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ABSTRACT

In this paper, a new efficient computational algorithm is presented for solving
cyclic heptadiagonal linear systems based on using the heptadiagonal linear
solver and Sherman-Morrison-Woodbury formula. The implementation of the
algorithm using computer algebra systems (CAS) such as MAPLE and
MATLAB is straightforward. Two numerical examples are presented for
illustration.
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1. INTRODUCTION

Cyclic heptadiagonal linear systems occur in several fields such as the
numerical solution of ordinary and partial differential equations, interpolation
problems, boundary value problems, etc. [1,2]. It is necessary to obtain the
solution of cyclic heptadiagonal linear systems.

In this paper, we consider general cyclic heptadiagonal linear systems of the
form

HX =R, (1.1)
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Karawia [3] gives an efficient symbolic algorithm to obtain the inverse of a
heptadiagonal matrix of the form (1.2) and then the solution of the system (1.1)
based on LU decomposition. There are many special cases of cyclic
heptadiagonal linear systems (See [4-12]).

Recently in [13], a new efficient computational algorithm is presented for
solving nearly penta-diagonal linear systems based on the use of any penta-
diagonal linear solver. In this paper we compute the solution of a general cyclic
heptadiagonal system of the form (1.1) without imposing any restrictive
conditions on the elements of the matrix H in (1.2). Our approach is mainly
based on getting the natural generalization of the algorithm presented in [13].
The development of a symbolic algorithm is considered in order to remove all
cases where the numerical algorithm fails.

The paper is organized as follows. In Section 2, a symbolic computational
algorithm for the solution of heptadiagonal linear systems, that will not fail is
constructed. In Section 3, the Sherman-Morrison-Woodbury formula is given.
Two illustrative examples are given in Section 4. In Section 5, conclusions of
the work are presented.

2. Heptadiagonal linear solver

In this section we focus on the construction of new symbolic computational
algorithms for computing the solution of general heptadiagonal linear systems
of the form:

H,X,=R,, @2.1)
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Firstly we begin with computing the LU factorization of the matrix Hy,. It is as

follows:
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The elements in the matrices L and U in (2.4) and (2.5) satisfy:
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ifi =2,3,..m~2.

detHh =Ha‘. (2.11)
iwml
Then, the solution is given by
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At this point it is convenient to formulate our first result. It is a symbolic
algorithm for computing the solution of a heptadiagonal linear system of the

form (2.1).

Algorithm 2.1. To compute the solution of a heptadiagonal linear system of the
form (2.1), we may proceed as follows:

Step 1: Set a,=d;,. If a;=0 then a;= t (just symbol) end if. Set g)=a,, z;=A,,

ki=Ap./ o, f3=by/ 0y, e;=Bi/ oy, 0p=dy-f, *g,. If ay=0 then ay=t end if.

Set g2=az-f2*2|, f3=(b3-e3*g1)/az, a3=d3-e3*z|-f3*g2. If a3=0 then az=t

end if.

Step 2: Compute and simplify:

Forifrom4tomdo

e=(Bi-Di* g3/ 0i3)/ i
fi=(bi- Di* z,.3/ 0i.3-€1*gi2)/ 0y

2i.2=Ai-fi2*Cis
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0;=(di- Di* Ci.s/ &;.3-ei2i.2-fi*gi1)
If 0;=0 then o= t end if
End do

Step 3: Compute det H, = (Iﬂ[ Q ) .
t=0

t=l

Step 4: If det Hy#0 then do
Step 5: Set Qui=Ry1, Quz=Ru2-£*Qu1, Qu3=Ruz-€3*Qni-f5*Qp2,
Compute and simplify:
For i from 4 tom do
Qu=Rui-Di*Qi-3/ &3~ €*Qui2-fi*Quicy
End do
Step 6: Set Xpn=Qur/ Omy Xt 1=(Qume1-8m-1+X0m)/ Ome1s Xpm2=(Qum-2-8m-2
*Xbm-1-Zm-2* Xbm)/ Oen2 »
Compute and simplify:
Forifromm-3by-1tol do
Xi=(Qui8i *Xni+1-Zi*Xnia2-Ci* Xpiaa)/ 0 .
End do
Step 8: Compute and simplify the solution:
Fori from 1 to m do

Xui=(Xni)e=0.
End do
Else
OUTPUT(“The matrix Hy, is singular”); Stop.
End If

The new algorithm 2.1 is very useful to check the nonsingularity of the matrix
Hp.

3. Sherman-Morrison-Woodbury formula[14]
In this section, we formulate a new computational algorithm for solving cyclic
heptadiagonal linear systems of the form (1.1) based on the previous

heptadiagonal linear solver. The heptadiagonal linear system of the form (1.1)
can be written in the form:

M, V )x"\ (R 31
uT M, )\x") \R") @D

where
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B, b, d, a, Ay (1}
D, B, b, d, a, 1]
M,= : . (1]
0 d,s a,5 A,s C,;
0 bn-‘ dn-4 a, 4 A'l-‘
0 0 Bn-s bn -3 dn -3 a,
[ O 0 0 0 D,, B,, b,, du-zj
_-dn-l Qua
i dn]
V= vlT - BI 0 0 oo e 0 C,;-a An-3 a,.,
vilTle B 0w w0 0 ALl
uT [Aﬂ_, 0 0 0 D, B, bn-l}
a, A" 0 0 0 Dn Bn

x'= (%X g0k, s) 2 =02, R =(R,R,, R, ) ,and R'=(R, R, ).

Thus (3.1) is equivalent to
M,x'+V x"=R'
U'x'+M,x"=R".
Assume that M, is nonsingular. After elimination of x " from (3.2), we obtain
the linear system

(32)

3.3)

2,

Mx'=
where M =M,-VM;'UT,R =R'-VM;'R".

Applying the Sherman—Morrison-Woodbury formula to M, we obtain

M7 =M+M YV M,-U"MV)Y'U™M;" and
x'=M'R=y+M YV M,-U™MV)'Uy,
where y is the solution of M,y =R. It is clear that the solution x" can be
found from the above formula by successive calculation of the expressions
y=MR,MV UMV, M,-U" MV )" ,and M,-UMV)'UTy.
The main part of the above calculations is finding the first two expressions,
which is equivalent to solving three (n - 2)-by-(n - 2) heptadiagonal linear
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systems with the same coefficient matrix M; and different right-hand sides.
After finding x ', we can obtain x " from the second equation of (3.2) by the
formula
x"=M:'(R"—UTx').
At this point it is convenient to formulate our second result. It is a symbolic

algorithm for computing the solution of a cyclic heptadiagonal linear system of
the form (1.1) and can be considered as a natural generalization of the symbolic

algorithm 1 in [13].

Algorithm 3.1. To compute the solution of a cyclic heptadiagonal linear system
of the form (1.1), we may proceed as follows:

Step 1: Find M,, My, U, V, R',R",and R =R'-VM ;'R".
Step 2: Solve M,y =15,Mlql =v,, and M,q, =v, by algorithm 2.1, then obtain y

and M'v =(g,,9,)-

Step 3: Compute x'=y +(g,,¢,)M, -U" (3,,4,))"U" y . x"=M;'(R"-U" x").
Step 4: Compute the solution x = (x ,] .
x t=0

Three systems M,y =1§,M|ql =v,, andM,q, =v, in algorithm 3.1 can be
solved in parallel.

4. Ilustrative examples

We give two simple examples to illustrate the effectiveness of our
algorithm.

Example 4.1(case I: o, #0 forall i)

Consider the 10-by-10 cyclic heptadiagonal systems coming from [3]
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(1 -1 1 =20 0 0 0 2 -1x][2]
1 1 1 1 -10 0 0 0 1(nx 15
2 1 -1 1 2 3 0 0 0 0]x 33
2 23 1 5 -6 0 0 0 0]=x, 0
0 1 1 1 1 2 0 0fx,| |43 @l
0 0 -1 -1 -1 -1 -1 -1 1 0] xs]| |24
0 0 0 2 2 2 2 3 1 =3fx 47
0 0 0 0 -2 -2 1 1 3 5| x 70
3 0 0 0 0 3 1 3 4 -ljx 78
2 4 0 0 0 0 2 3 4 1]lxef [94.

Solution:-The application of Algorithm 3.1 gives

[1 -1 1 2 0 0 0 0
1 1 1 1 -10 0 0
2 1 -1 1 2 3 0 0
2 23 1 5 -6 0 0 4 -1
Stepl: M, = M, = ,
PEMZlo 111 1 11 2 ’[41]
0 0 -1 -1 -1 -1 -1 -1
0o 0 0 2 2 2 2 3
0 0 0 0 2 -2 1 1
yrofpoo0003 13
24000023/
s il 200001 13
i) [t 1 00 0 0 3 5]°
R'=[2 15 33 0 43 -24 47 70f ,R"=[78 4],

R=R'-VM['R"= (-33,7,33,0,43,‘791,9—29‘%9

Step2: y =(—2814 3345 2208 1308 2654 4442 15739 —7685)T
. 199 *199 199 "199 199 597 ' 597 ' 398 )’
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MV =49,
242 98 -150 -104 -110 -212 -184 297
199 199 199 199 199 597 597 199
6 861 ~-132 -394 142 -895 4630 -86l

199 199 199 199 199 597 597 199
Step3: x'=y +(g,,4,)M,-U" (g,,4,)"'U"y =(1,2,3,4,5,6,7, 8)",

T

x"=M;R"-UTx")=(9, 10)".

'

Step 4: The solution of (4.1) is x = (x ") =(1,2,3,4,5,6,7,8,9,10) .
X

Example 4.2. (case I: ; =0 for some i)

Consider the following 10-by-10 cyclic heptadiagonal systems:

[2 2 -5 1 0 0 0 0 1 27x] [24]
41 -1 1 3 2 0 0 0 0 3 x| |3
7 3 5 1 2 1 0 0 0 0f=x]|]18
8 1 4 -2 1 5 1 0 0 0{x]|[56
0 2 3 -10 6 1 7 8 0 0[Jx]| |12

= 4.2)
0 0 4 3 2 9 1 2 1 0fx]|]|7
0o 0o 0 5 -6 1 1 1 1 1|x,|]30
0 0 0 0 4 2 5 3 2 1[x| |19
1 0 0 0 0 -7 2 5 1 4iux| |62
|4 5 0 0 0 0 -2 3 1 6 [x,] [85]

Solution: The application of Algorithm 3.1 gives



2 2 -5 1 0 0 0 0
-1 -1 1 3 -2 0 0 0
7 3 -5 1 2 1 0 0
8 1 4 -2 1 5 1 0 14
Stepl: M, = M, = )
0 2 3 -10 6 1 7 8 16
0 0 -4 -3 2 9 1 2
0o 0 0 5 -6 1 1 1
0 0 0o 0o 4 2 5 3
grfl 000 0725
4 500 0 0 =2 3/
il o000 o]
bl 2300001 1)°
R'=[24 32 18 56 122 72 30 19] ,R"=[62 85,
5 5151

R =R'-VM 'R" =(-15,—-=,18,56,122,56,~ —
2 2 2

Step2: The application of Algorithm 2.1 gives (@, =0 )
_(189( 7t +9 ) 9639( 1 ) 1 (17950‘—8267) 1(22124—7063)

SIS +7) 10 Uls+7)300 118+7 30\ 11§ +7
1 [14023:-2555J 1 (18068-4963) _1(27071-1316) 1 (21485+749)’
150 11s+7 300 ns+7 s\ 1x+7 JSiol 115 +7
_[243 1377 _1181 1009 73 709 188 107
5" 10" 30 30 3 30'5°10]
Mx-'V =(q|r42)

-1077 3034 794 103 100 98 -8 -544Y
_| 665 665 665 95 133 95 665 665 | S
| -1378 1365 3877 3425 2744 2555 -1130 115 |
57 19 171 M 171 11 5187

tep3: x' =y +(g,,9, )M, -U" (g,,¢,)'U"y =(1,2,3,4,5,6,7,8)",

x"=M;'R"-U"x")=(9, 10)".

14

Step 4: The solution of (4.2)is ~ x = C: J =(1,2,3,4,5,6,7,8,9,10) .
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5. Conclusions

In this paper, we derived a computational algorithm for solving cyclic
heptadiagonal linear systems. Since the algorithm uses the symbolic algorithm
2.1 for the LU factorization of the heptadiagonal matrix, the factorization never
suffers from breakdown, and this leads to fast and reliable solution of cyclic
heptadiagonal linear systems. The realization of the method needs O(n)
operations. The algorithm is a natural generalization of some algorithms in
current use.
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