Quasi-tree graphs with the largest and the second largest numbers of maximum independent sets

Jenq-Jong Lin Ling Tung University, Taichung 40852, Taiwan email: jjlin@mail.ltu.edu.tw

Abstract

In a graph G=(V,E), an independent set is a subset I of V(G) such that no two vertices in I are adjacent. A maximum independent set is an independent set of maximum size. A connected graph (respectively, graph) G with vertex set V(G) is called a quasi-tree graph (respectively, quasi-forest graph), if there exists a vertex $x \in V(G)$ such that G-x is a tree (respectively, forest). In this paper, we study the problem of determining the large and the second largest numbers of maximum independent sets among all quasi-tree graphs and quasi-forest graphs. Extremal graphs achieving these values are also given.

1 Introduction

In a graph G = (V, E), an independent set is a subset I of V(G) such that no two vertices in I are adjacent. A maximum independent set is an independent set of maximum size. The set of all maximum independent sets of G is denoted by XI(G) and its cardinality by xi(G).

The problem of determining the largest number of maximum independent sets of a graph was studied for various classes of graphs, including general graphs, trees, forests, (connected) graphs with at most one cycle, connected graphs and triangle-free graphs, see [2]. A connected graph (respectively, graph) G with vertex set V(G) is called a quasi-tree graph (respectively, quasi-forest graph), if there exists a vertex $x \in V(G)$ such that G - x is a tree (respectively, forest). The concept of quasi-tree graphs was mentioned by H. Liu and M. Lu in [3].

The purpose of this paper is to determine the large and the second largest numbers of maximum independent sets among all quasi-tree graphs and quasi-forest graphs. Extremal graphs achieving these values are also given.

2 Preliminary

In this section, we describe some notations and preliminary results. For a graph G = (V, E) and a vertex $x \in V(G)$, let $XI_{-x}(G) = \{I \in XI(G) : x \notin G\}$ I) and $XI_{+x}(G) = \{I \in XI(G) : x \in I\}$. Note that $xi(G) = |XI_{-x}(G)| + I$ $|XI_{+x}(G)|$. The cardinality of V(G) is called the *order*, and it is denoted by |G|. The neighborhood $N_G(x)$ of a vertex $x \in V(G)$ is the set of vertices adjacent to x in G and the closed neighborhood $N_G[x]$ is $\{x\} \cup N_G(x)$. Two distinct vertices u and v are called duplicated vertices if $N_G(u) = N_G(v)$. The degree of x is the cardinality of $N_G(x)$, denoted by $\deg_G(x)$. A vertex x is a leaf if $\deg_G(x) = 1$. A vertex is called a support vertex if it is adjacent to a leaf. For a set $A \subseteq V(G)$, the deletion of A from G is the graph G - Aobtained from G by removing all vertices in A and their incident edges. Two graphs G_1 and G_2 are disjoint if $V(G_1) \cap V(G_2) = \emptyset$. The union of two disjoint graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with vertex set $V(G_1 \cup G_2) =$ $V(G_1) \cup V(G_2)$ and edge set $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. nG is the short notation for the union of n copies of disjoint graphs isomorphic to G. A component of odd (respectively, even) order is called an odd (respectively, even) component. Denote by P_n a path with n vertices and C_n a cycle with n vertices. Throughout this paper, for simplicity, let $r = \sqrt{2}$. We begin with the following useful lemmas.

Lemma 2.1. ([1]) For any vertex x in a graph G, $xi(G) \leq xi(G-x) + xi(G-N_G[x])$.

Lemma 2.2. ([1]) If x is a leaf adjacent to y in a graph G, then $xi(G) \le xi(G - N_G[x]) + xi(G - N_G[y])$.

Lemma 2.3. ([1], [2]) If x_1, x_2, \ldots, x_k are $k \geq 2$ leaves adjacent to the same vertex y in a graph G, then $xi(G) = xi(G - \{x_1, x_2, \ldots, x_k, y\})$.

Lemma 2.4. ([1], [2]) If G is the union of two disjoint graphs G_1 and G_2 , then $xi(G) = xi(G_1)xi(G_2)$.

Lemma 2.5. ([1]) For an odd integer $n \geq 3$, $xi(C_n) = n$.

The results of the largest numbers of maximum independent sets among all trees and forests are described in Theorems 2.6 and 2.7, respectively.

Theorem 2.6. ([1], [2]) If T is a tree with $n \ge 2$ vertices, then

$$xi(T) \le t(n) = \left\{ egin{array}{ll} r^{n-2} + 1, & \mbox{if n is even,} \\ r^{n-3}, & \mbox{if n is odd.} \end{array}
ight.$$

Furthermore, xi(T) = t(n) if and only if T = T(n), where T(n) is shown in Figure 1.

Figure 1: The graph T(n)

Theorem 2.7. ([1], [2]) If F is a forest with $n \ge 1$ vertices, then

$$xi(F) \le f(n) = \begin{cases} r^n, & \text{if } n \text{ is even,} \\ r^{n-1}, & \text{if } n \text{ is odd.} \end{cases}$$

Furthermore, xi(F) = f(n) if and only if F = F(n), where

$$F(n) = \begin{cases} \frac{n}{2}P_2, & \text{if } n \text{ is even,} \\ P_1 \cup \frac{n-1}{2}P_2, & \text{if } n \text{ is odd.} \end{cases}$$

3 The largest number of maximum independent sets

Theorem 3.1. If Q is a quasi-tree graph with $n \geq 2$ vertices, then

$$xi(Q) \le qt(n) = \begin{cases} r^{n-2} + 1, & \text{if } n \text{ is even,} \\ r^{n-1} + 1, & \text{if } n \text{ is odd.} \end{cases}$$

Furthermore, xi(Q) = qt(n) if and only if Q = QT(n), where

$$QT(n) = \begin{cases} T_e(n), & \text{if } n \text{ is even,} \\ QT_o(n), & \text{or } C_5, & \text{if } n \text{ is odd,} \end{cases}$$

where $QT_o(n)$ is the graph obtained from a cycle C_3 by attaching $\frac{n-3}{2}$ paths of length two to a vertex of the cycle C_3 , see Figure 2. The vertex z in $QT_o(n)$ is called the central vertex of $QT_o(n)$.

Figure 2: The graph $QT_o(n)$

Proof. It is straightforward to check that xi(QT(n)) = qt(n). Let Q be a quasi-tree graph of order n such that xi(Q) is as large as possible, then $xi(Q) \ge xi(QT(n)) = qt(n)$. Let x be the vertex of Q such that Q - x is a tree. We consider two following cases.

Case 1. n is an even integer. Suppose that Q contains at least one cycle. Then x is on some cycle of Q, it follows that $\deg_Q x \geq 2$. By Theorem 2.6, $xi(Q-x) \leq t(n-1)$. On the other hand, $Q-N_Q[x]$ is a forest with at most n-3 vertices, by Theorem 2.7, $xi(Q-N_Q[x]) \leq f(n-3) = f(n-4)$. Thus, by Lemma 2.1, we have $r^{n-2}+1 \leq xi(Q) \leq xi(Q-x)+xi(Q-N_Q[x]) \leq t(n-1)+f(n-3)=t(n-1)+f(n-4)=r^{n-4}+r^{n-4}=r^{n-2}$, which is a contradiction. Hence, by Theorem 2.6, we obtain that $Q=T_e(n)$.

Case 2. n is an odd integer. Since t(n) < qt(n) for $n \ge 3$, Q contains at least one cycle. Then x is on some cycle of Q, it follows that $\deg_Q x \ge 2$. Similar to the arguments in Case 1, we have $r^{n-1} + 1 \le xi(Q) \le xi(Q - x) + xi(Q - N_Q[x]) \le t(n-1) + f(n-3) = r^{n-3} + 1 + r^{n-3} = r^{n-1} + 1$. Furthermore, the equalities holding imply that $|XI_{-x}(Q)| = xi(Q - x) = t(n-1)$ and $|XI_{+x}(Q)| = xi(Q - N_Q[x]) = f(n-3)$. By Theorems 2.6 and 2.7, $Q - x = T_e(n-1)$ and $Q - N_Q[x] = \frac{n-3}{2}P_2$. Hence we obtain that $Q \cong QT_o(n)$, or C_5 .

Theorem 3.2. If Q is a quasi-forest graph with $n \geq 2$ vertices, then

$$xi(Q) \le qf(n) = \begin{cases} r^n, & \text{if } n \text{ is even,} \\ 3r^{n-3}, & \text{if } n \text{ is odd.} \end{cases}$$

Furthermore, xi(Q) = qf(n) if and only if Q = QF(n), where

$$QF(n) = \left\{ \begin{array}{ll} \frac{n}{2}P_2, & \text{if n is even,} \\ C_3 \cup \frac{n-3}{2}P_2, & \text{if n is odd.} \end{array} \right.$$

Proof. It is straightforward to check that xi(QF(n))=qf(n). Let Q be a quasi-forest graph of order n such that xi(Q) is as large as possible, then $xi(Q) \geq xi(QF(n)) = qf(n)$. Let x be the vertex of Q such that Q-x is a forest. For the case when n is even, suppose that Q contains at least one cycle, then x is on some cycle of Q. It follows that $\deg_Q x \geq 2$. Thus, by Lemma 2.1 and Theorem 2.7, we have that $r^n \leq xi(Q) \leq xi(Q-x) + xi(Q-x) +$

For the case when n is odd, since f(n) < qf(n) for $n \ge 3$, Q contains at least one cycle. Then x is on some cycle of Q, it follows that $\deg_Q x \ge 2$. Similar to the arguments in the above case, we have that $3r^{n-3} \le xi(Q) \le xi(Q-x) + xi(Q-N_Q[x]) \le f(n-1) + f(n-3) = r^{n-1} + r^{n-3} = 3r^{n-3}$. Furthermore, the equalities holding imply that $|XI_{-x}(Q)| = xi(Q-x) = xi(Q-x)$

$$f(n-1)$$
 and $|\mathrm{XI}_{+x}(Q)|=xi(Q-N_Q[x])=f(n-3).$ By Theorem 2.7, $Q-x=\frac{n-1}{2}P_2$ and $Q-N_Q[x]=\frac{n-3}{2}P_2.$ Hence we obtain that $Q=C_3\cup\frac{n-3}{2}P_2.$

4 The second largest number of maximum independent sets

For even $n \geq 6$, $QT'_c(n)$ is the graph obtained from $QT_o(n-1)$ by adding a vertex and a new edge joining the vertex and the central vertex of $QT_o(n-1)$; T_8 is the graph obtained from two copies of P_4 by adding a new edge joining the support vertices of these two P_4 's. For odd $n \geq 7$, $QT'_{o1}(n)$ and $QT'_{o2}(n)$ are the graphs obtained from $QT_o(5)$ by attaching $\frac{n-5}{2}$ paths of length two to a vertex of degree two of $QT_o(5)$; $QT'_{o3}(n)$ is the graph obtained from C_5 by attaching $\frac{n-5}{2}$ paths of length two to a vertex of C_5 ; $QT'_{o4}(n)$ is the graph obtained from $QT_o(n-4)$ by adding a P_4 and a new edge joining a support vertex of P_4 and the central vertex of $QT_o(n-4)$, see Figure 3.

Figure 3: The graph QT'(n)

Define the graphs QT'(n) and QF'(n) as follows.

$$QT'(n) = \left\{ \begin{array}{ll} QT'_e(n), \text{ or } P_6, \text{ or } T_8 & \text{ if } n \geq 6 \text{ is even,} \\ QT'_{o1}(n), \text{ or } QT'_{o2}(n), & \\ & \text{ or } QT'_{o3}(n), \text{ or } QT'_{o4}(n), & \text{ if } n \geq 7 \text{ is odd.} \end{array} \right.$$

and

$$QF'(n) = \left\{ \begin{array}{ll} P_4 \cup \frac{n-4}{2} P_2, \text{ or } C_3 \cup P_1 \cup \frac{n-4}{2} P_2 & \text{if } n \geq 4 \text{ is even,} \\ QT_o(5) \cup \frac{n-5}{2} P_2, \text{ or } C_5 \cup \frac{n-5}{2} P_2, & \text{if } n \geq 5 \text{ is odd.} \end{array} \right.$$

Let qt'(n) = xi(QT'(n)) and qf'(n) = xi(QF'(n)). By simple calculation, we have

$$qt'(n) = \left\{ \begin{array}{ll} r^{n-2}, & \text{if } n \geq 6 \text{ is even,} \\ 6r^{n-7} + 2, & \text{if } n \geq 7 \text{ is odd.} \end{array} \right.$$

and

$$qf'(n) = \left\{ \begin{array}{ll} 3r^{n-4}, & \text{if } n \geq 4 \text{ is even,} \\ 5r^{n-5}, & \text{if } n \geq 5 \text{ is odd.} \end{array} \right.$$

We will prove the following two results.

Theorem 4.1. If Q is a quasi-tree graph with $n \ge 6$ vertices having $Q \ne QT(n)$, then $xi(Q) \le qt'(n)$ with the equality holding if and only if Q = QT'(n).

Theorem 4.2. If Q is a quasi-forest with $n \geq 4$ vertices having $Q \neq QF(n)$, then $xi(Q) \leq qf'(n)$ with the equality holding if and only if Q = QF'(n).

We prove Theorems 4.1 and 4.2 by verifying the following four lemmas.

Lemma 4.3. If Q is a quasi-forest graph of even order $n \geq 4$ having $Q \neq QF(n)$, then $xi(Q) \leq 3r^{n-4}$ with the equality holding if and only if $Q = P_4 \cup \frac{n-4}{2}P_2$, or $C_3 \cup P_1 \cup \frac{n-4}{2}P_2$.

Proof. It is straightforward to check that $xi(P_4 \cup \frac{n-4}{2}P_2) = xi(C_3 \cup P_1 \cup \frac{n-4}{2}P_2) = 3r^{n-4}$. Let Q be a quasi-forest graph of even order $n \geq 4$ having $Q \neq QF(n)$ such that xi(Q) is as large as possible. Then $xi(Q) \geq 3r^{n-4}$. We consider the following two cases.

Case 1. Q contains no cycle. Suppose that there exist two odd components H_1 and H_2 of Q, where $|H_i|=n_i$ for i=1,2. By Lemma 2.4, Theorems 2.6 and 2.7, we have that $3r^{n-4} \leq xi(Q) = xi(H_1) \cdot xi(H_2) \cdot xi(Q-(V(H_1) \cup V(H_2)) \leq r^{n_1-3} \cdot r^{n_2-3} \cdot r^{n-n_1-n_2} = r^{n-6} < 3r^{n-4}$. This is a contradiction. Hence Q has no odd component. Since $Q \neq QF(n)$, there exists an even component H of order $m \geq 4$. By Theorem 2.6, $xi(H) \leq t(m) = r^{m-2} + 1$. On the other hand, by Lemma 2.4 and Theorem 2.7, $3r^{n-4} \leq xi(Q) = xi(H) \cdot xi(Q-V(H)) \leq (r^{m-2}+1) \cdot r^{n-m} = r^{n-2} + r^{n-m} \leq 3r^{n-4}$, where $m \geq 4$. Thus the equality holds, and we can see that $H = P_4$ and $Q - V(H) = \frac{n-4}{2}P_2$. In conclusion, $Q = P_4 \cup \frac{n-4}{2}P_2$.

Case 2. Q contains at least one cycle. Let x be the vertex of Q such that Q - x is a forest of odd order n - 1. Then x is on some cycle of Q, it follows that $\deg_Q x \geq 2$. By Theorem 2.7, $xi(Q - x) \leq f(n - 1)$.

On the other hand, $Q - N_Q[x]$ is a forest with at most n-3 vertices, by Theorem 2.7, $xi(Q - N_Q[x]) \le f(n-3) = f(n-4)$. Thus, by Lemma 2.1, we have that $3r^{n-4} \le xi(Q) \le xi(Q-x) + xi(Q-N_Q[x]) \le f(n-1) + f(n-3) = f(n-1) + f(n-4) = r^{n-2} + r^{n-4} = 3r^{n-4}$. Furthermore, the equalities holding imply that $|XI_{-x}(Q)| = xi(Q-x) = f(n-1)$ and $|XI_{+x}(Q)| = xi(Q-N_Q[x]) = f(n-3) = f(n-4)$. By Theorem 2.7, $Q-x = P_1 \cup \frac{n-2}{2}P_2$ and $Q-N_Q[x] = P_1 \cup \frac{n-4}{2}P_2$ or $\frac{n-4}{2}P_2$. Hence we obtain that $Q = C_3 \cup P_1 \cup \frac{n-4}{2}P_2$.

Since every forest is a quasi-forest graph, by Lemma 4.3, we have the following immediately.

Corollary 4.4. The graph $P_4 \cup \frac{n-4}{2}P_2$ is a forest of order n with the second largest number of maximum independent sets.

Lemma 4.5. If Q is a quasi-forest of odd order $n \geq 5$ vertices having $Q \neq QF(n)$, then $xi(Q) \leq 5r^{n-5}$ with the equality holding if and only if $Q = QT_o(5) \cup \frac{n-5}{2}P_2$, or $C_5 \cup \frac{n-5}{2}P_2$.

Proof. It is straightforward to check that $xi(QT_o(5) \cup \frac{n-5}{2}P_2) = xi(C_5 \cup \frac{n-5}{2}P_2) = 5r^{n-5}$. Let Q be a quasi-forest graph of odd order $n \geq 5$ having $Q \neq QF(n)$ such that xi(Q) is as large as possible. Then $xi(Q) \geq 5r^{n-5}$. Since $f(n) = r^{n-1} < 5r^{n-5} \leq xi(Q)$ for $n \geq 5$, Q contains at least one cycle. Let H be the component of Q which is not a tree, then $|H| = m \geq 3$. Suppose that m is even, by Theorems 2.7 and 3.1, we have that $5r^{n-5} \leq xi(Q) = xi(H) \cdot xi(Q - V(H)) < (r^{m-2} + 1) \cdot r^{n-m-1} = r^{n-3} + r^{n-m-1} \leq 3r^{n-5}$. This is a contradiction, thus we obtain that m is odd. For the case of m = 3, that is, $H = C_3$. It follows from $Q \neq QF(n)$ that $Q - V(H) \neq \frac{n-3}{2}P_2$. By Theorem 4.3 and Corollary 4.4, we have that $5r^{n-5} \leq xi(Q) = xi(H) \cdot xi(Q - V(H)) \leq 3 \cdot (3r^{n-7}) = 9r^{n-7}$, which is a contradiction. For the case of $m \geq 5$, by Theorems 2.7 and 3.1, we have $5r^{n-5} \leq xi(Q) = xi(H) \cdot xi(Q - V(H)) \leq (r^{m-1} + 1) \cdot r^{n-m} = r^{n-1} + r^{n-m} \leq 5r^{n-5}$. Furthermore, the equalities holding imply that m = 5. By Theorems 2.7 and 3.1 again, $H = QT_o(5)$ or C_5 and $Q - V(H) = \frac{n-5}{2}P_2$. In conclusion, $Q = QT_o(5) \cup \frac{n-5}{2}P_2$, or $C_5 \cup \frac{n-5}{2}P_2$.

Lemma 4.6. If Q is a quasi-tree of even order $n \ge 6$ having $Q \ne QT(n)$, then $xi(Q) \le r^{n-2}$ with the equality holding if and only if $Q = QT'_e(n)$, or P_6 , or T_8 .

Proof. It is straightforward to check that $xi(QT'_e(n)) = r^{n-2}$, $xi(P_6) = 4 = r^{6-2}$ and $xi(T_8) = 8 = r^{8-2}$. Let Q be a quasi-tree graph of even order $n \geq 6$ having $Q \neq QT(n)$ such that xi(Q) is as large as possible. By Theorem 3.1, $r^{n-2} \leq xi(Q) \leq qt(n) - 1 = (r^{n-2} + 1) - 1 = r^{n-2}$, hence $xi(Q) = r^{n-2}$. Suppose that Q has duplicated leaves u_1 and u_2

which are adjacent to the same vertex v, by Lemma 2.3 and Theorem 2.7, $r^{n-2} = xi(Q) = xi(Q - \{u_1, u_2, v\}) \le qf(n-3) = 3r^{n-6}$. This is a contradiction, thus Q has no duplicated leaf. We claim that Q contains at least one cycle except P_6 and T_8 . Suppose that Q is a tree and u is a leaf on a longest path of Q, say $P = u, v, \ldots$ The possible graphs Q with the property of Q - u = T(n-1) or Q - N[u] = T(n-2) are shown in Figure 4. The number inside the brackets in Figure 4 indicates the number of maximum independent sets of the corresponding graph. Note that $T^{(1)}(n) = T_e(n)$, $T^{(2)}(6) = T^{(4)}(6) = P_6$ and $T^{(3)}(8) = T_8$. By simple calculation, we have $xi(T^{(i)}(n)) < r^{n-2}$ for i = 2, 3, 4 when $n \ge 10$.

Figure 4: The possible graphs Q

Thus, by Lemma 2.1, we have that $r^{n-2}=xi(Q)\leq xi(Q-u)+xi(Q-N_Q[u])\leq (r^{n-4}-1)+(r^{n-4}+1-1)=r^{n-2}-1$, which is a contradiction. It follows that Q contains at least one cycle. Let x be a vertex such that Q-x is a tree of odd order n-1. Then x is on some cycle of Q, it follows that $\deg_Q x\geq 2$. By Theorem 2.6, $xi(Q-x)\leq t(n-1)$. On the other hand, $Q-N_Q[x]$ is a forest with at most n-3 vertices, by Theorem 2.7, $xi(Q-N_Q[x])\leq f(n-3)=f(n-4)$. Thus, by Lemma 2.1, we have $r^{n-2}=xi(Q)\leq xi(Q-x)+xi(Q-N_Q[x])\leq t(n-1)+f(n-3)=t(n-1)+f(n-4)=r^{n-4}+r^{n-4}=r^{n-2}$. Furthermore, the equalities holding imply that $|XI_{-x}(Q)|=xi(Q-x)=t(n-1)$ and $|XI_{+x}(Q)|=xi(Q-N_Q[x])=f(n-3)=f(n-4)$. By Theorems 2.6 and 2.7, $Q-x\cong T_o(n-1)$ and $Q-N_Q[x]\cong P_1\cup \frac{n-4}{2}P_2$ or $\frac{n-4}{2}P_2$. Hence we obtain that $Q\cong QT_e'(n)$. \square

Lemma 4.7. If Q is a quasi-tree graph of odd order $n \geq 7$ having $Q \neq QT(n)$, then $xi(Q) \leq 6r^{n-7} + 2$ with the equality holding if and only if $Q = QT'_{o1}(n)$, or $QT'_{o2}(n)$, or $QT'_{o3}(n)$, or $QT'_{o4}(n)$.

Proof. It is straightforward to check that $xi(QT'_{o1}(n)) = xi(QT'_{o2}(n)) = xi(QT'_{o3}(n)) = xi(QT'_{o4}(n)) = 6r^{n-7} + 2$. Let Q be a quasi-tree graph of odd order $n \ge 7$ having $Q \ne QT(n)$ such that xi(Q) is as large as possible, then $xi(Q) \ge 6r^{n-7} + 2$. Suppose that Q has duplicated leaves u_1 and u_2 which are adjacent to the same vertex v, by Lemma 2.3 and Theorem 3.2, $6r^{n-7} + 2 \le xi(Q) = xi(Q - \{u_1, u_2, v\}) \le qf(n-3) = r^{n-3} < 6r^{n-7} + 2$. This is a contradiction, thus Q has no duplicated leaf. We claim that there

exists exactly one cycle in Q. Since $t(n) = r^{n-3} < 6r^{n-7} + 2 \le xi(Q)$ for $n \ge 7$, Q contains at least one cycle. Let x be a vertex such that Q - x is a tree of even order n-1. Suppose that Q contains at least two cycles, then $\deg_Q(x) \ge 3$. By Lemma 2.1 and Theorems 2.6 and 2.7, we have $6r^{n-7} + 2 \le xi(Q) \le xi(Q-x) + xi(Q-N_Q[x]) \le r^{n-3} + 1 + r^{n-5} = 6r^{n-7} + 1 < 6r^{n-7} + 2$, which is a contradiction. In addition, suppose that Q is the cycle C_n , by Lemma 2.5, $xi(C_n) = n < 6r^{n-7} + 2$, hence $Q \ne C_n$.

Let u be a leaf lying on a longest path P joining u and the unique cycle C of Q, say $P=u,v,w,\ldots$ and $\ell(u,C)$ the length from u to C. We claim that $\ell(u,C)\geq 2$. Suppose that $\ell(u,C)=1$ and u is adjacent to $v\in V(C)$, then $Q-N_Q[u]$ is a tree with n-2 vertices and $Q-N_Q[v]$ is a forest with n-4 vertices. By Lemma 2.2, we have $6r^{n-7}+2\leq xi(Q)\leq xi(Q-N_Q[u])+xi(Q-N_Q[v])\leq r^{n-5}+r^{n-5}=4r^{n-7}<6r^{n-7}+2$, which is a contradiction. Hence we obtain that $\ell(u,C)\geq 2$.

Now, we certify that the result is true for n=7. Note that $Q \neq QT(7)$ and Q contains an unique cycle C. Since Q has no duplicated leaf and $\ell(u,C) \geq 2$, there are 12 possibilities for Q. See Figure 5. The

Figure 5: The 12 possibilities for Q

number inside the brackets in Figure 5 indicates the number of maximum independent sets of the corresponding graph of each type. Note that the graph of Type 3 is QT'_{o1} , the graph of Type 5 is QT'_{o2} (or QT'_{o4}) and the graph of Type 12 is QT'_{o3} .

Next, let n = 2k + 1, we will prove the result by induction on $k \ge 3$. The result is true for k = 3. Assume that it is true for all k' < k. We consider the following two cases.

Case 1. $\ell(u,C)=2$. Let H be the component of $Q-N_Q[v]$ containing some vertices of C. Since P is a longest path joining u and C, it follows that every component of $Q-(N_Q[v]\cup V(H))$ is P_1 or P_2 , see Figure 6.

Figure 6: The quasi-tree graph Q in Case 1

So we have that $Q-N_Q[v]=aP_1\cup bP_2\cup H$. Since Q has no duplicated leaves, it follows that a=0 or 1. Suppose that a=1, then H is a tree of odd order n-4-2b. By Theorem 2.6, $xi(H)\leq r^{n-7-2b}$. By Lemma 2.4, $xi(Q-N_Q[v])\leq r^{2b}\cdot r^{n-7-2b}=r^{n-7}$. Hence, by Lemma 2.2 and Theorem 3.1, we have $r^{n-3}+1=qt(n-2)\geq xi(Q-N_Q[u])\geq xi(Q)-xi(Q-N_Q[v])\geq (6r^{n-7}+2)-r^{n-7}=5r^{n-7}+2$, which is a contradiction. Hence we obtain that a=0. It follows that $|H|=n-3-2b\geq 4$ is even and $b\leq \frac{n-7}{2}$. There are two cases depending on the structure of $Q-N_Q[u]$. For the case of $Q-N_Q[u]=QT(n-2)$, it is easy to see that $Q=QT'_{o1}(n)$. For the case of $Q-N_Q[u]\neq QT(n-2)$, by induction hypothesis, $xi(Q-N_Q[u])\leq 6r^{n-9}+2$. By Lemmas 2.2, 2.4 and Theorem 2.6, we have that $6r^{n-9}\geq r^{2b}\cdot (r^{n-5-2b}+1)\geq r^{2b}\cdot xi(H)=xi(Q-N_Q[v])\geq xi(Q)-xi(Q-N_Q[u])\geq (6r^{n-7}+2)-(6r^{n-9}+2)=6r^{n-9}$. Hence the equalities holding imply that $b=\frac{n-7}{2},Q-N_Q[u]=QT'(n-2)$ and $H=P_4$. This means that $Q=QT'_{o1}(n)$, or $QT'_{o3}(n)$.

Case 2. $\ell(u,C) \geq 3$. Let H' be the component of $Q - N_Q[v]$ containing some vertices of P. Since P is a longest path joining u and C, it follows that every component of $Q - (N_Q[v] \cup V(H'))$ is P_1 or P_2 , see Figure 7.

Figure 7: The quasi-tree graph Q in Case 2

So we have that $Q - N_Q[v] = aP_1 \cup bP_2 \cup H'$. Since Q has no duplicated leaves, it follows that a = 0 or 1. Suppose that a = 0, then H' is a quasitree graph containing the unique cycle C of even order n - 3 - 2b. Since H' contains a cycle, by Theorem 3.1 and Lemma 4.6, $xi(H') \leq r^{n-5-2b}$. By

Lemma 2.4, $xi(Q-N_Q[v]) \leq r^{2b} \cdot r^{n-5-2b} = r^{n-5}$. Hence, by Lemma 2.2 and Theorem 3.1, we have $r^{n-3}+1=qt(n-2)\geq xi(Q-N_Q[u])\geq xi(Q)-xi(Q-N_Q[v])\geq (6r^{n-7}+2)-r^{n-5}=4r^{n-7}+2$, which is a contradiction. Hence we obtain that a=1. It follows that $|H'|=n-4-2b\geq 3$ is odd and $b\leq \frac{n-7}{2}$. There are two cases depending on the structure of $Q-N_Q[u]$. For the case of $Q-N_Q[u]=QT(n-2)$, it is easy to see that $Q=QT'_{o4}(n)$. For the case of $Q-N_Q[u]\neq QT(n-2)$, by induction hypothesis, $xi(Q-N_Q[u])\leq 6r^{n-9}+2$. By Lemmas 2.2, 2.4 and Theorem 3.1, we have that $3r^{n-7}\geq r^{2b}\cdot (r^{n-5-2b}+1)\geq r^{2b}\cdot xi(H')=xi(Q-N_Q[v])\geq xi(Q)-xi(Q-N_Q[u])\geq (6r^{n-7}+2)-(6r^{n-9}+2)=6r^{n-9}$. Hence the equalities holding imply that $b=\frac{n-7}{2}$, $Q-N_Q[u]=QT'(n-2)$ and $H'=C_3$. This means that $Q=QT'_{o2}(n)$.

Theorems 4.1 and 4.2 now follow from Lemmas 4.3, 4.5, 4.6, and 4.7.

References

- [1] M. J. Jou, Counting independent sets, Ph.D Thesis, Department of Applied Mathematics, National Chiao Tung University, Taiwan, (1996).
- [2] M. J. Jou and G. J. Chang, The number of maximum independent sets in graphs, Taiwanese J. Math. 4 (2000) 685-695.
- [3] H. Liu and M. Lu, On the spectral radius of quasi-tree graphs, Linear Algebra Appl. 428, (2008) 2708-2714.