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1. Introduction and preliminaries

The monoid of endomorphisms of a graph has been the object of re-
searches in the theory of semigroups for quite some time (cf.[1,2]). The
graphs for which different endomorphism classes coincide (i.e. various un-
retractivities) is one of the main themes in this line, and as justification
for the investigation one takes the rich algebra structure which is put on a
graph by its endomorphism classes and the numerous questions connected
with them (cf.[3]). Among open questions raised in {3] are: Do there ex-
ist graphs of endotype 9 and 25?7 What are conditions on a graph G for
various unretractivities of G? A general answer to these questions seems
to be difficult (c.f. [4]). Undoubtedly bipartite graphs constitute one of
the most important families of graphs. In this paper bipartite graphs with
E-H- unretractivity are explicitly presented, and furthermore it is proved
that there is no bipartite graph with endotype 1 mod 4.

We consider only finite undirected graphs without loops and multiple
edges. If G is a graph, we denote by V(G) (or simply G) and E(G) its vertex
set and edge set respectively. By K, we denote a complete graph with n
vertices and by C,, a cycle with n vertices. It is well known that a graph is
bipartite if and only if it does not contain any C,, where n is an odd number,
and therefore trees constitute a special class of bipartite graphs. An empty
graph with n vertices is denoted by K. The distance of the vertices a and
bin G is denoted by dg(a, b). The diameter of a connected graph G(# K;)
is denoted by diam(G) and define diam(K;) = 0. A subgraph H of G is
called isometric if for any z,y € H, dy(z,y) = dg(z,y). The length of the
shortest cycle (if it exists) of a graph G is called the girth of G, denoted
by gir(G). We use nG to represent a graph composed of n graphs each of
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which is isomorphic to a connected graph G. A complete bipartite graph
G(V1 UV, E) with |[Vj| =m > 1 and |V2| = n > 1is denoted by Ky 0. A
graph K n is also called a star. Let Gi and G2 be graphs with disjoint
vertex sets. The union of G; and Gs, denoted by G1 UGa, is a graph such
that V(G1 U G;) = V(G1) U V(G2) and E(G, UG:) = E(G1)U E(Gs). A
component K is also called an isolated vertex of G. For a vertex a € G, let
N(a) = {z € G|{z,a} € E(G)} (the neighborhood of a in G), and |N(a)|
is called the degree of @ in G, denoted by degg(a) or simply deg(a) if it is
clear which graph G is referred to. The usual concepts such as connected
graph, complete bipartite graph, complete graph, empty graph, path, cycle
etc., which are not defined in this paper, can be found in [5].

The following definitions of various types of endomorphisms are mainly
based on [3]. If G and H are graphs, then a mapping f : V(G) = V(H)
is called a homomorphism (or morphism) from G to H if {a,b} € E(G)
implies that {f(a), f(b)} € E(H) for any a,b € G. Moreover, if f is bi-
jective and its inverse mapping is also a homomorphism (from H to G),
then f is called an isomorphism from G to H. An endomorphism of
G is a homomorphism from G to itself. An endomorphism is called a
strong endomorphism if {f(a), f(b)} € E(G) implies that {a,b} € E(G)
for any a,b € G. A bijective endomorphism of a graph G is called an
automorphism of G. Evidently, an automorphism of a graph G is an iso-
morphism from G to itself. Let f be an endomorphism of graph G and let
a € G. Denote f~!(a) := {z € G|f(z) = a}. An endomorphism f is called
a half-strong endomorphism if {f(a), f(b)} € E(G) implies that there exist
c € f~Y(f(a)) and d € f~1(f(b)) such that {c,d} € E(G). An endomor-
phism f is called a locally strong endomorphism if {f(a), f(b)} € E(G)
implies that for any ¢ € f~!(f(a)), there exists d € f~1(f(b)) such that
{¢,d} € E(G). An endomorphism f is called a quasi-strong endomorphism
if {f(a), f(b)} € E(G) implies that there exists ¢ € f~(f(a)) such that for
any d € f~1(f(b)), {c,d} € E(G), where a,b,c,d € G.

By End(G), hEnd(G), |End(G), ¢End(G), sEnd(G) and Aut(G) we
denote the set of endomorphisms, half strong endomorphisms, locally strong
endomorphisms, quasi-strong endomorphisms, strong endomorphisms and
automorphisms of the graph G, respectively. Obviously, End(G) 2 hEnd(G)
D lEnd(G) D ¢End(G) 2 sEnd(G) 2 Aut(G). It is well-known that
End(G) and sEnd(G) are monoids (a monoid is a semigroup with an iden-
tity element) and that Aut(G) is a group with respect to the composi-
tion of mappings, while hEnd(G), |End(G) and ¢End(G) are not monoids
in-general. The coincidence of these endomorphism classes gives rise to
various unretractivities of a graph. In particular, a graph G is called E-
H-unretractive (respectively, E-S-unretractive and E-A-unretractive etc.)
if End(G) = hEnd(G) (respectively, End(G) = sEnd(G) and End(G) =
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Aut(QG) etc.) If graph G is E-A-unretractive, we also call it simply unretrac-
tive. In [1] E-S-unretractivity, E-A-unretractivity and S-A-unretractivity
of a graph are studied. In [6] E-A-unretractivity and S-A-unretractivity of
joins and lexicographic products of graphs are characterized. Relationships
among endomorphism classes of trees are explored in [7].

Let f € End(G). A subgraph of G is called the endomorphic image of
G under f, denoted by Iy, if V(If) = f(G), and {f(a), f(b)} € E(I;) if and
only if there exist c € f~!(f(a)) and d € f~1(f(b)) such that {c,d} € E(G),
where a,b,¢,d € V(G) (cf.[8] for the reasonableness of this definition). An
element a of a semigroup S is called an idempotent if a®> = a (cf. [9]). The
set of idempotents of End(G) is denoted by Idpt(G). Each f € Idpt(G) is
also called a retraction of G. If f is a retraction of graph G, the subgraph
induced by f(G)(= {f(z)|z € G}) (i.e. the induced subgraph with vertex
set f(Q)) is called a retract of G (cf.[6,10,11]).

Proposition 1.1.
(1) [1, Example 1.2] The cycles with odd lengths are unretractive.
(2) [7, Propositions 2.1 and 3.1] Any tree is E-H-unretractive.

Proposition 1.2. [12, Remark 1.3} Let f € End(G) for a graph G and
leta,be@G.
(1) If G is connected , then Iy is connected;

(2) d!; (f(a)’ f(b)) < dG(a’b)'

Proposition 1.3.

(1) [11, Theorem 5] Every isometric tree T(# K1) in a bipartite graph
G is a retract of G, i.e. there exists f € Idpt(G) such that T is a subgraph
of G induced by f(G).

(2) [3, Proposition 2.2] Idempotent endomorphisms of graph G are ele-
ménts of hEnd(G).

(3) (13, Lemma 2.1(1)] Let G be a graph and let f € End(G). Then
f € hEnd(G) if and only if Iy is an induced subgraph of G.

Proposition 1.4. Let G be a bipartite graph and let P be a path in G.
If P is a geodesic, there exists f € Idpt(G) such that Iy = P.

Proof. Obviously, P is an isometric tree in G, and so by Proposition
1.3(1), there exists f € Idpt(G) such that P is the subgraph induced by
f(G). By Proposition 1.3(2) f € hEnd(G), and so by Proposition 1.3(3)
I; is an induced subgraph of G. Hence Iy = P. O
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2. E-H-unretractive bipartite graphs

In this section, we will explicitly characterize bipartite graphs with E-
H-unretractivity (Theorem 2.10). First, we consider connected bipartite
graphs.

Lemma 2.1. Let G be a connected bipartite graph with cycles. If
diam(G) < ¢ir(G) — 2, G is E-H-unretractive.

Proof. Assume G is not E-H-unretractive. Then there exists f €
End(G) \ hEnd(G). Thus there exist a,b € G such that {f(a), f(b)} €
E(G). whereas {z,y} ¢ E(G) forany z € f~'(f(a)) andany y € f=*(f(b)),
and so by the definition of the image of an endomorphism, {f(a), f(b)} &
E(Iy). Since G is connected, by Proposition 1.2(1) Iy is connected, and so
in Iy there is a geodesic P connecting f(a) and f(b) with length dy, (f(a),
f(b)). Therefore PU{f(a), f(b)} is a cyclein G with length dy, (f(a), f(b))+
1. Then gir(G) < dr,(f(a), f(b))+1. Furthermore, gir(G) < dg(a,b)+1 <
diam(G)+1 by Proposition 1.2(2), which contradicts diam(G) < gir(G)—-2.
0

Lemma 2.2. Let G be a graph, and let f € Idpt(G). Then for any
ax Iz, f(a) =a.

Proof. Since a € Iy and f2 = f, there exists z € G such that f(z) =a
and so f(a) = f(f(2)) = f(z) =a. O

The next theorem characterizes connected bipartite graphs with E-H-
unretractivity.

Theorem 2.3. Let G be a connected bipartite graph. Then G is E-H-
unretractive if and only if G is a tree or diam(G) < gir(G) -2 .

Proof. Sufficiency is by Proposition 1.1(2) and Lemma 2.1.

Necessity. Now suppose G is not a tree and diam(G) > gir(G) — 1.
Let gir(G) = n(= 4,6,8,...) and let diam(G) = d. Sod > n—1 and
there exists a geodesic P in G with length d, denoted by P = a,a3...a4+1.
By Proposition 1.4 there exists f € Idpt(G) such that Iy = P. Let C, =
b1ba...bn be a cycle in G with length n(= gir(G)). Now we define a mapping
g 3s the composition of two morphisms, one is f and the other maps P to
C, by the rules a; — b; (for 1 < ¢ < n), a; = by—1 (for i odd and
i >n+1), and a; — b, otherwise. Clearly, g € End(G). If g € hEnd(G),
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the edge {b1,b,} is the image of g, say g({z,y}) = {b1,bn}, with g(z) = b,
and g(y) = b,. Then f({z,y}) = {a1,a;}, with j € {n +2,n +4,...},
contradicting the fact that P is a geodesic. O

In particular, we see immediately the following:
Corollary 2.4. All cycles are E-H-unretractive.

Proof. Notice all cycles with odd lengths are unretractive (Proposition
1.1(1)) and all cycles Capn(m > 2) satisfy the condition in Theorem 2.3,
i.e. diam(Com) =m < m + (m —2) = 2m — 2 = gir(Com) — 2. The result
follows immediately. O

_Now, we consider E-H-unretractivity of non-connected bipartite graphs.
First, we list several lemmas as follows:

Lemma 2.5. Let G be a bipartite graph with n(> 2) components.

(1) If each component is K, i.e. G = K, then G is E-H-unretractive;

(2) If each component of G is K3 or Ky ;m(m > 2) (i.e. a star), then G
is E-H-unretractive.

Proof. (1) By the definition of a half-strong endomorphism, G is triv-
ially E-H-unretractive.

(2) Suppose f € End(G). Let a,b € G such that {f(a), f(d)} € E(G).
As G has no isolated vertices, there exist z,y € G with {a,z} € E(G) and
{b,y} € E(G). So {f(a), f(z)} € E(G) and {f(t), f(y)} € E(G). If the
edge {f(a), f(b)} is exactly a component K of G, then f(z) = f(b), i.e.
there exist z € f~1(f(b)) and a € f~!(f(a)) such that {a,z} € E(G). If
{f(a), f(b)} belongs to a component K ,» where m > 2, then clearly either
deg(f(a)) = 1 and deg(f(b)) = m or deg(f(b)) =1 and deg(f(a)) =m. In
the former situation, we have f(z) = f(b), i.e. there exist z € f1(f(d))
and a € f~!(f(a)) such that {a,z} € E(G). In the latter situation, we
have f(y) = f(a), i.e. there exist y € f~*(f(a)) and b € f~1(f(b)) such
that {b,y} € E(G). Hence f € hEnd(G). O

Lemma 2.8. Let G be a bipartite graph with n(> 2) components. If

ezactly one component is K, while any of the other components is K, then
G is E-H-unretractive.

Proof. Suppose f € End(G). Let a,b € G such that {f(a), f(b)} €
- E(G). Clearly at least one vertex of a and b, say a, is not an isolated
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vertex of G. Then there exists ¢ € G such that {a,c} is a component K,
of G, and so {f(a), f(c)} is also a component K> of G. Thus f(b) = f(c),
i.e. there exist a € f~1(f(a)) and ¢ € f~1(f(b)) such that {a,c} € E(G),
which implies f € hEnd(G). O

Lemma 2.7. Let G be a bipartite graph with n(> 2) components. If
ezactly one component is K2 while any of the other components is K, then
G is E-H-unretractive.

Proof. Suppose f € End(G). Let a,b € G such that {f(a), f(b)} €
E(G). Let {u,v} be the unique component K, of G. Thus {f(a), f(b)} =
{u,v}, say, f(a) = u and f(8) = v. So u € f(f(a)) and v € f1(f(8))
such that {u,v} € E(G), which implies f € hEnd(G). O

Lemma 2.8. Suppose G is a non-connected bipartite graph with isolated
vertices. If there exists a component G; in G such that diam(G;) > 2 or
G =mK,UnK; where m > 2,n > 2, then End(G) # hEnd(G).

Proof. Firstly, suppose there exists a component being K = {a} and
a component Gy with diam(G1) > 2. Then there exist u, u;, 42 € G such
that the path P = uujus is a geodesic of G. By Proposition 1.4, there
exists f € Idpt(G \ {a}) such that Iy = ujus. Now define a mapping g
by the rules g = f on G\ {a} and g(a) = u. It is routine to check that
g € End(G) \ hEnd(G).

" Secondly, suppose G isa union of n(> 2) isolated vertices, say, a1, as, ...,
Qn, and m(Z 2) components KgS, say, {03113/1}, {327y2}1"'7{xm1 ym}‘ De-
fine a mapping g from V(G) to itself by the following rule:

9(z:) = 21 and g(y:) = y1 for any i € {1,2,...,m};

g(a1) = z and g(a;) = y» for any j € {2,3,...,n}.

It is easy to check g € End(G). Notice {g(a1),g(a2)} = {z2,92} €
E(G). However, since g7(g(a1)) = g7 (z2) = {a1} and g7'(g(a2)) =
97 (32) = {@2,03,...,an}, so for any s € g~ (g(a1)) and any ¢ € g~*(g(a2)),
{s,t} ¢ E(G). Thus g € hEnd(G). O

Lemma 2.9. Suppose G is a non-connected bipartite graph without
isolated vertices. Then End(G) # hEnd(G) if some component of G has a
path of length 3.

Proof. Let ujususuy be a path of length 3 in G and let G be the union

of two disjoint graphs G; and G,. Define f as follows: it maps G to uju.
(with one bipartition class of Gi mapped to u; and the other to u,), and

420



it maps G2 to uzuy (with one bipartition class of G2 mapped to u3 and
the other to u4). Clearly, f € End(G), and since no edge is mapped onto
{u2,u3}, f € hEnd(G). O

Note that for a connected bipartite graph G, diam(G) = 0 if and only
if G = Ky; diam(G) = 1 if and only if G = Kj; diam(G) = 2 if and only
if G = K n with maz{m,n} > 2. Now we characterize E-H-unretractive
bipartite graphs in the following theorem, and the proof should be clear by

all the foregoing.

Theorem 2.10. Let G be a bipartite graph with n(> 1) components
Then G is E-H-unretractive if and only if G belongs to one of the following
cases:

(1) G is a tree;

(2) n =1 aend diam(G) < gir(G) - 2;

(3) n > 2 and each component is K1, i.e. G = K,;

~(4) n > 2, and each component is Ka or Ky m(m > 2) (i.e. a star);

(5) n > 2, and ezactly one component is K, while any of the other
components is Ko;

(6) n > 2, and exactly one component is Ko while any of the other
components is K,.

3. No bipartite graphs with endotype 1 mod 4.

Lemma 3.1. Let G be a bipartite graph. If there ezists a component
G1 of G such that diam(G,) > 3, then hEnd(G) # lEnd(G).

Proof. Since diam(G,) > 3, there exists a geodesic P = aja2a3a4 in
G:. By Proposition 1.4, there exists f € Idpt(G) such that Iy = P. Define
a mapping g as the composition of two morphisms, one is f and the other
maps P to itself by the rule a; — a;(i = 1,2,3) and a4 — a;. Note f is
half strong (Proposition 1.3(2)). Evidently, g € hEnd(G).

We now show g ¢ [End(G). Note {g(a1),g(as)} = {a1,a2} € E(G).
Suppose there exists z € g~1(g(a;)) such that {z,a,s} € E(G). Then by
Lemma 2.2 {a1,a4} = {f(a1), f(a4)} = {f(2), f(as)} € E(G), contradict-
ing the fact P = ajasasa, is a geodesic. O

Lemma 3.2. Let G be a non-connected graph but G # Kn(n > 2). If
G contains isolated vertices, hEnd(G) # lEnd(G).

421



Proof. Without loss of generality, let G1,G2,--+,Gn(n > 2) be n
components of G such that G; = K1={c} and there exist a,b € G2 with
{a,b} € E(G2)(C E(G)). Let f be a mapping from V(G) to itself such
that f(c) = a and f(z) = z for any z € G\ {c}. Clearly f € hEnd(G) with
{£(c), f(b)} = {a,b} € E(G). Since ¢ € f~}(f(c)) and f~(£(b)) = {b}
with {c,b} € E(G), f € lEnd(G). D

Lemma 3.3. Let G be a non-connected bipartite graph. If each com-
ponent of G is Ky or Ky n(maz{m,n} > 2) and G # sKaz(s > 2), then
hEnd(G) # lEnd(G).

Proof. Let G = G; U H such that G; = Kp,n with maz{m,n} > 2.
Then diam(G;) = 2 and so we may let P = ajaz2as be a geodesic of G;.
Then by Proposition 1.4, there exists f € Idpt(G) such that Iy = P. Let
e = {u,v} € E(H). Then there exists g € Idpt(H) such that I, = e.
Define a mapping h from V(G) to itself by the following rule: h(z) = f(z)
ifz € Gi; M) = az if z € g7 (u); h(z) = a3 if 2 € g7 (v). It is
easy to see that » € hEnd(G). We now show that h € {End(G). Since
g € Idpt(H) and u € I,, by Lemma 2.2, g(u) = u and so h(u) = as.
Then {h(a1), h(u)} = {a1,a2} € E(G). Note u € h=!(h(u)) N V(H) and
h=t(h(a1)) = h~*(a1) € V(G1). So {u,z} & E(G) for any z € k™! (h(a1)),
which implies & € |End(G). D

Theorem 3.4. Let G be a bipartite graph. Then

(1) hEnd(G) = lEnd(G) if and only if End(G) = lEnd(G);
(2) hEnd(G) = qEnd(G) if and only if End(G) = qEnd(G);
(3) hEnd(G) = sEnd(G) if and only if End(G) = sEnd(G);
(4) hEnd(G) = Aut(G) if and only if End(G) = Aut(G).

Proof. Sufficiency is obvious for all four cases, and we only need to
prove necessity for each case.

(1) Let hEnd(G) = lEnd(G). By Lemmas 3.1,3.2 and 3.3, G = K n
(maz{m,n} > 2) or G = nKa(n > 2) or G = K,(n > 1). Then by
Theorem 2.10, hEnd(G) = End(G) and so End(G) = lEnd(G).

(2) Since hEnd(G) = qEnd(G), hEnd(G) = lEnd(G), and so by
(1) End(G) = lEnd(G). Hence End(G) = hEnd(G) and furthermore
End(G) = ¢End(G).

(3) Since hEnd(G) = sEnd(G), hEnd(G) = lEnd(G), and so by
(1) End(G) = lEnd(G). Hence End(G) = hEnd(G) and furthermore
End(G) = sEnd(G).

(4) Since hEnd(G) = Aut(G), hEnd(G) = lEnd(G), and so by (1)
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End(G) = lEnd(G). Hence End(G) = hEnd(G) and furthermore End(G)
= Aut(G). O

The next corollary follows directly from the above theorem.

Corollary 3.5. Let G be a bipartite graph. The equality hEnd(G)
= End(G) follows from any of the following egualities: (1) hEnd(G) =
lEnd(G); (2) hEnd(G) = gEnd(G); (3) hEnd(G) = sEnd(G); (4) hEnd(Q)
= Aut(G).

We now quote the definitions of endospetrum and endotype of a graph
G in [3] as follows:

Endospec(G) = (|End(G)|, |hEnd(G)|, L End(G)|, |gEnd(G)|, |sEnd(G)|,
|Aut(G)]) and call this 6-tuple the endospetrum of G, and a 5-tuple (sy, sz,
s3, 84, 85) is associated with the above sequence where s; = 1 stands for
” # ” while 8; = 0 stands for ” =", e.g. 8, = 1 stands for [End(G)| #
|hEnd(G)|. The integer 3"o_, 8;2~" is called endotype of G and is denoted
as endotype(G). Thus, in principle for any graph there are 32 possible
endotypes: from 0 to 31.

In [3, P56) a question was raised: Do there exist graphs of endotypes 9
and 25? Now by Corollary 3.5 we can easily check a bipartite graph with
81 = 1 while s2 = 0 is non-existent. Thus we have the following theorem,

which can partly answer this question.
Theorem 3.6. There is no bipartite graph with endotype 1 mod 4.
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