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Abstract
Let G be a connected graph of order n. Denote p,(G) the order of

a longest path starting at vertex v in G. In this paper, we prove that if
G has more than t('z‘) + (";“) edges, where k > 2, n=t(k—-1)+p+1,
t>0and 0 < p < k—1, then p,(G) > k for each vertex u in G. By
this result, we give an alternative proof of a result obtained by P. Wang
et al. that if G is a 2-connected graph on n vertices and with more than
t(*3%) + (8) + (2n — 3) edges, where k >3, n—2=t(k—2) +p, ¢t > 0 and

0 < p < k — 2, then each edge of G lies on a cycle of order more than k.

1 Introduction

All graphs considered in this paper are finite, undirected and without
loops or multiple edges. We denote the sets of vertices and edges of a
graph G by V(G) and E(G), respectively. The order of a graph G is the
number of its vertices. e(G) denotes the number of edges of G. Let H be
a subgraph of G, Ny(z) is the set of the neighbors of z which are in H,

and dy(z) = |Ny(z)| is the degree of z in H. When there is no confusion,
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we shall write N(z) and d(z), instead of Ng(z) and dg(z). G\ H denotes
the graph obtained from G by deleting all the vertices of H and all the
edges with at least one end in H. An edge uv of G is said to be contracted
if it is deleted and the end vertices u and v are identified, the resulting
graph is denoted by G/uv. Let S C V(G), a subgraph H is induced by S
if V(H) = S and zy € E(H) if and only if zy € E(G), denote H = G|8S].
And S is a vertex cut of a connected graph G if G\ S is disconnected.
The union of two graphs G; and G3, denoted by G; U Gg, is the graph
with vertex set V(G1) U V(G2) and edge set E(G;) U E(Gz). The union
of | disjoint copies of the same graph G is denoted by [G. The join of two
disjoint graphs G; and G3, denoted by G; V Gy, is obtained from their
union by joining each vertex of G; to each vertex of Go. Denote p(G) the
order of a longest path in G, and p,(G) the order of a longest path starting

at vertex u in G.
In (3], Woodall proved that if G is a graph on n vertices with more

than ¢(§) + (°}') edges, where k > 2, n = t(k~1)+p+1,¢t > 0 and
0 < p < k-1, then G contains a cycle of order more than k, and this result
is best possible. In this paper, it’s interesting to show that if the number of
edges of a connected graph G is more than this value, then for any vertex
u in G, there is a path of order more than k which starts at u. That is the

following theorem.

Theorem 1.1. Let G be a connected graph of order n, if
e(G) > f(n, k),

where f(n,k) = t(5) + (°})), k> 2, n =t(k—1)+p+1,¢t > 0 and
0 < p < k—1. Then for any vertex u in G, we have that p,(G) > k.
Consider the graph G = (tKi—1 UK,) V {u}, e(G) = t(5) + (°}?), but
P«(G) = k. In this sense, Theorem 1.1 is best possible.
Let c.(G) be the order of a longest cycle which contains e in G. In [4],
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P. Wang and X. Lv gave an estimation of the number of edges of a 2-
connected graph G such that there is an edge e in G with ¢.(G) < k in
their main theorem (Theorem 1.2 [3, p114]). They also gave the extremal
graphs in their result. In section 3, as an application of Theorem 1.1, we
shall give an alternative proof of the extremal number in their result.

Theorem 1.2 [4]. For integersn > 3, and k > 3, let G be a 2-connected
graph on n vertices. If there exists an edge uv such that ¢,,(G) < k, then

e(G) < g(n, k),

where g(n, k) = t(*;%) + 8) + (2n—3),n~2=¢(k—2) +p, ¢t > 0 and
0<p<k-—-2

2 Proof of Theorem 1.1

The method of edge-switching was defined by G. Fan in {1]. Let uv
be an edge in a graph G. An edge-switching from v to u is to delete edges
{vw|w € W} and add edges {uw|w € W}, where W = N(v) \ (N(u)U{u}).
The resulting graph, denoted by G[v — u, is called an edge-switching
graph of G (from v to u). Note that if G is connected, then an edge-
switching graph of G is also connected. Denote the edges {vw|w € W} in
G[v — u] by F. Then we have the following lemma.

Lemma 2.1. G is a connected graph and uv is an edge of G. Let G’ =
G[v — u). Then we have that p,(G') < p.(G).

Proof. Suppose, to the contrary, that p.(G') > p.(G). That is, there
is a path P’ in G’, which starts at » and with |V(P’)| > p,(G). In the
following, we shall always find a path P in G, which starts at u and with
[V(P)| 2 |V(P')] > pu(G). It’s contrary to the definition of p,(G), which
completes the proof.

If E(P')N F =0, then we choose P = P'.
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If |[E(P')NF| =1, say uw € E(P')NF, where w € Ng(v) \ (Ng(u)U
{u}). Ifv ¢ P', let P = (P'\ {uw}) U {wv,vw}. If v is an end vertex of P’,
say P’ = uw---yv, where y € Ng(u) N Ng(v). Then let P = (P'\ {uw})U
{uv,vw}. If v is an inner vertex of P’, say P’ = uw---zvy---z, where
z,y € Ng(u)NNg(v). Then we can choose P = (P'\ {uw, vz})U {uz,vw}.

Since |E(P’) N F| £ 1, we complete the proof. O

In [2], Faudree and Schelp gave an estimation of the number of edges
of a graph G such that p(G) < k, which is the following lemma. We shall

use it in the proof of Theorem 1.1.

Lemma 2.2 [2]). Let G be a graph on n vertices. If
e(G) > h(n, k),

where h(n, k) = t(';) +(8),n=kt+p,t>0and0<p< k, then there is
a path of order larger than k in G.

The graph G = tK) U K, with ¢(G) = t(5) + (8) and p(G) = k shows
that the result is best possible.

Proof of Theorem 1.1. Denote § = {G| G is a connected graph on n
vertices and p,(G) < k for some vertex u in G}. For a graph G € G, let

YG) = max{dg(u)|u € V(G) and pu(G) < k}.

Choose Gy € G with maximum number of edges, and subject to this, let
[(Go) be as large as possible. We only need to show that e(Go) < f(n, k).
Let u be a vertex in Gy such that p,(Go) < k and dg,(u) = [(Go). Then

we have that
dg,(u) =l(Go) =n—1.

If not, there exists a vertex v in Gg such that uv ¢ E(Gp). Since Gy is
connected, we can choose a shortest path P = uujuz---v from « to v in

Gy. Clearly, uuz ¢ E(Gp). We do edge-switching from u; to u in Go. Let
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Gy = Gy[u1 — u]. By Lemma 2.1, p.(G1) < p,(Go) < k. And, clearly we
have that dg, (u) > dg,(u) and e(G1) = e(Gyp). It’s contrary to our choice
of Go that I(Gy) is as large as possible.
Since dg,(u) = n—1 and p.(Go) < k, we have that p(Go\ {u}) < k—1.
By Lemma 2.2,
e(Go \ {u}) < h(n -1,k = 1),

wheren—-1=t(k—-1)+p,t20and 0<p<k—-1.

Thus,
e(Go) = daye)+e(Go\ {u})
€ n-1+4+h(n-1,k-1)
< f(nk).

3 Application

Denote c.(G) the order of a longest cycle which contains e in G. If

there is no cycle contains e, then let c.(G) = 0.

Lemma 3.1. G is a connected graph and uv is an edge of G. Let G' =
G[v — u]. Then for any edge e = uz,z € Ng(u), we have that c.(G') <
ce(G).

Proof. Suppose, to the contrary, that there is an edge e = uz,z € Ng(u),
such that ¢.(G’) > ¢.(G). That is, there is a cycle C’ in G, which contains
e and with |V(C’)| > c.(G). In the following, we shall always find a
cycle C in G, such that e € C and |V(C)| > |V(C")| > ce(G). That’s a
contradiction which completes the proof.

If E(C')N F = 0, then we can choose C = C’'. Thus, we can assume
that E(C")NF # 0. Since |E(C')NF}| < 1, we can assume that E(C')NF =
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{uy}, where y € Ng(v) \ (Ng(u) U {u}). There are two cases to discuss.

(i) e = wv. Without loss of generality, let C' = wvz---yu, where
z € Ng(u) N Ng(v). Then we choose C = (C’ \ {uy, v2}) U {uz,vy}.

(i) e = uz, z € Ng(u) \ {v}. If v ¢ C’, then let C = (C’\ {uy})V
{uv,vy}. We assume that v € C’. Let C' = ux-.-z,v2; - yu, where
{21, 22} € Ng(u)NNg(v). Then we choose C = (C'\ {uy, vz2})U{uz;, vy}.
0O

The following lemma. is easy to be proved, we omit the details here.

Lemma 3.2. G is a 2-connected graph and vv is an edge in G.
(i) If G /uv isn’t 2-connected, then {u,v} is a vertex cut of G.
(i) If N(u) N N(v) # 9, and the edge-switching graph Glv — u] isn’t

2-connected, then {u,v} is a vertex cut of G.

Alternative proof of Theorem 1.2.

We apply induction on n (n > 3).

Ifn=3,k>3, eG) <3=g(3,k)

Now we assume that the result is true for all graphs with fewer than
n (n > 4) vertices. Denote G = {G| G is a 2-connected graph on n
vertices, and ¢.(G) < k for some edge e in G}. For a graph G € G,
let I(G)=max{dg(u)| v is an end vertex of some edge e in G such that
ce(G) < k}. Choose Go € G with maximum number of edges, and sub-
ject to this, let /(Gp) be as large as possible. We only need to show that
e(Go) < g(n, k). Let u be a vertex in Go such that dg,(u) = {(Go), and wv
is an edge with c,,(Go) < k.

Claim 1. If Go has a vertex cut {z,y} with zy € E(Gy), then e(Go) <
g(n, k).

If {z, y} is vertex cut of Gg and xy € E(Go). Let H; be one component
of Go\ {z,y} and Hy = Go\ ({z,y}UH,). Denote G; = Go[V (H1)U{z,y}]
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and Gy = Go[V(Hz) U {z,y}]. Let ny = |V(G,y)| and ny = |[V(Gy)|.
Clearly, G; is 2-connected, i = 1,2. If e(G;) > g(ni, k), for some i, say
e(G1) > g(m1, k), then by induction hypothesis, c¢.(G1) > k, for any edge
e € G;. For an edge ¢ € G, and €' # zy, since G2 is 2-connected, €'
and zy must lie on a common cycle (it can be easily proved by Menger’s
theorem). That is, there is a path P in G, from z to y which contains e’
with |V(P)| > 3. Since czy(G1) > k, ce'(Go) 2 |V (P)| + czy(G1) — 2 > k.
Thus, ¢.(Go) > k, for any edge e € Go. It’s a contradiction. Hence,

e(Gi) < g(ni, k)i =1,2.
Thus,
e(G) = e(G1)+e(Ga)~1
< g(na, k) +9(ne, k) -1
< g(nk).

By Claim 1, we can assume that Go has no vertex cut {r,y} with
zy € E(Go).

In the following, we shall prove that dg,(u) = I{(Go) =n — 1.

Suppose, to the contrary, that there exists a vertex z in Go such that
uz ¢ E(Go). Since Gy is 2-connected, there is a path from u to z, which
doesn’t contain v in Go. Choose P = uujuz---z as the shortest path
from u to z such that v ¢ V(P) in Go. Clearly, uuy ¢ E(Go). If Ngy(u) N
Ng, (u;) = @, then we contract the edge uu;. Let G3 = Gp/uu,. By Lemma
3.2 (i) and Claim 1, we can assume that G3 is 2-connected. Since uu; # wv,

cuv(G3) < cuu(Go) < k. By induction hypothesis, e(G3) < g(n—1, k), then

e(Go) e(Gs) +1

< gn-1,k)+1
< g(n,k).
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Thus, we can assume that Ng,(u) N Ng,(u1) # @. Then we do edge-
switching from u; to u in Go. Let G4 = Go[u; — u]. By Lemma 3.2 (ii) and
Claim 1, we can assume that G4 is 2-connected. Clearly, dg,(u) > dg, (u)
since uug ¢ E(Gg). And by Lemma 3.1, ¢u,(G4) < cuo(Go) < k. It’s
contrary to our choice of Gg that {(Go) is as large as possible.

Since dg, (u) —n—1and cuv(Go) < k, we have that p,(Go \ {u}) <
k — 1. Since Gy is 2-connected, Go \ {u} is connected. By Theorem 1.1,

e(Go\ {u}) £ f(n-1,k-1),
wheren—1=t(k—2)+p+1,t >0and 0 <p <k -2. Thus,

e(Go) = dgo(u)+e(Go\{u})
< n-1+4+f(n-1k-1)
< g(n,k).

This completes the proof of Theorem 1.2. ]
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