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Abstract

Let AK.,» be a complete bipartite multigraph with two partite
sets having m and n vertices, respectively. A K, ¢-factorization of
MK n is a set of edge-disjoint Kp,q-factors of AKm,n which is a
partition of the set of edges of AKm,n. When A = 1, Martin, in pa-
per {Complete bipartite factorisations by complete bipartite graphs,
Discrete Math., 167/168 (1997), 461-480}, gave simple necessary con-
ditions for such a factorization to exist, and conjectured those con-
ditions are always sufficient. In this paper, we will give similar nec-
essary conditions for AKn,,» to have a K, ,-factorization, and prove
the necessary conditions are always sufficient in many cases.

Keywords: Complete bipartite graph, complete bipartite multi-
graph, factorization

1 Introduction

Let Kn,n be a complete bipartite graph with two partite sets having
m and n vertices, respectively. AKmn is the disjoint union of A graphs,
each of which is isomorphic to Kmmn. A subgraph F of AK, » is called a
spanning subgraph of AK, », if F contains all the vertices of AK n. Let p
and q are positive integers. A K, ,-factor of AK, , is a spanning subgraph
F of MK n such that every component of F' is a K 4 and every pair of
K, q has no vertex in common. A K, ,~factorization of AK, , is a set of
edge-disjoint K, o-factors of AK., » which is a partition of the set of edges
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of AK n. The graph AK,, , is called K, o-factorizable whenever it has a
K, q-factorization. In paper [13] a K, ,-factorization of AK,, , is defined
as a resolvable (m,n,p+¢,A) K; o-design. For graph theoretical terms, see
[1].

The K, q-factorization of a complete bipartite multigraph AK,, », has
been studied by many researchers. When A = 1, Martin, in paper [6],
investigated the K, o-factorization of Ky, » and gave simple necessary con-
ditions for such a factorization to exist and conjectured that the conditions
are also sufficient. Martin’s conjecture, from then on, has drawn focus from
many researchers. Martin’s conjecture has been proved in many cases. The
case p = 1 and g = 2 was first proved in [12]. The case p =2 and ¢ = 3 was
proved in [16] and for p =1 and q = 3 in [10]. The balanced case (m = n)
was proved in a series of papers [6, 7, 8, 9]. The general case forg =p+1
was solved in [11, 5]. Very recently, Martin [11] showed that the conjecture

is true when ged(q — p,z +y) = 1.

In this paper, we pay attention to the existence for the K ,-factorization
of a complete bipartite multigraph AK, ». Assume that a K, o-factorization
of MK, is given, certain integers are defined as followings:

¢t = the number of copies of K 4 in any factor,

z = the number of copies of K, , with its partite set of size p in X in
a particular K, ,-factor,

y = the number of copies of K, 4 with its partite set of size pin Y in a
particular K, g-factor,

f = the number of K, o-factors in the factorization,

71 = the number of K, ,-factors which contribute p edges for any vertex
vin X,

81 = the number of K, ,~-factors which contribute g edges for any vertex
vin X,

ro = the number of K, o-factors which contribute p edges for any vertex
vinY,

82 = the number of K, ,-factors which contribute g edges for any vertex
vinY.

Similar to Theorem 2.5 in Ref (6], we give the necessary conditions for
K, q-factorization of AKm n.

Theorem 1.1 Let A,p,g,m and n be positive integers with pg # 1. If
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AKp n has a K, ,-factorization, then the following expressions are all inte-
gers:

jomtn _pm—gqn pn—qu_)\mn(p+q)

Tt T PV T P T pimrn)
\ o nnogm) | dmm—qn
YT plo—q)m+n) T plp—q)(m+n)
An(pm —gqn) __ Am(pn — qm)

- m+n) T dp—q)m+n)

In [15] Wang and Du proved these conditions are sufficient when p =1
and g = 2. Some further work was done in [2, 3, 4]. The aim of this paper is
to prove these necessary conditions are sufficient when ged(g—p,z+y) = 1.

2 Preliminaries

In this section we shall give some preliminary results. The strategy and
methods in this paper are similar to paper [11]. We first need the following
Lemmas whose proof are easy.

Lemma 2.1 If AK,, , has a K, ;-factorization, then sAK,, ,, has a K, -
factorization for any positive integer s.

Lemma 2.2 If AK,, , has a K, ,-factorization, then AK s s has a K o-
factorization for any positive integer s.

Combining Lemmas 2.1 and 2.2, we have a corollary as follows.
Corollary 2.3 AK,p s has a Kp o-factorization for any positive integer s.

Lemma 2.4 If AK,,» has a K, ,-factorization, then AKp; s has a
Ky, ,qs-factorization for any positive integer s.

Given p,q,m and n, there is a least integer Ao satisfying necessary
conditions with respect to K, o-factorization of AK, . We say Ao the base
case.

Lemma 2.5 Given p,q,m and n, any integer A satisfying necessary con-
ditions with respect to K ,-factorization of AK, , is an integer multiple
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of fhe base case Ap.

Proof Let Ag be the base case of A\. Then if A is another integer satisfying
necessary conditions, there will be some rational number & for which A =
kXo. Suppose k is not an integer, then we can define A\; = A — | k] Ao so
that 0 < A\; < Ag. Consider

f = xmn(p + q)/[pg(m + n)|

which is an integer. Similarly we have

fo = domn(p + q)/[pg(m + n))

is an integer. Hence, writing & = | k] 4+ a where « is a rational between 0
and 1,

f Amn(p + q)/[pa(m + n)]
(A1 + LkJAo)mn(p + q)/[pg(m + 1))
Mmn(p + q)/[pg(m + n)] + k] domn(p + q)/[pg(m + n))]

Amn(p + q)/[pg(m + n)] + k] fo.
Thus A\ymn(p + g)/[pg(m + n)] must be an integer. Similar arguments

show that all other necessary conditions are also verifiable for A;. Since
0 < A1 < A, this contradicts the minimality of Ao. O

Assume p < q. From the expressions = any y in Theorem 1.1 we may
assume pm < gn and pn < gm, and Corollary 2.3 implies that AK,, , has
a K, o-factorization when pm = gn and pn = gm. So we only need to treat
the case pm < gn and pn < gm. In this case, we use the ratioz : y = : 8
to class m and n satisfying necessary conditions. For any fixed ratio a : 8
there is a least pair of integers mo, no satisfying necessary conditions. We
call this mg, ng the base pair for the ratio a : .

The proof of Lemma 2.6 and Lemma 2.7 below is similar to that of
Theorem 2.8 and Theorem 2.11 in [6], respectively.

Lemma 2.6 Given a fixed ratio z : y, any pair of integers m and n
satisfying necessary conditions is an integer multiple of the base pair for
that ratio.

Lemma 2.7 Let k,p and g be positive integers where p,q are coprime. If
my, ng is the base pair for some ratio z : y with respect to K, -factorization



of AKm n, then kmg, kng is the base pair for some ratio z : y with respect
to Kip,kq-factorization of AKpm n.

Lemmas 2.5-2.7 imply that we only need consider the case p and g are
coprime, the base case A\g and the base pair mg,ng. Now we discuss how
to calculate mg, no and Ao with fixed case.

The necessary conditions for K, ,-factorization of AKy, » can be rewrit-
ten in terms of z,y,p and ¢ as follows:

t=z+y,

f =2z + XMy +Mp —9)zy/[pg(z + v)),
1= Xy — Mp — 9)zy/[p(z +y)),
s1 = Az + Mp — g)zy/lg(z + ),
T2 = Az — Mp - q)zy/[p(z + y)),
s2 = My + Ap — 9)zy/la(z + y))-

The following is then indicated:

Lemma 2.8 Let p < g and z, y be coprime pairs of positive integers (p # q),
the base pair for the K, ,-factorization of AK, , with balance ratio z : y is
given by m = d(qz + py) and n = d(pz + qy), where d is the denominator
of the (reduced) fraction A(q — p)xy/[pg(z + v)).

We set p1 = ged(p, z), p2 = ged(p,¥), g1 = ged(q,z) and g2 = ged(q, y)
so that p = pop1p2, ¢ = goq192, T = P1q1%To and Y = pagayo- From the
assumption that ged(p, q) = ged(z,y) = 1, it is straightforward to show that
the quantities py, pe, q1, g2, To, Yo, Po, go are all pairwise coprime apart from
possibly (p1, o), (41, Zo), (P2, ¥o), (42, ¥0), (Pi, Po) and (gi,g0) (i = 1,2).
Then A(g —p)zy/[pq(z +y)] = A(g—P)Zoyo/[pogo(z +y)]. If ged (¢ —p,z+
y) = 1, we get the denominator of the (reduced) fraction A(g—p)zy/[pg(z+

y) is

_ _ Pogo(z+y)
ged(A, Pogo(z + )

By simple calculation, the base pair mg,no is as following:

_ podo(z +9)(gz +py)
gcd(X, pogo(z +y)) ’
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_ Pogo(= +3)(pz + qy)
ged(X, pogo(z +v))

Thus the base case of A is A\g = ged(A, pogo(z + ¥)), since Ag, mp and
np satisfy the necessary conditions for K, -factorization, and any integer
A (0 < A < Xg) doesn’t satisfy.

The construction for our main result is similar to Martin’s (factor ma-
trix).

Lemma 2.9 A K, -factorization of AK;n» with f K, o-factors, equates
to an m X n array in which

(1) each cell contains A distinct symbols in {1,2,---, f},

(2) each symbol in {1,2,---, f} occurs in every column and every row,
and

(8) those cells with the integer %, say, correspond to the edges in the
i-th Kp 4-factor.

We call this array the factor array of the K o-factorization. An example
factor array is shown in table 1.

1,4,8,9 2,6,7,9 3,6,7,8
1,5,6,7 2,4,6,8 34,59
2,3,4,7 1,3,5,8 1,2,6,9

Table 1: the K 2-factorization of 4K3 3

3 Main Result

Theorem 3.1 Given coprime pairs (p,q) and (z,y). The necessary con-
ditions in Theorem 1.1 are sufficient when ged(q —p,z +y) = 1.

Proof Without loss of generality, we assume that p < g, with ged(p, ¢) =
ged(z,y) = 1. As before, set p = pop1p2, ¢ = 09192, T = P1q1%o and
Y = Pp2g2Y0, Where py = ged(p,z), p2 = ged(py), q1 = ged(g,z) and
g2 = ged(q,y), then we have a least integer Ao = gcd(A, pogo(z + y)) and
the base case

1 1
my = ,\—opoqo(z +y)(gz +py) = /\—opoqo(:v + Y)P1g24,
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where p = gog?z¢ + Popgyo and

1 1
ng = )‘—OPOQO(—T‘ +y)(pz +qy) = A—Opoqo(w +y)p2q1¥,
where v = pop3To + qogiyo. The factor size is pogo(z + y)?pg/Mo, and the
number of factors is f = uv.

The details of the construction for K, -factorization of AK, » are sim-
ilar to Martin’s (Theorem 6 in [11]). So we only get the amendments and
show that these factor pieces satisfy our required.

The definition of the vertical pieces

Let J be a gap X pov matrix with general term J,3. We can express
a = (a—1)g2 +c and B8 = (b — 1)ps + d uniquely for a,b,c,d where
1<a<sp,12b6<y,1<c<qgpandl1<d<p; SetJog=(a—1)v+b
and J is then decomposable as a u x v array of rectangular go x p2 blocks
(called microblocks), where each microblock has a single factor label and
the labels read in the natural order across J from left to right and from

top to bottom.

J is a model with rotational variants J(i, j) called miniblocks. J(%,j)
is obtained by rotating rows of J cyclically downwards ig; places and the
columns cyclically to the right jps places. The effect is to leave a microblock
structure with labels shifted cyclically down ¢ places and to the right j
places. Note that J = J(0,0).

Using these, we next construct the p1gop X p2qiv matrix H as a p; X 1
block array of miniblock variants of J. Specifically, if 1 < v <p; and
1 < 6 < q1, then the miniblock of H of row index 4 and the column index
4 is defined to be J = J(§ — 1,7 —1).

Note that p; < v and ¢; < u, so that all the miniblocks comprising H
are distinct. This ensures that H has the following properties:

(1) In every column and every row of miniblocks in H, a given factor
label is associated with at most one microblock.

(2) Within every column (resp. row) of miniblocks in H, a given fac-
tor label is associated with a cyclically contiguous set of p; (resp. q;)
microblock columns (resp. rows).

H also has rotational variants H(%,j). For 0 < i < q19p%0 and 0 <
J < popizo, H(i,j) is the array of miniblocks where, for 1 < a < p;
and 1 < 8 < ¢y, the miniblock with row index o and column index 8 is
H(i,5)ap = J(iq1 + B -1, ;1 +a — 1).
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Note that ig; + 8 —1 < p and jpy + a—1 < v. If i # ¥, then in any
fixed microblock row the set of factor labels occurring in H(%, 7) is disjoint
from the set of factor labels occurring in H(#, 7). Similarly, if j # 5/, in
any fixed microblock column the set of factor labels occurring in H (3, j) is
disjoint from the set of factor labels occurring in H(3, ).

Now we can place the vertical factor pieces in F'. Notice that all the cal-
culations are taken modulo %poqo(xﬂ/) intherangel,2,---, A—l‘)poqo(m+y).
First decompose F as -pogo(z + y) X 3-pogo(z +y) array G of blocks of
size p1gop X paq1v (of size equal to H). We first assign to the partial row
Gi1,-+,G1,pogoz- Recall pogor = pogop1q170. For 1 < j < pogox write
j—1 = rpipo + s uniquely for 0 < s < p1pp and 0 £ 7 < q19pT0, and
write = tg;go + u uniquely for 0 < u < q1gp and 0 < ¢ < zp. Then define
Gy = H(r, s+tp1po). Finally, for 2 < i < $-pogo(z+y) and 1 < v < pogo,
define j = i+v—1 (mod 5-pogo(z+y)) in the range 1,2, - - -, s--pogo(z +y)-
This has effect of copying the assignments of the top row of quy a process
of diagonal replication into the other rows.

The same as those of Martin’s discussion, this definition determines an
assignment of vertical copies of K, 4. So we have the following properties:

(3) This definition determines an assignment of vertical copies of K g,
so that no two copies with the same factor label overlap in a column or in
a row.

(4) Within every column (resp. row) of miniblocks in G thus defined,
a given factor is associate with a cyclically contiguous set of pop3zo (resp.
gog?xo) microblock columns (resp. rows).

(5) pop?zo < v and gog?zo < W, so there is no danger of the resulting
contiguous sets of rows and columns rotating back onto themselves.

This complete the definition of the vertical factor pieces.

The definition of the horizontal pieces

Our standard model miniblock M is a gopt X pav array as follows: for
1<s<pandl <t< v assign the label v(s — 1) +¢ to the entries M;;,
where i = ¢o(s — 1) + @ and j = pa(t — 1) + « for 1 < a < p2g2, where the
subscripts are reduced module gau and pov respectively into the correct
range.

We construct cyclic variants M (i, j) of M, by rotating columns pop?zop;
+ ipage places cyclically to the right and rows gog?zogs + jp2ge places
cyclically down. The effect of the summands pop3zops and gog?Toqs is to
ensure that we avoid these in anything previously defined. The other two
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summands ensure that varying ¢ and j avoids partial overlaps with the
diagonals (of length gop2).

From each miniblock M(%,j), we construct a large block L(7,j) as a
p1 X q1 array of miniblocks all equal to M(%, 7). The following properties
are satisfied.

(1) Within every column (resp. row) of miniblocks in L(%, j), & given
factor label is associated with a cyclically contiguous set of paqa columns
(resp. rows).

(2) For each factor label ¢, the entries with that label contribute a total
of pago subarrays of size py x ¢; with non-overlapping rows and columns,
but covering the contiguous sets as described above.

We now use these to fill in the remaining G-blocks of F' and to define
all the required horizontal factors. The approach is to complete the first
row of G and copy this over the remaining rows by diagonal replication.

So we define the Gy pygor+ir 1 < J < Podoy = Pogop2g2yo, working
as in the vertical case. Given j, we define unique integers r,s,t where
j—=1=rqaqo+s, r = tpopo+u, 0 < 8 < gago, 0 S u < papo and 0 < ¢ < yo,
and then set Gy pogoz+j = L(S + tg2q0,7). We then extend this over the
remainder of G by assigning Gag = G1,g—q+1 for 2 < a < %opoqo(x +7)
and pogoz +1 < B—a+1 < pogo(z + y), where all the calculations are
taken modulo 3-pogo(z + ¢) in the range 1,2,---, -)3'—op0q° (z+y).

Similarly vertical analysis, we have the following:

(3) This definition determines an assignment of horizontal copies of K 4
so that no two copies with the same factor label overlap in a column or in

a row.

(4) Within every column (resp. row) of miniblocks in G defined in the
second stage, a given factor label is associated with a cyclically contiguous
set of gog2yo (resp. pop3yo) microblock columns (resp. rows).

(5) gog2yo < v and pop3yo < p. So there is no danger of the resulting
contiguous sets of rows and columns rotating back onto themselves.

Finally, we notice that F is & 3-pogo(z + y) X 25 Pogo(Z + y) array G
of blocks of size pigap X paqiv, and for each row «, we have filled the
Pogo(z +y) blocks Gop (1 < B < pogo(z +¥)). So each cell of F is covered
by Ao distinct Gop and F is indeed the factor array of a K, ,-factorization

of Ao Kmg,ne-
So the proof of the theorem is completed. O
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Corollary 3.2 For all p > 1, the necessary conditions for K, ,,-factorization
of AK, » are sufficient.
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