The scrambling indices of primitive digraphs
with exactly two cycles*

Yubin Gao! Yanling Shao
Department of Mathematics, North University of China
Taiyuan, Shanxi 030051, P.R. China

Abstract

In 2009, Akelbek and Kirkland introduced a useful parameter
called the scrambling index of a primitive digraph D, which is the
smallest positive integer k such that for every pair of vertices v and
v, there is a vertex w such that we can get to w from v and v in D by
walks of length k. In this paper, we study and obtain the scrambling
indices of all primitive digraphs with exactly two cycles.
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1 Introduction

For terminology and notation used here we follow [1, 5]. Let D = (V, E)
denote a digraph (directed graph) with vertex set V' = V(D), arc set E =
E(D) and order n. Loops are permitted but multiple arcs are not. A
digraph D is called primitive if for some positive integer &, there is a walk
of length exactly & from each vertex u to each vertex v (possibly u again).
It is well known that D is primitive if and only if D is strongly connected
and the greatest common divisor of all the cycle lengths of D is 1.

The distance from vertex u to vertex v in D, is the length of a shortest
walk from u to v, and denoted by d(u,v). For a vertex v and a vertex set
X of D, the distance from u to X in D, denoted by d(u, X), is d(u, X) =

min{d(u,z)|z € X}. Ifu € X, we define d(u, X) = 0. The notation u LA
is used to indicate that there is a walk of length & from u to v.
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In [5], Akelbek and Kirkland introduced a useful parameter called the
scrambling indez of a primitive digraph D, denoted by k(D), which is the
smallest positive integer k such that for every pair of vertices © and v,
there exists a vertex w such that « — w and v —= w in D. For u,v €
V(D)(u # v), the local scrambling index of u and v is the number

ky,»(D) = min{k | » 4, wandv s w, for some w € V(D)},

then
D)= max {k,.,(D)}.

Akelbek and Kirkland’s definition of the scrambling index is the same
as Cho and Kim’s [3] definition of the competition index in the case of
primitive digraphs. The two research groups started from different points,
but got the results nearly simultaneously. Their achievements are widely
applied to stochastic matrices and food webs. For details, see, e.g. [2, 3, 4,
5.

Recently, some papers on the scrambling indices have been published
([4, 5, 6, 7, 8]). In this work, we consider the scrambling indices of all
primitive digraphs of order n > 4 with exactly two cycles. It is clear that
any strongly connected digraph of order n > 4 with exactly two cycles is
isomorphic to either D, » (as given in Figure 1) or D; 5 » (as given in Figure
2). Note D, is primitive if and only if ged(n,s) = 1, likewise Dy, is
primitive if and only if ged(n —t,s) = 1.

Ve+1 Un Va—t41 Un—t
/ \ & )
vs vy Vs—t e vy
Figure 1 Digraphs D, » Figure 2 Digraphs D n
n>24,1<s<n-1). nz24,1<t<s<n—t).

In [5] Akelbek and Kirkland give the scrambling indices of digraphs
D; n when D, ,, are primitive.

Theorem 1.1 (/5]) Letn>4,1<s<n—1 andgecd(n,s)=1. Then

_ [ n—s+(2FP)m,  ifsisodd,
k(D.s,n) = { n—s+ (i;—l)s, if s is even.

In the following section, we will give the scrambling indices of digraphs
D, n when D, , , are primitive.
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2 Main results
First, we give a useful lemma that appeared in (5].

Lemma 2.1 (/5]) Let p and s be positive integers such that ged(p,s) =1
and p > s > 2. Then for each l, 1 <! < max{s —1,|2]}, the equation
zp + ys = | has a unique integral solution (z,y) with |x| < [§] end |y| <

L5]-

Note that the existence of solution (z,y) is guaranteed by Lemma 2.1.
Henceforth, we say (z, y) is a solution of equation zp+ys = ! with minimum
absolute value to mean that |z| < |§], |yl < |§] and zp+ys =1

Lemma 2.2 Let p, s and | be positive integers such that ged(p,s) = 1,
p>s>2 and1 <! <max{s—1,|5]}. If (zo,y0) is the solution of the
equation Tp+ys = | with minimum absolute value, then all integral solutions

of the equation xzp + ys = | are {(zo + ms,yo — mp) | m is an integer}.
Proof Since (zg,%o) is a solution of the equation zp + ys = I, we have
Top +yos =1.
Let (z1,y1) be any solution of the equation xp + ys = . Then
nptys=L
So (z3 — zo)p + (v1 — yo)s = 0, that is,
(z1 = z0)p = (vo — 11)s-
Noting ged(p, s) = 1, then (z; — zo)|s, and so there is an integer m; such
that ; — o = mys, that is, z; = zo + m1s. In this case, y; = yo — m1p.
On the other hand, for each integer m, it is clear that (2o +ms, yo—mp)
is a solution of the equation zp + ys = !. The lemma now follows. 0O

For positive integers p and s with 2 < s < p and ged(p, 8) = 1, for the
sake of convenience, we denote

_f (53 ),  ifsisodd,
k(p,s) = { (L;_l)s, if s is even. 1)

Theorem 2.3 Letn>4,1<t<s<n-—t, andged(n—t,s) =1. Then

k(Deom) =n— s+ k(n —t,5).
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Proof Denote p=n—t. Let C; and C, be the cycles of lengths s and p,
respectively.

First, we will prove that k(D;,n) £ n — s+ k(n —t,s). Consider the
following two cases.

Case 1.1 sis odd.

For any u,v € V(Dy,s), take vi,v; € V(C,) such that v =3 v; and
v 233 v;j. If v; = v, then ky (Dt,s,n) < n — 5. We now suppose v; # v;
so that d(v;,v;) = [, for some 1 <l < s — 1. Since ged(s,p) = 1 and
p > 8 > 2, by Lemma 2.1, the equation zp + ys = [ has a unique integral
solution (z,y) with |z| < |§] and |y| < |§].

Moreover, since | < s and | < p, z and y are both nonzero and must
have opposite signs. We consider the following two subcases.

Subcase 1.1.1 z>0and y <0.
Then zp = | — ys. If v; is in the overlap of C; and C,, then

n—s { —-ys n—s zp
u— v —v; —v; and v —v; —;

are the walks of length n — s + zp from u to v; and v to v;.
If v; is on Cs but not on Cp, noticing that there exists at least one

vertex of the walk v “=3 v; on Cj, then

uﬂv,-—!»vj -—yf»v,- and vﬁ_—ivj+xCp
are the walks of length n — s 4+ zp from u to v; and v to v;, where zCy is
the walk around C, z times. Thus

s
kuoy(Desn)<n—s+zp<n—s+ (—)p

Subcase 1.1.2. z <0 and y > 0.
Since v; LN v; and v;,v; € V(C;), then v; = v;. We have —zp =
(s = 1) + (y — 1)s. By the argument from Subcase 1.1.1, there exist walks
of length n — s — zp from u to v; and v to v;. Thus
s—1

kuo(Dtsn)Sn—s—zp<n—s+ (T)p

Case 1.2. s is even.

Then p = n -t is odd. For any u,v € V(Dy,), take v;,v; € V(Cp)
such that v 2=3 v; and v 2= vj. If v; = vj, then ky o(Dt,s,n) < n—s. Now
we suppose that v; # v;. Since v;,v; € V(Cyp), we have that d(v;, v;) < 9—;—1
or d(vj,v;) < l’;—l Without loss of generality, let d(v;,v;) < 1’;—1, so that

. ces s — -1
there is a positive integer 1 < I < 251 such that v; -4 v; and v; 255 v,
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By Lemma 2.1, the equation zp + ys = [ has a unique integral solution
(z,y) with |z] < [§] and |y < [§).

If £ # 0, then y # 0, and = and y must have opposite signs. By
arguments similar to Case 1.1,

ku.v(Dt,s,n) <n—-s+ |y|3 <n-s+ (P; 1)8.

If z = 0, then the equation is ys = !, and so y > 0. If v; is in C, as well
as Cp, then
n—s l n—s ys
u— v —v; and v — v; — Y;
are the walks of length n — s 4+ ys from u to v; and v to v;. If v; is on Cp
but not on C,, noticing that there exists at least one vertex of the walk
v 223 v; on Cj, then

- ! n—
™3 vy —v; and v 3 v +yC,

are the walks of length n — s + ys from u to v; and v to v;. Thus

-1
kuow(Desn) Sn—s+ys<n—s+ (p )s,
2
Combining the above Cases 1.1 and 1.2, we have that
k(Deom) Sn—38+k(p,s).

Next, for v; € V(D,s,») and a positive integer z, we denote R;(v;) the
set of all those vertices which can be reached by a walk of length z starting
from vertex v;. Let h =n—s+k(p,s) — 1. We find a vertex v € V(Dy ,,5)
such that Ry(vn—¢) N Rp(v) = ¢.

We consider the following three cases.

Case 2.1. s is odd and p is even.

Then h =n — s + (21)p — 1. It is clear that

(3)e- C7)e=5

and (8,—231) is the integral solution of the equation zs 4 yp = § with
minimum absolute value. Let £ = r(mods), so that £ = r + t's for some
nonnegative integer ¢/, where 1 < r < s —1. Then

(B-¢)s-(*5)p=n (2.2)

and so (8 — ¢/, —251) is the integral solution of the equation s +yp = r
with minimum absolute value.
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If n—t—r > s—t, then the vertex vp—¢—r & V(Cs), d(vn—t,vs—t) = n—s,
and d(vp—t—r,Vs—t) = 7 — s — 1. Thus Rp(vn—¢) = R(._;_l_)’,_l(v,_t),
and Rp(vn_t—yr) = R 25l)pir-1 1(vs—¢). We claim that R(L;_I)P_l('l)s_t) N
R(.-x 1(Vs—t) = &. In fact, if vy, € R( )p_l(vs_t)nR(g_;_:)p_,_r_l(vs_t),

Fo)ptr—
then there are nonnegative integers a;, ag, by, bg, such that

(a-l)p 1 - d(va—thlO) + a3 + blp’ (2 3)
(s— )P+T—1 —d(vs—t’vto)+023+b2py )

and so r = (ag — a;)s + (b2 — b1)p. By (2.2) and Lemma 2.2, there exists
an integer m such that by — by = 251 + ms, and so by > 252 or by > &f.
This contradicts (2.3). Then Rs-1y,_;(Vs—t)VRagaypy . 1(vs—t) = ¢, and
Rh(vn—t) n Rh(vn—t-—r) =¢

Ifn—-t—-r<s—t noticingthat n—t—r=p—r=2(r+t's)—r=
r+2t's,thent' =0, n—t—r=1r,and so 1 <r < s—t. We claim that
Rp(vn—t) N Ru(vy;) = ¢. In fact, if v;y € Rp(vn—¢) N Rp(v,), then there are
nonnegative integers ai, ag, by, ba, such that

h=n-—t—'r+d(v,.,'v,~°)+a18+b1P, (24)
h = d(vr,vi) + azs + bap, '

and so (a2 —a;)s+ (b2 — b1)p =n —t — 7 = r. By (2.2) and Lemma 2.2,
there exists an integer m such that b; — by = "1 + ms, and so by > %’

or by > #¥1. Noticing1<r<s—tandp= n—t>n—s,by(24)

-1 -1
d(vr, v ) +ars+byp = h—(n—t— r)—t+r—s+( 3 )p—l < (s 5

and

d(vryvzo)+023+b2p h= n_3+( 3 l)p—l < P+( - 1)P—1 _ (3 + l)p_

These contradict by > 251 or by > 2. Then Rp(vn—¢) N Ra(v,) = ¢
Case 2.2. Both s and p are odd.

We have that 1 1
p- s — _p—s
( 2 )s ( 2 )p =2
and (B3 '2' ”'1) is the integral solution of the equation zs+yp = 252 with

minimum absolute value. Let £5* = r(mods), so that 232 = r + t’s for
some nonnegative integer ¢/, where 1<r<s—1. Then

(B -2)e- (5 )e=n
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and so (P;—l —t',—231) is the integral solution of the equation zs+yp =r
with minimum absolute value. Clearly, n—t—r = p—r = 2(r+t's)+s—r =
r+2t'+1)s>s-1t.

By argument similar to Case 2.1, we have that Ry (vp—¢)NRp(vn—t—r) =
é.

Case 2.3. s is even.

In this case, pis odd, and h=n — s+ (%l)s — 1. It is clear that

Q- (2503 @
and (3, —1'2-'-1) is the integral solution of the equation zp + ys = § with
minimum absolute value. We claim that Rp(vn—t) N Ru(vn-t-4) = ¢.
Otherwise, we suppose that there is a vertex v;; € V(D¢s,n) such that
Vip € Rp(vn—t) N Ru(vn-t-3).

Ifn—t—%<s—t thenn< %‘1, and there are nonnegative integers
aj,as, by, ba, such that

h =%+ d(vn-t—4,vi,) + 015+ b1p, (2.6)
h = d(vn-t—g,vis) + a2s + b2p, '

and so (a2 — a1)s + (b2 — b1)p = §. By (2.5) and Lemma 2.2, there exists
an integer m such that a; — ap = &;—1 + mp, and so a; > L;—l— or as > &;—1
Noticing that n < %, by (2.6),

d(vn_t_f,v,-o)+als+b1p=n—s+ (p-2- 1)3—1— % < (p; 1)3—1,

and

d(v,._t-%,vio)+ags+b2p=n—s+ (p;1)3—1 < (p_;l)s—l.

These contradict a; > %1 or ag > P—';—l
If n —t — § > s —t, then there are nonnegative integers ay,as, by, by,

such that
{ h=n—s+d(vs—t,Vi,) + @15 + b1p, (2.7)

h=n—s8—3%4d(vs—t,vi) + azs + bop,
and so (a2 — a1)s + (b2 — b1)p = §. By (2.5) and Lemma 2.2, there exists
an integer m such that, ¢; —az = P—;—l +mp, and so a; > "-".,'-'—1 or ag > P;’—l
By (2.7),

d(v,_,,vi°)+als+b1p=n—s+(pgl)s—l—(n—s)= (pgl)s—l,
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and

d(Vs—¢, Vig)+a28+byp =n—s+ (p 2 1)s—l— (n-s— ;) = (I%I)s—l.
These contradict a; > 1;—1 or az > 2;'—1-

Thus Rp(vp—:) N Ry ('v,,_t_*) = ¢ for Case 2.3.

‘Combining the above Cases 2.1, 2.2 and 2.3, we have that there is
a vertex v € V(Dy,n) such that Ry(vn—t) N Ry(v) = ¢. Thus for any
integer ho with 1 < hg < h, Rpy(vn-t) N Riy(v) = ¢. It implies that
k(Dtsn) 2 h+1=n—3s+k(p,s). The theorem now follows. O

Combining Theorems 1.1 and 2.3, we have the following result on the
scrambling indices of all primitive digraphs with exactly two cycles.

Corollary 2.4 Let D be a primitive digraph of order n (n > 4) with exactly
two cycles (say their lengths are s and p, and s < p). Then

B _ [ n-s+(5F)p, i sisodd,
k(D)—n—s+k(P,S)—{n_s_*_(L;_l)s, if s is even.

3 Remarks

In [8], when authors study the scrambling indices of primitive minimally
strong digraphs, they derive the following three digraphs and obtain theirs
scrambling indices (see Lemmas 3.10, 3.11 and 3.12 in [8]).

Un Un-1 Un Un-1 Un-3 Un  VUn—-1 Un-2
v/ v"‘:z \Un-3 1 Un-~5 Vi Un—4
Xz- e Un-—-4 v2 oo Un-6 v2 .. Un-5

Digraph H, (n > 4) Digraph Q. (n > 6) Digraph W, (n > 6)
Note that each of primitive digraphs H,, Qn and W,, has exactly two
cycles, and that H,, is isomorphic to D) n_2,n, @n is isomorphic to D3 n—3n,

and W, is isomorphic to Dy n_3.. By Theorem 2.3 or Corollary 2.4, the
scrambling indices of above three digraphs follow directly.
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