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Abstract: In this paper, we determine upper and lower bounds for the
number of independent sets in a bicyclic graph in terms of its order. This
gives an upper bound for the total number of independent sets in a con-
nected graph which contains at least two cycles. In each case, we charac-
terize the extremal graphs.
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1. Introduction

Let G be a graph on n vertices. Two vertices of G are said to be independent
if they are not adjacent in G. A k-independent set of G is a set of k-
mutually independent vertices. Denote by i(G,k) the number of the -
independent sets of G. For convenience, we regard the empty vertex set as
an independent set. Then i¢(G,0) = 1 for any graph G. The total number
of the independent sets of G, denoted by #(G), is defined as

i(G) =Y _i(G, k).
k=0

The first papers about counting maximal independent sets in a graph are
those of Miller and Muller [21] and Moon and Moser [22]. For a survey see
[4, 5]. The set of independent sets in G is denoted by I(G).

In chemical literature the graph parameter i(G) is referred to as the
Merrifield-Simmon index, it is one of the most popular topological indices
in chemistry, which was extensively studied in a monograph [20]. There
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Merrifield and Simmons showed the correlation between this index and
boiling points. After that some results on this topological index appeared
(e.g., see, [3, 9-12]).

The total number of independent sets of a graph G is also called the
Fibonacci number of the graph G. It was introduced in 1982 in a paper of
Prodinger and Tichy [24]. Recently, there have been many papers study-
ing the Fibonacci number for a graph. In (1], Alameddine studied bounds
for the Fibonacci number of a maximal outer planar graph. Gutman [13],
Zhang and Tian [29, 30] studied the Fibonacci number for hexagonal chains
and catacondensed systems, respectively. In [14], Li et al., characterized
the tree with the maximal Fibonacci number among the trees with a given
diameter. In [15], Zhao and Li investigated the orderings of two classes
of trees by their Fibonacci numbers, and used these orderings to deter-
mine the unique tree with the second (and respectively the third) smallest
Fibonacci number among all trees with n vertices. In [23], Pedersen and
Vestergaard studied the Fibonacci number for the unicyclic graphs. In [27),
Yu and Tian studied the Fibonacci numbers of the graphs with given edge-
independence number and cyclomatic number. Yu and Lv [19, 28] studied
the Fibonacci numbers of trees with maximal degree and given pendent
vertices, respectively. Ye et al., ordered the unicyclic graphs with given
girth according to the Fibonacci numbers in [26).

The problem of counting the number of independent sets in a graph
is NP-complete (see for instance Roth [25]). When dealing with a graph
parameter for which the value is NP-complete to determine, it is often
useful to find bounds for its values. Chou and Chang [6] gave an upper
bound on the number of maximal independent set in graphs with at most
one cycle. In 2005, Pedersent and Vestergarrd gave upper and lower bounds
for the total number of independent sets in unicyclic graphs [23]. In this
paper, we consider the total number of independent sets in bicyclic graphs.
In particular, we prove that every bicyclic graph G on n vertices satisfies
5F,_3 < i(G) £ 5-2"% +1 for n > 6 and we characterize the extremal
graphs for these inequalities, where F, _3 is the (n—3)-th Fibonacci number.
We also determine the extremal bicyclic graphs on n vertices for n = 4, 5.

In order to state our results, we introduce some notation and terminol-
ogy. Otker undefined notation may refer to Bondy and Murty [2]. We only
consider finite, undirected and simple graphs. For a vertex v of a graph
G, we denote N(v) = {u|uv € E(G)} and N[v] = N(v) U {v}. A pendent
vertez is a vertex of degree 1. A bicyclic graph is a connected graph with
n vertices and n + 1 edges.



If W € V(G), we denote by G — W the subgraph of G obtained by
deleting the vertices of W and the edges incident with them. Similarly, if
E' C E(G), we denote by G — E’ the subgraph of G obtained by deleting
the edges of E/. If W = {v} and E' = {zy}, we write G — v and G — zy
instead of G — {v} and G — {zy}, respectively. We denote by P,,C, and
K -1 the path, the cycle and the star on n vertices, respectively.

We list some lemmas that will be used in this paper.

Lemma 1.1 ([8]). Let G = (V, E) be a graph.

(i) If uwv € E(G), then i(G) = i(G — wv) — (G — (N[u] U N[v]));
(i) Ifv e V(G), then i(G) = i(G — v) +i(G — N[v]);
(iii) If G1,Ga,...,G: are the components of the graph G, then i(G) =
H;:l i(GJ)'
Lemma 1.2 ([16]). For any tree T on n vertices, i(T') 2 Fp41, the equality
holds if and only if T = P,.
Recall that H,x is a k-cycle with n — k leaves attached to one of its
vertices.

Lemma 1.3 ([23]). Let G denote a unicyclic graph with n vertices. If
G % Hpgs, then i(G) < 5-2"*+ 2. Equality occurs if and only if (i)
G H,y or (ﬁ) G is obtained from a C3 by attaching one leaf to one of
its vertices and n — 4 leaves to another of its vertices.

2. Lemmas and main results

For a graph G, according to the definitions of #(G), by Lemma 1.1, if
v is a vertex of G, then #(G) > (G — v). In particular, when v is a
pendent vertex of G and u is the unique vertex adjacent to v, we have
i(G) = i{(G—v)+i(G— {u,v}). So it is easy to see that i(Fp) = 1,i(P) = 2
and i(P,) = i(Pp—1)+i(Pn-2) for n 2 2. Denote by F, the n-th Fibonacci
number. Recall that F,, = F,,_; + F,,—2 with initial conditions Fy =1 and
F; = 1. We have

n+2 n+2
i(P) = Foyy = % [(1 +2‘/5) _ (.l;zﬁ) ] .

Note that Fr4m = FnFm + Fr—1Fin—1, for convenience, we let F, = 0, if
n < 0. By Lemma 1:1, we can also obtain an important fact, i.e., i{(G) <
i(G — e) for any e € E(G).

We shall in the following give both lower and upper bounds for the total
number of independent sets in bicyclic graphs.
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2.1. The lower bound for i(G)

Given integers n and k with 3 < k < n, the lollipop L, x is the unicyclic
graph of order n obtained from the two vertices disjoint graphs Cj and
P, _;, by adding an edge joining a vertex of Cy to an endpoint, say u, of
P_.

Lemma 2.1. i(Ln i) = Fk—2Fn—k + FxFack+1.

Proof. By Lemma 1.1, in Ly, x the number of independent sets which con-
tain u is equal to i(L, x — N[u]) = i(Pr-3) - {(Pr—k-1), and the number of
independent sets of L, x which do not contain u is equal to i{(Lnx — u) =
i(Pg—1) - ¢(Pn-k). Therefore,

i(Ln,k) = t(Pr—3) - t(Pn-k-1) +i(Pr=1)i(Pa-k) = Fx—2Fn_ + FiFn_k41.
This completes the p}oof. O

In C,, choose two vertices such that the distance between them is 2,
then connect them by an edge, denote the resulted graph by GL. In L, 4,
there exist two non-adjacent vertices of degree 2 in the subgraph Cy, then
connect them by an edge, denote the resulted graph by GL. G. and G
are depicted in Figure 1.

Lemma 2.2. If G is a bicyclic graph of order n which contains exactly
three cycles, then i(G) > 2F,_, and equality occurs if and only if G = G}
orGGY.

Proof. 1t is easy to see that
i(GL) =i(GY) = 2F,_,.

We apply induction on the order of the graph. The statement is easily
verified for n € {4,5,6,7,8}. Hence we may assume n > 9. Among the
bicyclic graphs of order n with exactly three cycles, let G denote the one
whose total nuinber of independent vertex subsets is minimum.

Case 1. G is a bicyclic graph without trees attached.

Choose a cycle C, with minimal length among the three cycles. If k = 3,
then G is GL and we are done. If not, then each cycle of G has more than
three vertices. Let w be a vertex of degree 3 in G, then choose two vertices
v,u € V(G) \ V(Ci) such that v is adjacent to w and u is adjacent to v.
By Lemma 1.1, the number of independent sets of G which contain u is
equal to i(G — N[u]) = i(Ln-3,), and the number of independent sets of G
which do not contain u is equal to i(G — u). Furthermore, the number of
independent sets of G — u which contain v is equal to i{(G — u — N[v]), and
the number of independent sets of G — u which do not contain v is equal



Figure 1: Graphs G} and G

to i(G — u — v) = i(Lp—2,x). By Lemma 1.2, i{(G — u — N[v]) 2 i(Pn-3).
Thus,

(@) 2 i(Ln-3k)+i(Pa-3) +i(Ln-2,)
= FroFn_3-k+ FrFp-3—k+1+ Fno2 + Fr—2Fn_o—k + FxFn-2-k+1
= FeoFp a3+ FFyk2+Fa o+ Fr oFn 2+ FpFr i
= FroFp g3+ Fo1Frogo+FroFp g2+ Fro
+Fi_oFn g2+ Fe1Fpnog-1+ Fi—2Fpn_—1
= Fpat FxoFnko+Fao+Fu o+ FroF, k1
Fo+ Fr o Fy k. :
Hence,

2(G) —2F_ 2 Fp+ Fiy oF,_—2F;

Fr oFq - Fo3

Fr3Fa ik + Fre—aFnok — Fo_ ki3

FoaF x+ FecaFny = F g Frez — Fog1Fiyg
Fr—4Fp_-2.

Note that k& > 4 and k < n — 2 is obvious, otherwise it is a contradiction
to the assumption that Cj is minimal. Therefore, Fi_4Fp—k-2 > 0, i.e,,
{(G) > 2F,_;.

Case 2. G is a bicyclic graph with trees attached.

Choose two cycles, say Ck,, Ck,, in G. Let = denote a vertex of G having
maximum distance to Ck, U Cy,.

Subcase 2.1. Suppose that dist(Ck, U Ck,,z) > 2. The number of in-
dependent sets of G which contain z is equal to ¢{(G — N[z]). The maxi-
mality of dist(C, UCx,, z) and the assumption that dist(C, UCk,,z) 2> 2
imply that G — N{z] consists of one component with precisely three cy-
cles and possibly a number of isolated vertices, say G — N[z] = HUK,,
where H is a bicyclic graph of order n — 2 — s. By induction on =,
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i(G—Nlz]) 2 2°-2Fn_3_s 2 2F,_3. In fact, we have i(G — N(z]) > 2F,_3
if s > 1. The number of independent sets of G which do not contain z is
equal to i(G — z) and by induction on n, i(G — z) > 2F,_2. Together these
two inequalities imply i(G) > 2Fn—3 + 2Fn—2 = 2F,_1. If i(G) = 2F,,,
then we must have s = 0, i{(G — z) = 2F,,_5 and (G — N[z]) = 2F,_s.
Moreover, since G — z is not the graph G2 _,, the induction on n implies
that G — 2 = G1_, and consequently G = G}

Subcase 2.2. Assume dist(Ck, U Ck,,z) = 1. Then we shall show that
this assumption leads to a contradiction. Let |V (Cy,)| 2 |V(Cy,)|, then it
suffices to consider the following three cases. '

(i) Suppose that some vertex on a cycle of G has more than one leaf
attached, say that v, has at least two leaves z and y. For convenience, let
N(v1)NCy, = {v2,vx}. Define H := (G — {viy,n1v2}) U {zy, yva}. Now H
is a bicyclic graph on n vertices. We define a mapping ¢ from I(H) to I(G).
Let B denote an independent set in H and let ¢(B) be defined by Table
1. The number beneath each vertex indicates whether or not the vertex is
considered to be in the independent set B. For instance, the second row
reads 0001, which meas that v; is in B while neither v,z nor y is in B.

Table 1: Definition of the mapping ¢ : I(H) — I(G).

n z Yy v2 ¢(B)

0 0 0 0 B

0 0 0 1 B

0 0 1 0 B

0 1 0 0 B

1 0 0 0 B

0 1 0 1 B

1 0 0 1 (B —{u}) U{z,y}
1 0 1 0 (B-{uni}h)u{z}

The mapping ¢ is injective. Moreover,{z,y, vt} € I(G), but there exists
no independent set B € I(H) with ¢(B) = {z,y,v¢}. Hence ¢ is also non-
surjective. It follows that i{(G) > i(H), which contradicts the minimality
of i{(G).

(ii) Suppose that every vertex on the cycles of G either has exactly one
leaf attached or has no leaf attached. We may w.l.o.g. assume that G has
three succeeded vertices, say v;,v2,v3 on a cycle such that v; has no leaf
attached while one of its neighbor vo has exactly one leaf attached, say z.
Define H := (G — {vyv2})U{zv: }. The graph H has order n and is bicyclic.
We define a mapping ¢ from I(H) to I(G). Let B denote an independent
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set in H and let ¢(B) be defined by Table 2.

Table 2: Definition of the mapping ¢ : I(H) — I(G).

v T v2 #(B)

0 0 0 B

0 0 1 B

0 1 0 B

1 0 0 B

1 0 1 (B = {v2}) U {z}

The mapping ¢ is injective. It is easy to see that {z,v;,v3} € I(G). But
there exists no independent set B € I(H) with ¢(B) = {z,v1,v3}. Hence
¢ is also non-surjective. It follows that ¢(G) > i(H), which contradicts the
minimality of i(G).

(iii) Suppose that every vertex on the cycles of G has exactly one leaf at-
tached. We may assume that G has three succeeded vertices, say vy, ve, vs,
on a cycle such that v; has exactly one leaf attached say x while v, is y.
Define H := (G — {v1v2})U{zy}. The graph H has order n and is bicyclic.
We define a mapping ¢ from I(H) to I(G). Let B denote an independent
set in H and let ¢(B) be defined by Table 3.

Table 3: Definition of the mapping ¢ : I(H) — I(G).

V1 x Y V2 ¢(B)

0 0 ] 0 0 B

0 [0 0 1 B

0 0 1 0 B

0 1 0 0 B

1 0 0 0 B

0 1 0 1 B

1 | o] o | 1 | B-{wmuhulsy
1 0 1 0 B

The mapping ¢ is injective. It is easy to see that {z,y,v3} € I(G). But
there exists no independent set B € I(H) with ¢(B) = {z,y,vs}. Hence ¢
is also non-surjective. It follows that ¢(G) > i(H), which contradicts the
minimality of i(G).

This completes the proof. 0O
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Lemma 2.3. If G is a unicyclic graph of order n obtained from the two
vertices disjoint graphs Cy. and T by adding an edge joining a vertez of Cy
to a vertez of T, where T is a tree on (n — k)-verter. Then i(G) 2 i(Ln k)
and equality holds if and only if G =2 Ly k.

Proof. Let e = vw be the edge connecting Ci and T to create the graph G,
then v is a vertex of Cx and w is a vertex of T. Note that the number of
independent sets of G which contain v is equal to i{(G — N[v]) = i(Pi-3) -
i(T — w) and the number of independent sets of G which do not contain v
is equal to (G — v) = i(Pk—1) - ¢(T"). Then

(G) = i(Pe—3)i(T — w) + i(Pe—1)i(T).
By Lemma 2.1,
#(Ln,x) = i(Pi—3)i(Pa—k-1) + i(Pr-1)i(Prn-k)-

By lemma 1.2, we know (T — w) > ¢(Pa—k—1) and i(T) > i(Pn—x), then
i(G) > i(Ln,k), the equality holds if and only if G & Ly k.
This completes the proof. ]

We show in the following that G2 (as shown in Figure 2) is the bicyclic
graph on n vertices whose total number of independent sets is minimal.

Pn'6
Figure 2: Graph G°

Lemma 2.4. Let G be a bicyclic graph with n vertices having ezactly two
cycles, say Ck,,Ck,. If both Ck, and Ci, have no trees attached, then
i(G) 2 i(G2) and equality holds if and only if G = G3.

Proof. It is easy to see that there exist exactly one vertex of degree 3
on each cycle of G, choose one of such vertex, say w in Ck,. Choose
other two vertices v,u in V(Ck,) such that w,v,u are three succeeded
vertices in Ck,. Then the number of independent sets of G which contain
u is equal to ¢(G — N(u]) 2 i(Ln-3k,), the equality holds if and only if
G — N[u] & Ln_3,,+ The number of independent sets of G which do not
contain u is equal to i(G — u). By lemma 2.3, ¢{(G — u) 2 ¢(Ln-1x,), the
equality holds if and only if G — u = L,_1,, i.e., k2 = 3 and no trees are
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attached to the path connecting Ck, and Ci,. And so

#(Ln-3k,) +4(Ln-1,k) (2.1)
FeyFa_g—py 41+ Fry—2Fn-3—ky + Fiey Fac1—ky 41 + Fiey—2F 1k,
Fyy,Fo_gy-2 + Fry 2 Fopy =3 + Fiy Fry + Fiy—2Fpg -1
Fry1Fngy—2+ Fiy2Fn—ky—2 + Fiey 2Fn—iy -3 + Fiey -1 Fnk,
+Fy,—2Fn—k, + Fry—2Fncky -1

Fa_a+ FyyoFpopy—2+ Fpno1 + Fry—2F i,

8Fh_3+ Fn-g+ Fy, 2Fnk,—2 + Fy, 2 Fo g,

i(G)

1w

the equality holds in (2.1) if and only if k2 = 3 and no trees are attached
to the path connecting Ck, and Cj,.
On the other hand, we can, similarly, obtain

i(G?) = i(Ln-4,3) + i(P2)i(Ln-33) = 5F,_3. (2.2)
Hence
i(G) —i(G2) = i(G)—5Fu-3
2 3F 3+ Faa+ Fiy2Fh g2 (2.3)

+Fy,—2Fn_k, —5Fn_3

Foca+ Fyy2Fnky—2 + Fyy 2Fp_, — 2Fn_3
Fiy2Fn g2+ Fiy~2Fnf, = F3 = Frs
Fy,—2Fn_ky-2+ Fiy—2Fnk, — Faciky 14k -2 — Fs
Fiy—oFy k-2 + Fi,—2Fnk, — Fogy -1 Fk, -2
-Fn-k;—ZFk|-3 - Fn—s

Fry—aFnoiy -2+ Fiy—2Fn gy -0 — Fo_ g, —24k, -3
Fiy—aFn_k -2+ Fiy—2Fn g, -2 = Fpogy —2Fk -3

—Fo gy, —3Fk, -4

= Fyy_a(Fnky-a+ Fn_g,-2).

The equality holds in (2.3) if and only if k2 = 3 and no trees are attached
to the path connecting Ck, and Cj,. Note that Fi,_4 > 0,F,_4,—4 > 0
andn—Fk; —2 >0, we have Fj,_x,_4 + F_g,—2 > 0. Hence

Foy—a(Fa—ky-4 + Fae,-2) 20,
the equality holds if and only if k; — 4 < 0, i.e., k; = 3. Thus, we obtain

i(G) > i(G?), the equality holds if and only if k; = ko = 3 and no trees
are attached to the path connecting C, and Cy,, ie., G = GO. O
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Figure 3: The arrangement of two cycles in G

Lemma 2.5. Let G be a bicyclic graph with n vertices having ezactly two
cycles, then i(G) > 5F,_3 and equality occurs if and only if G = G2.

Proof. By (2.2),
'I.(Gg) =5F,_3.

By Lemma 2.4 we should only consider the bicyclic graph with trees at-
tached to at least one of its cycles. We apply induction on the order of
the graph. The statement is easily verified for n € {5,6,7,8}. Hence we
may assume 1 2> 9. Among the bicyclic graphs of order n with exactly
two cycles, let G denote the one whose total number of independent vertex
subsets is minimum.

Assume that the two cycles in G are Cp,, Cpy, and Cp,, connects Cp,,
by a path; see Figure 3. Let = denote a leaf of some attached trees of Cp,,
or Cp,, such that it has maximal distance to Cp, U Cp,.

Case 1. Suppose that dist(Cry; U Cpy,z) 2 2. The number of inde-
pendent sets of G which contain z is equal to ¢{(G = N|z]). The maximality
of dist(Cm, U Uy, ) and the assumption that dist(Cm, U Cy,z) 2 2
imply that G — N[z] consists of one component with precisely two cy-
cles and possibly a number of isolated vertices, say G — N[z] = HUK,,
where H is a bicyclic graph of order n — 2 — s. By induction on n,
i(G — N|z]) > 2° - (5F,—5-s) 2 5F,_5. The number of independent sets
of G which do not contain z is equal to (G — z) and by induction on n,
(G — z) > 5F,—4. Together these two inequalities imply ¢(G) > 5F,_3.

Case 2. Assume dist(Cp,; UCm,, ) = 1. The proof of Case 2 is almost
the same as that of Lemma 2.2, so we omit the procedure here.

From above we obtain that if the bicyclic graph G with trees attached
to at least one of its cycles, then i(G) > 5F,,—3. By Lemma 2.4, for any
bicyclic graph G with n vertices, {(G) 2 5F,-3 and equality holds if and
only if G = G2. O

Lemma 2.6. i(GL) > i(G0), i(GL)>i(GY).
Proof. Note that i(GL) = 2F,_1,i(G%) = 5F,_3, and so
i(GL) —i(GL) = 2Fp—1 — 5Fp_3=Fn_ 2 0.
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It is easy to check that i(GL) = i(G%) when n = 5 and i(G2) > i(G?) for
n > 6. Similarly, we can also show that i(GL) > i(G2). m]

Summarizing Lemmas 2.2, 2.5 2.6 and the fact that there exists exactly
one bicyclic graph on 4 vertices, we arrive at:

Theorem 2.7. Let G be a bicyclic graph of order n.

(a) If n =4, then G} is the unigue bicyclic graph and i(G}) = 6.

(b) If n = 5, then i(G) > 10 and equality holds if and only if G €
{Gs: 051 Gs }

(c) If n > 6, then i(G) > 5F, 3, the eguality holds if and only if G = G3.

2.2. The upper bound for i(G)

In this subsection, we shall determine the upper bound for i(G), although
the upper bound has been obtained in [7], our proof is much more concise

than that in [7]
Let G;, be & bicyclic graph of order n formed by adding two edges to
join one leaf to other two different leaves of K ,—). G5 is depicted in

. Figure 4.
Lemma 2.8. i(G%) =5-2""%+1.

Proof. Denote the vertex of degree n — 1 in G}, by u. Then the number
of independent sets of G}, which contain u is equal to 1 and the number
of independent sets of G, which do not contain u is equal to i(G;, — u) =
i(P3) - 274 = 5. 274, Therefore, i(G) =5-2""% + 1. 0

Theorem 2.9. Let G be a bicyclic graph of order n.

(a) If n = 5, then i(G) < 11 and the equality holds if and only if G €
{BS 2y GS}

(b) If n > 6, then i(G) < 5-2"* + 1 and equality occurs if and only if
GxG".

Proof. (a) When n = 5, the set of tricyclic graphs with 5 vertices is
{Gi, Bs,1, Bs,2+Bs,4;Bs 6}. By directed calculation, we obtain i(G) < 11
and the equality holds if and only if G € {B;5 2, Gs}.

(b) If G = G%, then by Lemma 2.8 i{(G) = 5-2"~4 +1 and we are done.
Otherwise, we distinguish two cases to prove this result.

Case 1. The longest length of the cycle in G is no less than 4. Then
choose an edge e € E(G) such that G — e contains exactly one cycle of
length at least 4. By Lemma 1.3 we have

i(G = €) < i(Hn,a).
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Note that either G —e % Hp 4,0r G —e = Hp 4. If G — e % Hy, 4, then
i(G)<i(G-¢)< i(Hn,«l) =5.974 4 2,

that is to say, i(G) < 5-27"4 + 1.
If G—e = H, g4, then G € {By,1,Bn2,Bn,3,Bna}; see Figure 4. By

n-4 n-35 n-$ n-6 n-4
] _n-6 n-5
G 8, B.z an B,, B.: B, (]

Figure 4: Graphs G}, Bn,1, Bn2, Bn,3, Bn4,Bns and B g.

directed calculation, we obtain

i(Bp1)=4-2""442, i(Bn2)=9-2""5+2,
i(Bn3)=15-2""%+42, i(B,4)=4-2""1+2.
Therefore, i(G) < 5-2""%+1 for G in Case 1 and G % G=.
Case 2. The longest length of the cycle in G is 3. Then G possesses

exactly two cycles, each of which is of length 3. Choose an edge e € E(G)
such that G — e is unicyclic. If G — e & H,, 3, then G = B,, 5. Hence,

i(G) =i(Bng) =9-2"%+1<5-2"" +1.

If G — e % Hp3, then by (ii) of Lemma 1.3 and the assumption of G, we

have .'
(G - e) £ i(G),

where G is obtained from a Cs by attaching one leaf to one of its vertices
and n — 4 leaves to another of its vertices.

If G-e% G, then
i(G)<i(G-e)<i(G)=5-2""*+2,
that is to say, i(G) < 5-2""4 + 1.
If G — e & G, then together with the assumption of G we obtain G =
B, 5; see Figure 4. So we obtain

i(G) =i(Bns) =15-2""%+2<5-2" "4 4 1.

By Cases 1 and 2, we completes the proof. a
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