) =i — k+ 35— (i — Flazps1)) = j — k+ (k = £(c2p)) = J — F(cap),
then f(by) + f(c2p) = j, which is 1mpossxble

Subcase 2.2. f(d;) + f(b1) = 3.

In this subcase, f(b1) = j—f(d1) = j—(k—f(a1)) = j—k+(i—f(c1)) =
j—k+i—(j—f(az)) = i—k+ (k= f(d2)) = i~ f(dy), then f(br)+£(d2) =1,
which is impossible.

So we know that €((Cr @ K1)’ )z 4forn>3.

Now we prove that e((C, ® K1)') < 4 for n > 3. This just need to give
an exclusive sum labelling for ((Cn © K1)') U4K;.

Let f be a labelling satisfied the following:

fla) =10n+4t-3,t=1,2,3,--- ,m;

flee)=10n—4t—-7,t=1,2,3,--+,m;

f(h1)=10n+ 7 and f(b) =8n—4t+11,t=2,3,--- ,n;

F(di) =30n+9 and f(d) =32n+4t—5,t=2,3,--- ,m;

f(p1) = 20n+4, f(p2) = 20n+8, f(ps) = 18n+8 and f(ps) = 40n+16,
where p; is the isolated vertexes of ((Cr, ® K1) ) U4K;, t =1,2,3,4.

It is easy to prove that f = {f(ac), f(be), f(ce), f(@e), f(pr) : £ =1,2,-
n,l = 1,2,3,4} is the exclusive sum number of ((Cr, ® K1) ) U4K;. Here
we omit to prove the correctness of the labelhng to save space.

From the above discussion, €((Cr ® K1)') = 4 for n > 3. O

3 About the exclusive sum numbers of Trees

In this section we will show kinds of trees that are not A—optimum summable,
and give a nontrivial upper bound for the exclusive sum number of trees.

Let TG, and T'G3 denote the graph shown in (¢) and (4i) of Figure 6
respectively.

a, 9 LY

e, a a, ] a, a a, a a a, o ay a a,

U] @

Figure 6: (i) TGz and (it) TG3

Theorem 3.1. TGy and TG3 are 3-optimum forbidden subgraphs of trees
T with A(T) = 3. Then any tree T with A(T) = 3 and containing TGz or
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TGj3 is not A-optimum summable.

Proof. Obviously, TG2; and T'G3 both contain T'G; as subgraph and
A(TGs) = A(TG3) = 3.

Suppose T'G2 and T'G; are both A-optimum summable. Since the sum
labelling of graph T'G, is unique by lemma 2.7, the exclusive sum labelling
of TGy and T'G3 can easily be given.

First we claim that ¢(T'G2) = 3 is impossible. By lemma 2.7, let the
edge agag be labelled by j, so f(an) = k- f(es) = k- (5 — f(o)) =
k—i+(i— f(as)) = k—j+i— (k- f(as)) = i~ j+(j — (as)) = i — f(as),
then f(a11) + f(ag) = ¢, which is impossible.

By similar argument, we can also prove that e(T'G3) = 3 is impossible.
In fact, suppose the edge aza3 and asa;; be labelled by k and 7 respectively,
then f(av) + f(a11) = j, a contradiction to a7a;; ¢ E(TG3U 3K}).

The exclusive sum numbers of TG> and T'G3 both are 4. In fact, it is
easy to prove that S; = {413, 468, 383,438, 523, 394, 487, 457, 419, 542, 462,
370, 389, 832, 851,881,961} and S; = {364, 407, 333, 440, 376, 356, 415, 384,
368, 403, 329, 337,732, 740,771,847} are exclusive sum labellings of TG, U
4K, and T'G3 U 4K, respectively. =}

In order to give a generalization of the above theory, we consider the
exclusive sum number and the exclusive sum labelling of the tree as shown
in (i) of figure7 (denoted by T'G4), where D = A = A(T'G4) and A > 3.

@)

Figure 7: (i) TG4 and (%) TGs.

Lemma 3.2. TG, is A-optimum summable and the ezclusive sum labelling
of this graph TG4 is unique.

Proof. Obviously, TG4 is a caterpillar, so it is A—optimum summable
by corollary 2.3. By similar argument of lemma 2.7, we can prove that
the exclusive sum labelling of TG4 is unique. Let 2;,43,--- ,7a be the
isolated vertexes of TG4 U AK,. Let f is any exclusive sum labelling
for TG4 U AK,. Without loss of generality, suppose the edge v,va be
labelled by f(i;) for t = 1,2,---,A — 1, vua be labelled by f(ia) and
vu be labelled by some f(i1),l € {1,2,---,A —1}. We claim that the
edge uua must be labelled by f(ia). Suppose not, uua be labelled by
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some f(ix),k € {1,2,---,A —1}. Then there must exist an edge usua
be labelled by f(ia), t € {1,2,---,A —1}. So f(wk) = f(ix) — f{va) =
fk) = (F(ia) = f(v)) = f(ix) — f(a) + (f(it) — f(u)) = f(ix) — f(ia) +
F(it) — (Flin) = f(ua)) = £@) — F(in) + (FGa) = Flue) = f(ir) - Flue),
then vyue € E(TG4U AK,), which is impossible. So the labelling of TG4
is unique. o
By the proof of lenmma 3.2, the following corollary about TGg (as
shown in (i2) of Figure 7, where s < D = A(T'Gs)) can be obtained.

Corollary 3.3. The edges usu: (t = 1,2,:--,8~1) and vav € E(TGs)
can not be labelled by the same element of any exclusive sum labelling of
TGs.

Theorem 3.4. For any integer A > 3, there exist trees T are not A-
optimum summable.

A B¢ Yo
coe

L
4y

Hy

L]

@)

DI A S

LY

(tif)

Figure 8: (i) TG, (ii) TG, (ii) TGs and (iv) TGs

Proof. Obviously,if there exist A—optimum forbidden subgraphs of trees
for any A > 3, then this theorem can be proved to be right. TG, (as
shown in Figure 8, where t=6,7,8,9 ) will be proved to be A-optimum for-
bidden subgraph of the trees T with A = A(T'). Suppose to the contrary,
TGe¢,TGr,TGg and TGy all are A-optimum summable. Let f is the exclu-
sive sum labelling of TG; UAK; (t =6,7,8,9) and the vertex set of AK
is {41,%2, - ,%a}. To the convenience of the following arguments, suppose
vgva be labelled by one f(i;) for t € {1,2,--- ,A —1}.
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Since T'Gg and T'G7 both contain T'G4, by lemma 3.2 we can give an
exclusive sum labelling for TG, U AK,, where t = 6, 7.

First we consider the exclusive sum labelling of TGg¢ U AK;. Suppose
TG7;UAK; — {w1,ws, - ,wa,w} be labelled just as the same in lemma
3.2. We know that the edge wwa must be labelled by f(ia), suppose
the edge wv be labelled by f(i;),p € {1,2,---,A — 1}. Then f(wa) =
f(ia) — F(w) = f(in) — (flip) — F) = FGa) — Flip) + (F(ir) - F(w)) =
£(i8) - Flip) + £(i2) = (Flin) = Flua)) = £(ir) — (i) + (Flip) — £(up)) =
f(41) — f(up), so waup € E(TGgU AK,), a contradiction. So T'Gg is a A-
optimum forbidden subgraph of trees. Now we consider the exclusive sum
labelling of TG;UAK. Suppose TG7rUAK) —{w;, wa,--- ,wa} be labelled
just as the same in lemma 3.2. Then the edge vwa must be labelled by
some f(i;),t € {1,2,--- ,A — 1}, and suppose the edge wi be labelled by
f(ia), then by similar argument in lemma 3.2, we have a contradiction to
that wy. is adjacent with the vertex u;. Then T'Gg and T'G~ are both not
A-optimum summable.

Now we prove that TGg is a A-optimum forbidden subgraph. Since
every edge zt2h _ (s,t =1,2,---,A - 2) and uua can not be labelled by
f(2a) by the corollary 3.3, suppose the edge uua be labelled by f(ix),
where k < A, and there must exist some s,t € {1,2,--- ,A — 2} such that
ztzh _, is labelled by f(ix). Suppose the edges z%_,z and ua_ju, both
be labelled by f(i;) and zu be labelled by f(ip), then f(z%) = f(ix) —
f(@ao1) = k) = (f(a) = F(2)) = f(ik) — f(@a) + (f(5p) — f(w)) = f(ik) -
f(i) + f(ip) — (f(ix) = f(va-1)) = f(ip) — (i) + (£ (i) — f(ur)) = f(ip) —
f(uy), ie., f(z8) + f(ur) = f(ip), & contradiction to that ztu, ¢ E(TGsU
AKhy).

Finally we prove that T'Gg is a A-optimum forbidden subgraph, too.
Suppose the edge vz is labelled by f(i,). By lemma 3.2 zua must be la-
belled by f(ia) and by corollary 3.3 no edges of ztz%, _,(s,t =1,2,--- ,A—
2) be labelled by f(ia), so there must exist an edge ztz% _; be labelled
by the same f(ix) with the edge vwa_; and must exist edges z% _;z and
wpwa—_1 be labelled by the same f(i1), then f(w,) = f(i1) — f(wa-1) =
f(@) = (f(x) = f(v) = f(@) = f(k) + (f(r) — f(2)) = fli) — f(ik) +
F(ir) = (F(ix) — f(zh_)) = £lir) = £lix) + (F(i) ~ F(@L)) = F(ir) — F(ab),
a contradiction to that ztw, ¢ E(TGy U AK}).

Since shrubs are A-optimum summable (4], by lemma 2.1 and the ar-
gument above we know that ¢(TG;) = A +1fort=6,7,8,9. o

In this final section, we shall consider the exclusive sum number of a
special kind of tree. Let T2 denote a kind of tree if it meets the following
conditions:

a. All the vertexes of the tree has the same degree A except the leaves;

b. Its center exactly just be one vertex u of this tree;

¢. d(u,v) = r, where v is any leaf vertex of the tree and r is the radius



of this tree.

As an example Figure 9 shows the tree T3. The neighbor vertexes
of the center u of T/® are denoted by a}, i = 1,2,---,A, the neighbor
vertexes of a; (except the center u) are denoted by a%,j =1,2,--- ,A -1,
and the neighbor vertexes of a%; (except the vertex a}) are denoted by a?j -
k=1,2,---,A—1, and so on.

Obviously, any tree with maximum degree A and the radius no more
than r is a subgraph of T/2. In the next theory we will give a bound
as shown in the following Theorem 3.5. for the exclusive sum number of
the graph T2 by theorem 2.1, so we have a general upper bound for the

exclusive sum number for trees.

Figure 9: the tree T

Theorem 3.5. For any tree T, A < e(T) < (r—1)A - (r—2), wherer is
the radius of T'.

Proof. Only need to prove the theory holds for /2. In fact, we can get
TA from T£ by continuous using theorem2.1 for (r — 2)(A — 1) times and
every time only add new edges at the leaves of the tree. Since the tree T
is a shrub, it is A-optimum summable [4]. o

The following theorem shows that the exclusive sum number of a tree
T can be very bigger than A(T") + 1.

Theorem 3.6. Foranyr, A > 3, €(T2) 2 [3(A-1)+3/(A - 1)(5A -1)].

Proof. Assume the exclusive sum number of T2 is €. Let f is an exclu-
sive sum labelling of T2 | JeK; and {41,492, -+ ,ic} is the vertex set of eK.
Since €(T2) = ¢, at least [é(%_—lz] edges of {ala? :i=1,2,--- ,A,j =
1,2,---,A—1} be labelled by some one of f(ix) € {f(i1), f(ia),--- , f(ic)}-
Suppose the edge ala? be labelled by f(ix), by lemma 3.2 the edges
{a%ad; : k=1,2,--- ,A-1} only can be labelled by (e—l)—([ﬂ%——ll] -1)
labels of {f(i1), f(i2),++* , f(ie)}, then (e —= 1) — (&A= —1) > A -1,
ie,e>[3HA-1)+ 3/(A-1)(5A -1)]. o
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