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Abstract

In a graph G = (V, E), an independent set is a subset I of V(G) such
that no two vertices in I are adjacent. A mazimum independent set is an in-
dependent set of maximum size. A connected graph (respectively, graph) G
with vertex set V(G) is called a quasi-tree graph (respectively, quasi-forest
graph), if there exists a vertex z € V(G) such that G — z is a tree (respec-
tively, forest). In this paper, we study the problem of determining the large
and the second largest numbers of maximum independent sets among all
quasi-tree graphs and quasi-forest graphs. Extremal graphs achieving these
values are also given.

1 Introduction

In a graph G = (V, E), an independent set is a subset I of V(G) such
that no two vertices in I are adjacent. A mazimum independent set is an
independent set of maximum size. The set of all maximum independent
sets of G is denoted by XI(G) and its cardinality by zi(G).

The problem of determining the largest number of maximum indepen-
dent sets of a graph was studied for various classes of graphs, including
general graphs, trees, forests, (connected) graphs with at most one cy-
cle, connected graphs and triangle-free graphs, see [2]. A connected graph
(respectively, graph) G with vertex set V(G) is called a quasi-tree graph
(respectively, quasi-forest graph), if there exists a vertex z € V(G) such
that G — z is a tree (respectively, forest). The concept of quasi-tree graphs
was mentioned by H. Liu and M. Lu in [3].

The purpose of this paper is to determine the large and the second
largest numbers of maximum independent sets among all quasi-tree graphs
and quasi-forest graphs. Extremal graphs achieving these values are also

given.

ARS COMBINATORIA 108(2013), pp. 403-413



2 Preliminary

In this section, we describe some notations and preliminary results. For a
graph G = (V,E) and a vertex z € V(G), let XI_.(G) ={I e XI(G) : = ¢
I} and X1, .(G) = {I € XI(G) : z € I'}. Note that zi(G) = |XI_.(G)| +
[XI+2(G)|. The cardinality of V(G) is called the order, and it is denoted
by |G|. The neighborhood Ng(z) of a vertex € V(G) is the set of vertices
adjacent to z in G and the closed neighborhood Ng|z] is {z} U Ng(z). Two
distinct vertices v and v are called duplicated vertices if Ng(u) = Ng(v).
The degree of z is the cardinality of Ng(z), denoted by deggy(z). A vertex
z is a leaf if degg(z) = 1. A vertex is called a support vertez if it is adjacent
to a leaf. For a set A C V(G), the deletion of A from G is the graph G — A
obtained from G by removing all vertices in A and their incident edges. Two
graphs G; and G» are disjoint if V(G,) N V(G2) = 0. The union of two
disjoint graphs G and G5 is the graph G;UG> with vertex set V(G1UG2) =
V(G1)UV(G2) and edge set E(G1UG?) = E(G1)UE(G3). nG is the short
notation for the union of n copies of disjoint graphs isomorphic to G. A
component of odd (respectively, even) order is called an odd (respectively,
even) component. Denote by P, a path with n vertices and C,, a cycle with
n vertices. Throughout this paper, for simplicity, let » = v/2. We begin
with the following useful lemmas.

Lemma 2.1. ([1]) For any verter x in a graph G, zi(G) < zi(G — z) +
zi(G — Ng|z]).

Lemma 2.2. ([1]) If z is a leaf adjacent to y in a graph G, then zi(G) <
2i(G - Nala]) +zi(G - Nal).

Lemma 2.3. ([1], [2]) If x1,Z2,...,Zx are k > 2 leaves adjacent to the
same vertez y in a graph G, then 7i(G) = zi(G — {z1,z2, ..., Tk, ¥})-

Lemma 2.4. ([1], [2]) If G is the union of two disjoint graphs Gy and Ga,
then zi(G) = zi(G1)zi(Ga).

Lemma 2.5. ([1]) For an odd integer n > 3, zi(Cp) = n.

The results of the largest numbers of maximum independent sets among
all trees and forests are described in Theorems 2.6 and 2.7, respectively.

Theorem 2.6. ([1}, [2]) If T is a tree with n > 2 vertices, then

r*=241, ifn is even,
3

zi(T) < t(n) = { =3, if n is odd.

Furthermore, zi(T) = t(n) if and only if T = T(n), where T(n) is shown
in Figure 1.



Te(n) To(n)
Figure 1: The graph T'(n)

Theorem 2.7. ([1), [2]) If F is a forest with n > 1 vertices, then

", if n is even,

zi(F) £ f(n) = { =1 ifn is odd.

Furthermore, zi(F) = f(n) if and only if F = F(n), where
2P, if n is even,

Fin) = { Pluzslp, ifn is odd.

3 The largest number of maximum indepen-
dent sets
Theorem 3.1. If Q is a quasi-tree graph with n > 2 vertices, then

_ rm2 41, ifn is even,
zi(Q) < qt(n) = { rn-1 1: iﬁn is odd.,

Furthermore, zi(Q) = qt(n) if and only if Q = QT (n), where

Te(n), if n is even,

QT(n) = { QT,(n), or Cs, ifn is odd,

where QT,(n) is the graph obtained from a cycle C3 by attaching "—;3 paths
of length two to a vertex of the cycle Cs, see Figure 2. The vertez z in
QT,(n) is called the central vertez of QTo(n).

Figure 2: The graph QT,(n)
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Proof. It is straightforward to check that zi(QT(n)) = gt(n). Let Q be
a quasi-tree graph of order n such that zi(Q) is as large as possible, then
zi(Q) > zi(QT(n)) = gqt(n). Let x be the vertex of Q such that Q —z is a
tree. We consider two following cases.

Case 1. nis an even integer. Suppose that Q contains at least one cycle.
Then z is on some cycle of Q, it follows that degg z > 2. By Theorem 2.6,
zi(Q —z) < t(n—1). On the other hand, Q — Ng|z] is a forest with at most
n — 3 vertices, by Theorem 2.7, zi(Q — Ng[z]) £ f(n—3) = f(n—4). Thus,
by Lemma 2.1, we have r"~2 + 1 < zi(Q) < 2i(Q — z) + zi(Q — Ng[z]) <
tin—-1)+f(n=38)=t(n—-1)+ f(n—-4) =r""*+r""4 =r"-2 whichisa
contradiction. Hence, by Theorem 2.6, we obtain that @ = T.(n).

Case 2. n is an odd integer. Since t(n) < gt(n) for n > 3, Q contains
at least one cycle. Then z is on some cycle of Q, it follows that degg x > 2.
Similar to the arguments in Case 1, we have 7"~! +1 < 7i(Q) < i(Q —
z) +zi(Q — Nolz]) S t(n=1)+ f(n=3)=r"3+1 4+ 3 =141
Furthermore, the equalities holding imply that [XI_;(Q)| = zi(Q — z) =
t(n—1) and |XI,(Q)] = zi(Q — Ng[z]) = f(n — 3). By Theorems 2.6 and
2.7, Q —z = Te(n — 1) and Q — Ng[z] = 253P,. Hence we obtain that
Q = QT,(n), or Cs. O

Theorem 3.2. If Q is a quasi-forest graph with n > 2 vertices, then

SCECLE P g

Purthermore, zi(Q) = qf (n) if and only if Q = QF(n), where

3P, if n is even,

QF(n) = { EsU 2Py, ifn is odd.

Proof. It is straightforward to check that zi(QF(n)) = ¢f(n). Let Q be a
quasi-forest graph of order n such that zi(Q) is as large as possible, then
zi(Q) 2 zi(QF(n)) = qf(n). Let = be the vertex of Q such that Q — =z is
a forest. For the case when n is even, suppose that @ contains at least one
cycle, then z is on some cycle of Q. It follows that degy z > 2. Thus, by
Lemma 2.1 and Theorem 2.7, we have that r* < zi(Q) < zi(Q-z)+zi(Q -
Nolz]) € f(n=1)+f(n—38) = f(n—1)+ f(n—4) ="~ 2 47"~ = 3r"~4,
which is a contradiction. Hence, by Theorem 2.7 again, we obtain that
Q=2P,.

Fozr the case when n is odd, since f(n) < gf(n) for n > 3, Q contains at
least one cycle. Then z is on some cycle of Q, it follows that deggz > 2.
Similar to the arguments in the above case, we have that 3r"~2 < zi(Q) <
zi(Q — z) + zi(Q — Ng[z]) £ f(n—1)+ f(n = 3) = r"~1 "3 = 3rn—3,
Furthermore, the equalities holding imply that |XI_.(Q)| = zi(Q — z) =



f(n —1) and |XI,-(Q)| = i(Q — Ng[z]) = f(n — 3). By Theorem 2.7,
Q -z = 2P, and Q — Nglz] = 233P;. Hence we obtain that Q =
CsU "_3P2 O

4 The second largest number of maximum in-
dependent sets

For even n > 6, QT(n) is the graph obtained from QT,(n —1) by adding a
vertex and a new edge joining the vertex and the central vertex of QT,(n —
1); T5 is the graph obtained from two copies of P4 by adding a new edge
joining the support vertices of these two Py's. For odd n > 7, QT.,(n)
and QT/,(n) are the graphs obtained from QT,(5) by attaching 23> paths
of length two to a vertex of degree two of QT,(5); QT,3(n) is the graph
obtained from Cs by attaching 252 paths of length two to a vertex of Cs;
QT?,(n) is the graph obtained from QT,(n — 4) by adding a P4 and a new
edge joining a support vertex of P4 and the central vertex of QT,(n — 4),

see Figure 3.
QT:(n)
QT (n) QT5(n) QT%5(n) QTo4(n)

Figure 3: The graph QT'(n)

Define the graphs QT"(n) and QF/(n) as follows.

QT!(n), or Ps, or T if n > 6 is even,
QT'(n) ={ QT (n), or QT5e(n),
or QT}3(n), or QT4,(n), ifn > 7is odd.
and

QF'(n)= { PaUF Py or CsUPUREP, ifn > 4is even,
T QT (5) U2:8P,, or CsU % 5P2, if n > 5 is odd.



Let gt'(n) = zi(QT'(n)) and gf’(n) = zi(QF'(n)). By simple calcula-

tion, we have

#(n) = -2, if n > 6 is even,
T =1 67742, ifn>7isodd.

and

£(n) = 3rn—4, if n >4 is even,
9 ~ ] 55, ifn>5isodd.

We will prove the following two results.

Theorem 4.1. If Q is a quasi-tree graph with n > 6 vertices having Q #
QT (n), then zi(Q) < qt'(n) with the equality holding if and only if Q =
QT'(n).

Theorem 4.2. If Q is a quasi-forest with n > 4 wvertices having Q #
QF(n), then zi(Q) < gf'(n) with the equality holding if and only if Q =
QF'(n).

We prove Theorems 4.1 and 4.2 by verifying the following four lemmas.

Lemma 4.3. If Q is a quasi-forest graph of even order n > 4 having
Q # QF(n), then zi(Q) < 3r"~* with the equality holding if and only if
Q=PuU "T_‘tpz, orCz3UP U Zl-2-—41)2.

Proof. 1t is straightforward to check that zi(P; U 252 P;) = zi(C3 U P, U
’-‘;,_,'APg) = 3r"4, Let Q be a quasi-forest graph of even order n > 4 having
Q # QF(n) such that zi(Q) is as large as possible. Then zi(Q) > 3r"~4.
We consider the following two cases.

Case 1. Q contains no cycle. Suppose that there exist two odd com-
ponents Hy and H; of Q, where {H;| = n; for i = 1,2. By Lemma 2.4,
Theorems 2.6 and 2.7, we have that 3r"~* < zi(Q) = zi(H,) - zi(Ha) -
zi(Q — (V(H1) UV (H)) g r™—3.pna=3  pn—mi—na = pn=6 o 3pn—4 This
is a contradiction. Hence @ has no odd component. Since @ # QF(n),
there exists an even component H of order m > 4. By Theorem 2.6,
zi(H) < t(m) = r™~2 + 1. On the other hand, by Lemma 2.4 and Theo-
rem 2.7, 3r"% < 2i(Q) = zi(H) - zi(Q - V(H)) < (r™ 2 +1).r ™ =
=2 4 pn—m < 3pn—4 where m > 4. Thus the equality holds, and we can
see that H = P, and Q — V(H) = 25* P,. In conclusion, Q = P, U 24P,

Case 2. Q contains at least one cycle. Let z be the vertex of Q such
that Q — z is a forest of odd order n — 1. Then z is on some cycle of
Q, it follows that deggz > 2. By Theorem 2.7, zi(Q — z) < f(n —1).



On the other hand, Q@ — Ng[z] is a forest with at most n — 3 vertices, by
Theorem 2.7, zi(Q — Ng|z]) < f(n — 3) = f(n - 4). Thus, by Lemma 2.1,
we have that 3r*~* < zi(Q) < zi(Q — z) + zi(Q — Ng[z]) < f(n~1) +
fin=3) = f(n—=1) + f(n - 4) = T2 4+ "4 = 3r"~4, Furthermore,
the equalities holding imply that [XI_:(Q)| = zi(Q — z) = f(n — 1) and
[XL,+(Q)| = 2i(Q@ = Nafz)) = f(n —3) = f(n — 4). By Theorem 2,
Q-z =P U22P, and Q — Ng(z] = P, U 252P; or 254 P,. Hence we
obtain that Q = C’3 uP U3 4P2 O

Since every forest is a quasi-forest graph, by Lemma 4.3, we have the
following immediately.

Corollary 4.4. The graph P4Ul'2ﬁP2 is a forest of order n with the second
largest number of mazimum independent sets.

Lemma 4.5. If Q is a quasi-forest of odd order n > 5 vertices having
Q # QF(n), then zi(Q) < 5r™ 5 with the equality holding if and only if
Q=QT,(5u ——Pg, or Cs U 5 5P2

Proof. 1t is straightforward to check that zi(QTo(5) U 252 P,) = zi(Cs U
258 P,) = 575, Let Q be a quasi-forest graph of odd order n > 5 having
Q # QF(n) such that zi(Q) is as large as possible. Then zi(Q) > 5r"~°.
Since f(n) = v ! < 5% < 7i(Q) for n > 5, Q contains at least one
cycle. Let H be the component of @ which is not a tree, then |H| =
m > 3. Suppose that m is even, by Theorems 2.7 and 3.1, we have that
5r"~8% < 24i(Q) = zi(H) - 2i(Q = V(H)) < (r™~2+1) .7n~m-1 = pn—3 4
rn—m—1 < 3p7=5  This is a contradiction, thus we obtain that m is odd.
For the case of m = 3, that is, H = Cj3. It follows from Q # QF(n) that
Q-V(H) # “"3P2 By Theorem 4.3 and Corollary 4.4, we have that
5775 < 7i(Q) = zi(H) - zi(Q — V(H)) < 3. (3r™~ ") = 9r"‘7 which is a
contradiction. For the case of m > 5, by Theorems 2.7 and 3.1, we have
5r7—8 < 7i(Q) = zi(H) - zi(Q — V(H)) < (7™~ 1+ 1) -y~ = -1 4
r»=m < 5r"=5_ Rurthermore, the equalities holding imply that m = 5. By
Theorems 2.7 and 3.1 again, H QT,(5) or C5 and Q — V(H) = 2;2P,.
In conclusion, Q@ = QT,(5) U & Pz, or Cs U B 5P2 O

Lemma 4.6. If Q is a quasi-tree of even order n > 6 having Q # QT'(n),
then zi(Q) < r™~2 with the equality holding if and only if @ = QT!(n), or
Ps, or Ts.

Proof. 1t is straightforward to check that zi(QT!(n)) = r™~2, zi(Ps) =
4 = r%-2 and zi(T3) = 8 = r®2. Let Q be a quasi-tree graph of even
order n > 6 having Q # QT(n) such that zi(Q) is as large as possible.
By Theorem 3.1, "2 < 7zi(Q) < gt(n) =1 = (™2 +1) -1 = ™2,
hence zi(Q) = r"~2. Suppose that Q has duplicated leaves u; and u,



which are adjacent to the same vertex v, by Lemma 2.3 and Theorem 2.7,
2 = 7i(Q) = zi(Q — {u1,u2,v}) < gf(n —3) = 3r"~%. This is a
contradiction, thus @ has no duplicated leaf. We claim that @ contains
at least one cycle except Ps and Tg. Suppose that @ is a tree and u is
a leaf on a longest path of Q, say P = u,v,.... The possible graphs Q
with the property of Q —u = T(n — 1) or @ — N{u] = T'(n — 2) are shown
in Figure 4. The number inside the brackets in Figure 4 indicates the
number of maximum independent sets of the corresponding graph. Note
that TM)(n) = Te(n), TP (6) = T¥(6) = Ps and T®)(8) = T3. By simple
calculation, we have zi(T®)(n)) < r"~2 for i = 2,3,4 when n > 10.

ITY WY AT T

TM(n) T (n) T®) (n) T (n)
[r*—2 +1] [377C +1] [3rm=6 + 2] [rm% + 2]

Figure 4: The possible graphs Q

Thus, by Lemma 2.1, we have that "2 = zi(Q) < zi(Q — u) + zi(Q —
Ng[y)) £ (r"~*=1) + (r"~*+1—1) = r"~2 — 1, which is a contradiction.
It follows that Q contains at least one cycle. Let z be a vertex such that
Q — z is a tree of odd order n — 1. Then z is on some cycle of @, it follows
that deggz > 2. By Theorem 2.6, zi(Q — z) < t(n —1). On the other
hand, Q — Ng|z] is a forest with at most n — 3 vertices, by Theorem 2.7,
zi(Q — Ng[z]) < f(n —3) = f(n — 4). Thus, by Lemma 2.1, we have
=2 = zi(Q) < zi(Q—z)+zi(Q— Ng|z]) L t(n—1)+f(n—-3) =t(n—-1)+
f(n—4) =% 4+ "% = =2, Furthermore, the equalities holding imply
that |XI_(Q)| = zi(Q — z) = t(n — 1) and |XI,2(Q)| = zi(Q — Ng[z]) =
f(n—3) = f(n—4). ByTheorems26and27 Q—z=2Ty(n—-1) and
Q- Ng|z} = PUZ54P; or 254 P,. Hence we obtain that Q = QT,(n). O

Lemma 4.7. If Q is a quasi-tree graph of odd order n > 7 having Q #
QT (n), then zi(Q) < 6r™7 + 2 with the equality holding if and only if
Q = QT;,(n), or QT5(n), or QT5(n), or QTL4(n).

Proof. 1t is straightforward to check that zi(QT;;(n)) = zi(QTn(n)) =
zi(QT 5(n)) = 7i(QT.4(n)) = 6r"~7 + 2. Let Q be a quasi-tree graph of
odd order n > 7 having Q # QT'(n) such that zi(Q) is as large as possible,
then zi(Q) = 6r™~7 + 2. Suppose that Q has duplicated leaves u; and ug
which are adjacent to the same vertex v, by Lemma 2.3 and Theorem 3.2,
6r"7 + 2 < zi(Q) = zi(Q — {u1,u2,v}) L gf(n—-8) =r" 3 < 6r"7 + 2.
This is a contradiction, thus @ has no duplicated leaf. We claim that there
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exists exactly one cycle in Q. Since t(n) = "3 < 6r"~7 + 2 < 7i(Q) for
n > 7, @ contains at least one cycle. Let 2 be a vertex such that Q — z
is a tree of even order n — 1. Suppose that Q contains at least two cycles,
then degg(z) > 3. By Lemma 2.1 and Theorems 2.6 and 2.7, we have
6r°7 + 2 < zi(Q) < zi(Q —z) + zi(Q — No[z]) < 3+ 145 =
6r7=T+1< 6r=7 + 2, which is a contradiction. In addition, suppose that
Q is the cycle Cy,, by Lemma 2.5, zi(Cp,) = n < 6r™~7 4+ 2, hence Q # C,..

Let u be a leaf lying on a longest path P joining u and the unique
cycle C of Q, say P = u,v,w,... and {(u,C) the length from u to C. We
claim that £(u,C) > 2. Suppose that é(u,C) = 1 and u is adjacent to
v € V(C), then Q — Ng[u] is a tree with n — 2 vertices and Q — Ng[v] is
a forest with n — 4 vertices. By Lemma 2.2, we have 6"~ 7 + 2 < zi(Q) <
7i(Q — No[u]) + zi(Q — Ng[v]) < r*~° +7"% = 4r"~7 < 6r™~7 + 2, which
is a contradiction. Hence we obtain that £(u,C) > 2.

Now, we certify that the result is true for n = 7. Note that Q #
QT(7) and Q contains an unique cycle C. Since Q has no duplicated leaf
and £(u,C) > 2, there are 12 possibilities for Q. See Figure 5. The

FCR R A

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
1] (2] 8] 7] (8] 2]

Y g 0, o O

*—e [ —=o
Type 7 Type 8 Type 9 Type 10 Type 11 Type 12
1] (1) 2] (1] (2] (8]

Figure 5: The 12 possibilities for @

number inside the brackets in Figure 5 indicates the number of maximum
independent sets of the corresponding graph of each type. Note that the
graph of Type 3 is QT};, the graph of Type 5 is QT., (or QT.,) and the
graph of Type 12 is Q7.

Next, let n = 2k + 1, we will prove the result by induction on k > 3.
The result is true for £k = 3. Assume that it is true for all ¥’ < k. We

consider the following two cases.
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Case 1. {(u,C) = 2. Let H be the component of Q — Ng[v] containing
some vertices of C. Since P is a longest path joining v and C, it follows
that every component of Q — (Ng[v] UV (H)) is P, or P,, see Figure 6.

Figure 6: The quasi-tree graph @ in Case 1

So we have that Q@ — Ng[v] = aP, UbP, U H. Since Q has no duplicated
leaves, it follows that a = 0 or 1. Suppose that @ = 1, then H is a
tree of odd order n — 4 — 2b. By Theorem 2.6, zi(H) < r*~7-% By
Lemma 2.4, zi(Q — Ng[v]) < r?® . r»~7-20 = r7=7, Hence, by Lemma 2.2
and Theorem 3.1, we have =3 +1 = gt(n—2) > zi(Q — Ng[u]) > zi(Q) -
zi(Q — Ng[v]) = (6r™~7 +2) —r™~7 = 5r"~7 + 2, which is a contradiction.
Hence we obtain that a = 0. It follows that [H] = n—3—2b > 4 is
even and b < &'2'—7 There are two cases depending on the structure of
Q—Ng[u]. For the case of Q— Ng[u] = QT(n—2), it is easy to see that Q =
QT (n). For the case of Q — Ng[u] # QT (n —2), by induction hypothesis,
zi(Q — Nglu]) < 6r"~9 + 2. By Lemmas 2.2, 2.4 and Theorem 2.6, we
have that 6r"~° > 72 . (r7=5-20 1 1) > 2. zi(H) = zi(Q — Ng[v]) >
zi(Q) — zi(Q — Ng[u}) = (6r"~7 + 2) — (6r"° + 2) = 6r"~°. Hence the
equalities holding imply that b = 35—7, Q-Nglu] =QT'(n—2)and H = P,.
This means that Q = QT},(n), or QT 3(n).

Case 2. {(u,C) > 3. Let H' be the component of @ — Ng[v] containing
some vertices of P. Since P is a longest path joining u and C, it follows
that every component of Q — (Ng[v]U V(H")) is P, or P,, see Figure 7.

Figure 7: The quasi-tree graph @ in Case 2

So we have that Q — Ng[v] = aP, UbP; U H'. Since Q has no duplicated
leaves, it follows that a = 0 or 1. Suppose that a = 0, then H' is a quasi-
tree graph containing the unique cycle C of even order n — 3 —2b. Since H'
contains a cycle, by Theorem 3.1 and Lemma 4.6, zi(H') < r»~5-20, By
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Lemma 2.4, zi(Q — Ng[v]) < r? . r7~8=20 — 7n=5  Hence, by Lemma 2.2
and-Theorem 3.1, we have r* 3 +1 = gt(n —2) > zi(Q — Ng[y]) > zi(Q) —
zi(Q — Ng[v]) > (6r"~7 +2) —r™~5 = 4r"~7 4.2, which is a contradiction.
Hence we obtain that a = 1. It follows that |H'| =n—4—-2b > 3 is
odd and b < 23T, There are two cases depending on the structure of
Q- Ng[u]. For the case of Q—Ng|u] = QT (n—2), it is easy to see that Q =
QT.4(n). For the case of Q — Ng[u] # QT (n — 2), by induction hypothesis,
zi(Q — No[u]) < 6r"~% + 2. By Lemmas 2.2, 2.4 and Theorem 3.1, we
have that 3r"~7 > r2. (r"=5-20 1 1) > r® . zi(H') = zi(Q — Ng[v]) >
7i(Q) — zi(Q — Nolu]) = (6r™7 + 2) — (6r"~% + 2) = 6r"~°. Hence
the equalities holding imply that b = "—2‘—7, Q — Nglu] = QT'(n — 2) and
H' = C3. This means that Q = QT’,(n). O

Theorems 4.1 and 4.2 now follow from Lemmas 4.3, 4.5, 4.6, and 4.7.
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