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Abstract

Let G be a graph, and let a,b and & be nonnegative integers
with 0 < a < b. A graph G is called an (a,b, k)-critical graph if
after deleting any k vertices of G the remaining graph of G has
an [a, b]-factor. In this paper, we prove that if §(G) = a + k and
o(G) < LEEA21-B) | then G is an (a,b, k)-critical graph. Fur-
thermore, it is showed that the result in this paper is best possible
in some sense.
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1 Introduction

The graphs considered in this paper will be finite and undirected simple
graphs. Let G be a graph with vertex set V(G) and edge set E(G). For
z € V(G), we denote by dg(z) the degree of z in G. Furthermore, we denote
the minimum degree and the independence number of G by §(G) and a(G),
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respectively. For a subset S C V(G), let G[S] denote the subgraph of G
induced by S and G — S denote the subgraph obtained from G by deleting
all the vertices of S together with the edges incident with the vertices
of S. We write Ng(z) for the set of vertices adjacent to z, and Ng(z] for
Ng(z)U{z}. If S and T be disjoint subsets of V(G), then eg(S, T') denotes
the number of edges that join a vertex in S and a vertex in T'.

Let a and b be integers with 0 < a < b. An [a, b|-factor of a graph
G is defined as a spanning subgraph F of G such that a < dp(z) < b for
each z € V(G). And if a = b = r, then an [a, b]-factor of G is called an
r-factor of G. A graph G is called an (e, b, k)-critical graph if after deleting
any k vertices of G the remaining graph of G has an [a, b]-factor. If G is
an (a, b, k)-critical graph, then we also say that G is (a, b, k)-critical. If
a = b =7, then an (a,b, k)-critical graph is simply called an (r, k)-critical
graph. In particular, a (1, k)-critical graph is simply called a k-critical
graph. Notations and definitions not given here can be found in {1].

Favaron [2] studied the properties of k-critical graphs. Liu and Yu [3]
gave the characterization of (r, k)-critical graphs. Liu and Wang [4] gave
a necessary and sufficient condition for a graph to be an (a,b, k)-critical
graph. Li [5,6] investigated (a, b, k)-critical graphs. Recently, Zhou [7-11]
obtained some sufficient conditions for graphs to be (a, b, k)-critical.

In this paper, we obtain a new sufficient condition for a graph to be
an (a, b, k)-critical graph. The result is showed in the following.

Theorem 1 Let G be a graph, and let a,b and k be nonnegative integers
with0<a<b. If6(G)>a+k and

4b(6(G) —a+1-k)

@17 , (1)

o(G) <

then G is an (a, b, k)-critical graph.
In Theorem 1, if £ = 0, then we get the following corollary.

Corollary 1 Let G be a graph, and let a and b be integers such that 0 <
a<b Ifé(G) 2 a and a(G) £ ﬂéég_){ﬁ'—"—ll, then G has an [a, b]-factor.

Condition (1) is best possible in the sense that we cannot replace

4"(6((02;{‘)";1“") by 4"(5((6‘1);{’)'51’” + 1, which is shown in the following ex-
ample.
Let b > a = 1and k > 0 be integers and G = K11 \/(b(b—a)+1)K;.

Obviously, we have 6(G) =b+k—1>a+kand a(G) =blb—a)+1 =
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BE@01=H) 11, Let S = V(Kork-1) S V(G) and T = V((b(b - a) +
1)K;) C V(G), then |S|=b+k—1> k and |T| = b(b — a) + 1. Thus, by
a =1 we have

6c(S,T) > b|S|+dg-s(T) - a|T)
b(b+k — 1) — a(b(b — a) + 1)
bb+k—1) = (b(b—1) +1)
= bk—1< bk.

According to the following Lemma 2.1, G is not an (a, b, k)-critical graph.

2 Proof of Theorem 1

The proof of Theorem 1 relies heavily on the following lemma.

Lemma 2.1 [ Let a,b and k be nonnegative integers with a < b, and let
G be a graph of ordern > a+k+1. Then G is (a, b, k)-critical if and only
if for any S C V(G) and |S| > k

6(G) = b|S| + dg-s(T) — a|T| 2 bk,
where T = {z:z € V(G)\ S,dg-s(z) <a—1}.

Proof of Theorem 1. Suppose that G satisfies the assumption of
the theorem, but it is not an {a, b, k)-critical graph. Then by Lemma 2.1,
there exists a subset S of V(G) with |S| > & such that

6c(S,T) = blS| + de-s(T) — a|T| < bk, ()

whereT={z:2€ V(G)\ S, dg-s(z) <a-1}.
If T = @, then by (2) we obtain b|S| < bk, which is a contradiction.
Hence, we have T # @. Let

h = min{dg_s(z)|z € T}.
According to the definition of T', we get

0<h<a-1. 3)

Now we consider the subgraph G[T} of G induced by T'. Set Ty = G[T).
Let z; be a vertex with minimum degree in T and Ny = N, [z4]. Moreover,
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for i > 2, let z; be a vertex with minimum degree in T; = G[T]-U,;; N;
and N; = Np[z;]. We denote the order of N; by n;. We continue these
procedures until we reach the situation in which T; = @ for some %, say for
i =7+ 1. Then from the above definition we know that {z;,z2, -+ ,2} is
an independent set of G. Since T #* @, we have r > 1.

The following properties are easily verified ((4) and (5) are trivial; (6)
follows because our choice of z; implies that all vertices in N; have degree
at least n; — 1 in T3).

a(G[T)) >, (4)
ITi= Y n, (5)
1<iLr
S (Y dn(@) 2 Y (nf-ni) (6)
1<i<r z€N; 1<igr

From (6), it is easy to see that

de-s(T)2 Y. (¥-n)+ D ec(NuNj)2 Y (ni-mi). (7)

1<i<r 1<i<j<r 1<i<r

In view of (4), the obvious inequality &(G) > a(G[T]) and the assump-

tion a(G) < M%E%';l;kl, we have

4b(6(G) —a+1—k)

r= (a+1)2 (8)

According to (5), (7), (8) and the obvious inequality n? — (a + 1)n; >
—5"—";1):, we obtain

3c(S,T) = blS|+de_s(T)—a|T|
> bS|+ Y (ni-n)-a D m
1<i<r 1<igr
= biS|+ Y (nf-(a+1)n)
1<i<r
2
> bis)- 2L,
(a+1)* 4b(6(G)—a+1—k)
2 bis| 4 (a+1)2
= b|S|—b(6(G) —a+1—k),
that is,
6c(S,T) > b|S| — b(6(G) — a + 1 - k). (9)
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Clearly, 6(G) < |S| + h. Thus we get that
S| 2 6(G) - h. (10)

In view of (3), (9) and (10), we obtain

8c(S,T) > blS|-b6(G)—a+1-k)
> b(6(G) = k) - b(6(G) —a+1-k)
= bla—1—h)+bk
> bk,

which contradicts (2).

From the argument above, we deduce the contradictions. Hence, G is
an (a, b, k)-critical graph.
Completing the proof of Theorem 1.
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