On k-equitable and k-balanced labelings of graphs

Maged Z. Youssef

Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt.

Abstract

In this paper, we consider labelings of graphs in which the label on an edge is the absolute value of the difference of its vertex labels. Such a labeling using $\{0,1,2,...,k-1\}$ is called k-equitable if the number of vertices (resp. edges) labeled i and the number of vertices (resp. edges) labeled j differ by at most one and is called k-balanced if the number of vertices labeled j and the number of edges labeled j differ by at most one. We determine which graphs in certain families are k-equitable or k-balanced and we give also some necessary conditions on these two labelings.

Keywords: Cordial labeling, k-equitable and k-balanced labelings.

1. Introduction

All graphs in this paper are finite, simple and undirected. We fellow the basic notations and terminology of graph theory as in [3].

Let G be a (p,q) graph with vertex set V(G) and edge set E(G) and let us denote the set $\{0,1,2,...,k\}$ by [0,k]. A vertex labeling $f:V(G) \to [0,k-1]$ induces an edge labeling $f^*\colon E(G) \to [0,k-1]$, defined by $f^*(xy) = \left|f(x) - f(y)\right|$, for each edge $xy \in E(G)$. For $i \in [0,k-1]$, let $n_i(f) = \left|\{v \in V(G)\colon f(v) = i\}\right|$ and $m_i(f) = \left|\{e \in E(G)\colon f^*(e) = i\}\right|$. A labeling f of a graph G is k-equitable (resp. k-balanced) if $\left|n_i(f) - n_j(f)\right| \le 1$ and $\left|m_i(f) - m_j(f)\right| \le 1$. A graph G is called k-equitable (resp. k-balanced) if it admits a k-equitable (resp. k-balanced) labeling.

The notion of k-equitable labeling of graphs was introduced by Cahit [2] in 1990, who introduced first the notion of 2-equitable labeling under the

name of cordial labeling in 1987 [1], while the notion of k-balanced labeling was introduced by Seoud and Abdel Magsoud [7] in 1999.

Cahit [1] proved the following: every tree is cordial; K_n is cordial if and only if $n \leq 3$; $K_{m,n}$ is cordial for all m and n; the wheel $W_n = C_n + K_1$ is cordial if and only if $n \not\equiv 3 \pmod 4$; C_n is cordial if and only if $n \not\equiv 2 \pmod 4$ and an Eulerian graph is not cordial if its size is congruent to $2 \pmod 4$. Shee and Ho [9] determined the cordiality of $C_m^{(n)}$, the one-point union of n copies of C_m . Cahit [2] has shown the following: C_n is 3-equitable if and only if $n \not\equiv 3 \pmod 6$; the friendship graph $C_3^{(n)}$ is 3-equitable if and only if $n \equiv 2 \pmod 6$ edges is not 3-equitable and all caterpillars are 3-equitable. Kuo, Chang and Kwong [6] determined all $m \equiv 3 \pmod n$ for which mK_n is cordial. Szaniszlo [11] showed that K_n is not k-equitable for $3 \leq k < n$, and C_n is k-equitable if and only if $k \equiv 2,3 \pmod 4$, then $n \not\equiv k \pmod 2k$.

Youssef [12] proved that if G is a k-equitable Eulerian graph of q edges and $k\equiv 2\,or\,3\,(\mathrm{mod}\,4)$, then $q\not\equiv k\,(\mathrm{mod}\,2k)$, we call this necessary condition the k-equitable parity condition. As a corollary of the k-equitable parity condition, he also proved that if $k\equiv 2\,or\,3\,(\mathrm{mod}\,4)$ and G is odd (p,q) graph with $p\equiv 0\,(\mathrm{mod}\,k)$ and $p+q\equiv k\,(\mathrm{mod}\,2k)$, then G is not k-equitable, we call this necessary condition the k-equitable odd parity condition. In [13] Youssef gave some variations on the definition of cordial graph and defined what he called semi-cordial graph and establish some relations between semi-cordial and graceful graphs.

Seoud and Abdel Maqsoud [8] proved that $K_{m,n}$, $3 \le m \le n$ is 3-equitable if and only if (m,n)=(4,4), $K_{1,2,n}$, $n\ge 2$ is 3-equitable if and only if $n\equiv 2\pmod 3$ and $K_{1,m,n}$, $3\le m\le n$ is 3-equitable if and only if (m,n)=(3,4). Seoud and Abdel Maqsoud [7] proved that P_n^2 is k-balanced if and only if n=2,3,4 or n=10 and n=10 and n=11 and n=12 and n=13.

k = n + 1 or n + 2; or (iii) $k \ge (m + 1)(n + 1)$. For more details of known results of graph labelings see Gallian [5].

In the next section of this paper we deal with k-equitable graphs. We determine the maximal number of edges in a 3-equitable graph of order n, we show that $C_n + \overline{K}_2$ is 3-equitable if and only if n is even and $n \ge 6$. Finally we show that C_n^2 is 3-equitable if and only if $n \ge 8$. Section 3 deals with k-balanced graphs. We give some necessary conditions for a graph to be k-balanced. Some relations between k-equitable and k-balanced

2. k-equitable graphs

labelings are given.

In this section, We give an exact formula for the maximal number of edges in a 3-equitable graph of order n. We also determine the 3-equitablity of the graphs $C_n+\overline{K}_2$ and C_n^2 .

Note that If G is (p,q) graph having k-equitable labeling f , then

$$\left\lfloor \frac{p}{k} \right\rfloor \leq n_i(f) \leq \left\lceil \frac{p}{k} \right\rceil \quad \text{and} \qquad \left\lfloor \frac{q}{k} \right\rfloor \leq m_i(f) \leq \left\lceil \frac{q}{k} \right\rceil \quad \text{for all } i \in [0,k-1] \text{, and } k-1-f \text{ is also a k-equitable labeling of } G \ .$$

Du [4] determined the maximal number of edges in a cordial (that is, 2-equitable) graph of order n. We extend this result for 3-equitable graphs. Let $\delta_k(n)$ be the maximal number of edges in a k-equitable graph of order n. For example, we can easily show that: $\delta_3(n) = n-1$ for $n \leq 3$, $\delta_3(4) = 5$ and $\delta_3(5) = 8$.

Theorem 1. If $n \ge 12$,then

$$\delta_{3}(n) = \begin{cases} \frac{n^{2}}{3} + 2, & n \equiv 0 \pmod{3} \\ \frac{(n-1)(n+2)}{3} + 2, & n \equiv 1 \pmod{3} \\ \frac{(n+1)^{2}}{3} + 2, & n \equiv 2 \pmod{3} \end{cases}$$

Proof. Let G be 3-equitable graph of order n with k-equitable labeling f of maximal number of edges. We note that the edges labeled 2 induced

only from the vertices labeled 0 that are adjacent to the vertices labeled 2 and the maximal number of edges labeled 2 in a 3-equitable graph of order n is $\left\lceil \frac{n}{3} \right\rceil \left\lceil \frac{n+1}{3} \right\rceil$. The maximal number of edges labeled 0 in G is $\sum_{i=0}^2 \binom{n_i(f)}{2}$. If $n \ge 12$, one can show that $M_2(f) < M_0(f) < M_1(f)$. So $\delta_3(n) = 3M_2(f) + 2$, where $M_i(f)$ is the maximal number of edges labeled i in G. By considering different cases of n modulo 3, we complete the proof. \square

Remark 1. (i) One can easily calculate $\delta_3(n)$, for $6 \le n \le 11$, using the same argument as above and obtain: $\delta_3(6) = 11$, $\delta_3(7) = 17$, $\delta_3(8) = 23$, $\delta_3(9) = 28$,

 $\delta_3(10)=37$ and $\delta_3(11)=47$. Also, we can unify the cases in the head of the above theorem in one case as $\delta_3(n)=3\left\lceil\frac{n}{3}\right\rceil\left\lfloor\frac{n+1}{3}\right\rfloor+2$, $n\geq 12$. (ii) In light of the proof of Theorem 1, one can extend the result for $k\geq 4$ in the same argument and get $\delta_k(n)=k\left\lceil\frac{n}{k}\right\rceil\left\lfloor\frac{n+1}{k}\right\rfloor+k-1$,

 $n \ge 3k$.

Lemma 1. If G is a (p,q) k-equitable graph with $p \equiv 0 \pmod{k}$, then

- (i) $G + K_1$ is k-equitable, and
- (ii) $G + \overline{K}$, is k-equitable.

Proof. Let G be k-equitable (p,q) graph with $p \equiv 0 \pmod{k}$. Now,

- (i) Label the vertex of K, by the label 0
- (ii) Label the two vertices of \overline{K}_2 by the labels 0 and k-1. \square

Cahit [2] showed that W_n is 3-equitable if and only if $n \not\equiv 3 \pmod 6$, while Seoud and Abdel Maqsoud [8] proved that the fan $F_n = P_n + K_1$ is 3-equitable if and only if $n \ge 1$ except n = 2, all double fans $P_n + \overline{K_2}$ are 3-equitable except for n = 4 and they conjectured that W_n is 3-equitable if and only if $n \not\equiv 3 \pmod 6$, but Youssef [12] showed that one direction of the result of Cahit about the 3-equitablity of W_n is not correct by proving that W_n is 3-equitable for all $n \ge 4$.

There are three known reasons at which a graph ${\it G}\,$ fails to be kequitable:

- (1) G has too many edges,
- (2) G has the wrong k-equitable parity condition, and
- (3) G has the odd parity condition.

In the following theorem we show that the graph in certain case is not 3-equitable for other reason not from the above list.

Theorem 2. For $n \ge 6$, the graph $C_n + \overline{K}_2$ is 3-equitable If and only if n is even.

Proof. If $n \equiv 0 \pmod 6$, then C_n is 3-equitable by by [2] and then $C_n + \overline{K_2}$ is 3-equitable by Lemma 1. If $n \equiv 2 \pmod 6$, let n = 6m + 2, $m \ge 1$. We label the vertices of the cycle C_n successively by the labels: $(110)(\prod_{i=1}^{m-1}(200211))(20021)$ and we label the vertices of $\overline{K_2}$ by the labels 0 and 2. If $n \equiv 4 \pmod 6$, let n = 6m + 4, $m \ge 1$. We label the vertices of the cycle successively by the labels: $(111200202)(\prod_{i=1}^{m-1}(110220))(1)$ and we label the vertices of $\overline{K_2}$ by the labels 0 and 2. One can easily verify that the labelings in the above two cases are 3-equitable.

Conversely, suppose $n \geq 3$ is odd and $C_n + \overline{K_2}$ is 3-equitable with 3-equitable labeling f and assume that n_0', n_1' and n_2' are the number of

the vertices labeled 0,1 and 2 respectively which lie on the cycle C_n , m_0',m_1' and m_2' are the number of edges labeled 0,1 and 2 respectively restricted to the cycle C_n . As C_n is Eulerian graph, then m_1' is even [2].

If n is odd and $n \ge 7$, then $m_1' > 0$, since otherwise all vertex labels on the cycle are all 1 or all either 0 or 2 which implies that $n_1(f) \ge n$ or $n_1(f) \le 2$, which is absurd in both cases, since $3 \le n_1(f) < n$. We have the following three cases for the possibilities of the vertex labels of \overline{K}_2 :

Case 1:
$$f(V(\overline{K}_2)) = \{0,0\} \text{ or } \{0,2\} \text{ or } \{2,2\}$$

In this case, $m_1(f)=2n_1'+m_1'$, that is, $m_1(f)$ is even, which contradicts the fact that $m_1(f)$ must be equal to n which is odd.

Case 2:
$$f(V(\overline{K}_2)) = \{0,1\} \text{ or } \{1,2\}$$

$$m_1(f) = n'_0 + n'_1 + n'_2 + m'_1 = n + m'_1 > n$$
, which is absurd.

Case 3:
$$f(V(\overline{K}_{2})) = \{1,1\}$$

 $m_1(f) = 2n'_0 + 2n'_2 + m'_1$, which is even, a contradiction as in Case 1.

Hence $C_n + \overline{K}_2$ is not 3-equitable if n is odd and $n \ge 7$

If n=5, if $m_1'>0$, then $C_5+\overline{K}_2$ is not 3-equitable as above. If $m_1'=0$, then $m_1(f_1)=10$ a contradiction.

If n=3, then $C_3+\overline{K}_2$ is not 3-equitable since this graph has 5 vertices and 9 edges while $\delta_3(5)=8$.

If n=4, then $C_n+\overline{K}_2$ is not 3-equitable by Remark 1 since this graph is of size 12 while $\delta_3(6)=11$. \Box

The following lemma is similar to a result in the proof of P_n^2 is 3-equitable in [8].

Lemma 2. If C_n^2 has 3-equitable labeling such that there exists two adjacent vertices of C_n labeled 1, then C_{n+18}^2 is 3-equitable also. Proof. Let $V(C_n) = \left\{v_1, v_2, ..., v_n\right\}$ where $v_i v_j \in E(C_n)$ if and only if $i-j \equiv \pm 1 \pmod{n}$ and let C_n^2 has 3-equitable labeling f such that $f(v_{n-1}) = f(v_n) = 1$. Cut the cycle C_n around the vertex v_n by removing the edges $v_1 v_n, v_2 v_n$ and $v_1 v_{n-1}$, and let $V(P_{18}) = \left\{u_1, u_2, ..., u_{18}\right\}$ where $u_i u_j \in E(P_{18})$ if and only if $\left|i-j\right| = 1$. Now, connect v_1 to u_1 and u_{18} to v_n and add all edges between vertices whose the distance between them is 2 to obtain C_{n+18}^2 . Now label the vertices of P_{18} successively by the labels: 1,1,2,2,0,0,2,2,0,0,1,1,0,0,2,2,1,1. We added to C_n^2 6 vertices labeled zero, 6 labeled one and 6 labeled two. For the edge labels, we added 12 edges labeled zero, 12 edges labeled one and 12 edges labeled two. Hence C_{n+18}^2 is 3-equitable. \square

Seoud and Abdel Maqsoud [8] sowed that P_n^2 is 3-equitable for all $n \ge 1$ but 3 and conjectured that C_n^2 is not 3-equitable for all $n \ge 3$, however we show the following.

Theorem 3. C_n^2 is 3-equitable if and only if $n \ge 8$.

Proof. $C_3^2=C_3$ is not 3-equitable by [2]. $C_4^2=K_4$ and $C_5^2=K_5$ are not 3-equitable by [11]. $C_6^2=C_4+\overline{K}_2$ is not 3-equitable by Theorem 2. If n=7, suppose C_7^2 has 3-equitable labeling f. As C_7^2 is Eulerian graph, then $m_1(f)=4$, but since $2\leq n_1(f)\leq 3$, then $m_1(f)\geq 6$ a contradiction . Conversely, we will give a 3-equitable labeling f of $C_n^2, 8\leq n\leq 25$, with $f(v_{n-1})=f(v_n)=1$, then applying Lemma 2 completes the proof by induction. We label the vertices of C_n^2 ,

 $8 \le n \le 25$ successively as pattern: $(f(v_1), f(v_2), ..., f(v_n))$

n = 8: (0,2,0,2,0,2,1,1).

n = 9: (0,0,2,2,0,2,1,1,1).

n = 10: (0,0,2,2,0,2,2,1,1,1).

n = 11: (0,1,2,0,2,0,0,2,1,1,1).

n = 12: (0,1,2,0,0,2,2,0,2,1,1,1).

n = 13: (0,1,2,0,2,0,2,0,0,2,1,1,1).

n = 14: (0,0,1,2,2,0,2,0,2,0,2,1,1,1).

n = 15: (0,1,1,2,0,2,0,0,2,2,0,2,1,1,1).

n = 16: (0,0,1,2,2,0,0,2,2,0,2,0,1,1,1,1).

n = 17: (0,0,2,2,0,2,2,1,1,0,0,2,2,1,1,1,1).

n = 18: (0,0,1,1,1,2,2,0,0,2,2,0,0,2,2,1,1,1).

n = 19: (0,0,2,2,0,0,0,2,2,1,1,0,0,2,2,1,1,1,1).

n = 20: (0,0,2,2,1,0,0,2,2,1,0,0,2,2,0,2,1,1,1,1).

3. k-balanced graphs

In this section, we give some necessary conditions for a graph to be k-balanced and also present some relations between k-equitable and k-balanced labelings.

Lemma 3. If G is a (p,q) k-balanced graph, then $|p-q| \le k$.

Proof. Let G be k-balanced graph with k-balanced labeling f, then $\left| p-q \right| = \left| \sum_{i=0}^{k-1} n_i(f) - \sum_{i=0}^{k-1} m_i(f) \right| \leq \sum_{i=0}^{k-1} \left| n_i(f) - m_i(f) \right| \leq k \; . \; \Box$

The following lemma is stronger than the result above.

Lemma 4. If G is a (p,q) k-balanced graph, then $\left|\frac{q}{k}\right| - \left|\frac{p}{k}\right| \le 1$ if $q \ge p$ or $\left[\frac{p}{k}\right] - \left|\frac{q}{k}\right| \le 1$ if $p \ge q$.

Proof. Let $q \geq p$ and let G be k-balanced with k-balanced labeling f, then using the pigeonhole principle, there exists $i \in [0,k-1]$ such that

$$m_i(f) \ge \left\lceil \frac{q}{k} \right\rceil$$
, since otherwise $m_i(f) < \left\lceil \frac{q}{k} \right\rceil$ for all $i \in [0, k-1]$

and hence $\sum_{i=0}^{k-1} m_i(f) < k \left\lceil \frac{q}{k} \right\rceil < q$, a contradiction. Again, there exists

$$j \in [0, k-1]$$
 such that $n_j(f) \le \left| \frac{p}{k} \right|$. Now,

$$\left\lceil \frac{q}{k} \right\rceil - \left\lceil \frac{p}{k} \right\rceil \le m_i(f) - n_j(f) \le 1$$
. Similarly the case when $p \ge q$. \square

Proposition 1. If G is a (p,q) graph having k-balanced labeling f and there exist i, $j \in [0,k-1]$ such that $\left|n_i(f)-n_j(f)\right|=2$ (resp. $\left|m_i(f)-m_j(f)\right|=2$), then $m_i(f)=m_j(f)$ for all

 $i\,,j\in [0,k-1] \ \text{ and hence } q\equiv 0\,(\bmod\,k\,) \ \text{(resp. } n_i(f\,)=n_j(f\,)$ for all $i\,,j\in [0,k-1]$ and hence $p\equiv 0\,(\bmod\,k\,)$) .

Proof. Immediate. □

Corollary 1. If G is a (p,q) graph having k-balanced labeling f , then

(i) If $p \equiv 0 \pmod{k}$ and $q \not\equiv 0 \pmod{k}$, then $n_i(f) = \frac{p}{k}$ for all $i \in [0, k-1]$.

(ii) If $q \equiv 0 \pmod{k}$ and $p \not\equiv 0 \pmod{k}$, then $m_i(f) = \frac{q}{k}$ for all $i \in [0, k-1]$.

Proof. (i) If $n_i(f) \neq \frac{p}{k}$ for some $i \in [0, k-1]$, then there exists $j \in [0, k-1]$ such that $\left|n_i(f) - n_j(f)\right| = 2$ and by Proposition 1, $m_i(f) = \frac{q}{k}$ for all $i \in [0, k-1]$ which is absurd since $q \not\equiv 0 \pmod{k}$. Case (ii) is obtained in a similar manner. \square

Theorem 4. Let $k \equiv 2 \text{ or } 3 \pmod{4}$. If G is k-balanced Eulerian (p,q) graph and $q \equiv k \pmod{2k}$, then $p \equiv 0 \pmod{k}$.

Proof. Let $k\equiv 2$ or $3\pmod 4$ and let G be k-balanced graph with k-balanced labeling f and $q\equiv k\pmod {2k}$. As G is Eulerian graph, then $\sum_{uv\in E(G)} \left|f(u)-f(v)\right|\equiv 0\pmod 2$. On the other hand,

 $\sum_{uv \in E(G)} \left| f(u) - f(v) \right| = \sum_{i=0}^{k-1} i \ m_i(f) \text{ and as } \frac{q}{k} \text{ is odd, then there}$ exists $i \in [0, k-1]$ such that $m_i(f)$ is even, since

otherwise $\sum_{i=0}^{k-1} i \ m_i(f)$ is odd which is absurd, and hence there exists $j \in [0,k-1]$ such that $\left|m_i(f)-m_j(f)\right|=2$ and from Proposition 1, $p\equiv 0\ (\bmod\ k)$. \square

Combining the above result and the k-equitable parity condition of Youssef [12], we get that if G is Eulerian (p,q) graph with $q \equiv k \pmod{2k}$, $p \not\equiv 0 \pmod{k}$ and $k \equiv 2$ or $3 \pmod{4}$, then G is not k-equitable and not k-balanced.

The following result gives a necessary condition for k-equitable graph to be k-balanced graph in certain case.

Proposition 2. Let G be a (p,q) k-equitable graph with p or $q \equiv 0 \pmod{k}$.

If $\mid p-q\mid$ $\leq k$, then G is k-balanced.

Proof. Let f be k-equitable labeling of G. If $p \equiv 0 \pmod{k}$, then $n_i(f) = \frac{p}{k}$ for all $i \in [0, k-1]$ and as $|p-q| \le k$, then $\frac{p}{k} - 1 \le m_i(f) \le \frac{p}{k} + 1$ for all $i \in [0, k-1]$, that is $|n_i(f) - m_j(f)| \le 1$ and hence G is k-balanced. Similarly, if $q \equiv 0 \pmod{k}$ with same argument as above, G is k-balanced. \Box

The following result is a gives another relation between k-equitable and k-balanced graphs which generalizes Proposition 2.

Theorem 5. Let G be a (p,q) k-equitable graph. If $-p \pmod{k} \le q - p \le k - p \pmod{k}$ or $-q \pmod{k} \le p - q \le k - q \pmod{k}$, then G is k-balanced.

Proof. For fixed p, assume that G has k-equitable labeling f. If $-p \pmod{k} \le q - p \le k - p \pmod{k}$, as

$$\left\lfloor \frac{p}{k} \right\rfloor = \frac{p - p \pmod{k}}{k}, \text{ we get } k \left\lfloor \frac{p}{k} \right\rfloor \leq q \leq k \left(\left\lfloor \frac{p}{k} \right\rfloor + 1 \right), \text{ and}$$
 then
$$\left\lfloor \frac{p}{k} \right\rfloor \leq m_i(f) \leq \left\lfloor \frac{p}{k} \right\rfloor + 1, \text{ for } i \in [0, k - 1] \text{ and hence}$$

$$\left| m_i(f) - n_j(f) \right| \leq 1, \text{for all } i, j \in [0, k - 1], \text{ then } G \text{ is k-balanced.}$$
 The proof is similar for the second inequality. \square

The following result shows that every k-equitable tree (resp. unicyclic graph) is k-balanced. Its proof is easy and we omit it.

Proposition 3. If G is (p,q) k-equitable graph with $|p-q| \le 1$, then G is k-balanced.

Cahit [2] conjectured that all trees are k-equitable and proved his conjecture for k=2 in[1]. Speyer and Szaniszlo [10] proved Cahit's conjecture for k=3. Applying Proposition 3 on these two results, we get the following.

Corollary 2. All trees are 2-balanced and 3-balanced.

Again, Proposition 3 and the conjecture of Cahit [2], motivate us to conjecture that .

Conjecture 1. All trees are k-balanced, $k \ge 4$.

Theorem 6. C_n is 3-balanced if and only if $n \ge 3$.

Proof. If $n \not\equiv 3 \pmod 6$, then C_n is 3-equitable by [2] and then 3-balanced by Proposition 3. If $n \equiv 3 \pmod 6$, let n = 6m + 3, $m \ge 0$. Let $f:V(C_n) \to \{0,1,2\}$ be described as follows: We label the vertices of the cycle by the successive labels $(201) \prod_{i=1}^m (102201)$. It is straightforward to verify that $n_i(f) = 2m + 1$ for each $i \in [0,2]$ and $m_0(f) = 2m - 1$, $m_1(f) = 2m + 2$, $m_2(f) = 2m + 1$, then f is a 3-balanced labeling of C_n . \square

The above result along with the results of Cahit[2] about the 3-equitablity of \boldsymbol{C}_n and of Speyer and Szaniszlo[10] about the 3-equitablity of trees, make us settle for the following conjecture.

Conjecture 2. All connected unicyclic graphs are 3-balanced. And all except $C_{\epsilon_{t+3}}$ are 3-equitable.

Analogous to $\delta_k(n)$, let $\sigma_k(n)$ be the maximal number of edges in a k-balanced graph of order n. The following theorem gives the number $\sigma_3(n)$.

Theorem 7.
$$\sigma_3(n) = \begin{cases} 3(\left\lfloor \frac{n}{3} \right\rfloor + 1), & n \ge 5 \\ 5, & n = 4 \\ \frac{n}{2}(n-1), & n = 1, 2, 3 \end{cases}$$

Proof. If $n \ge 6$, then by Lemma 3, $\sigma_3(n) \le n+3$ and if $n \equiv 0 \pmod{3}$, then $\sigma_3(n) = n+3$ and if $n \equiv 1$ or $2 \pmod{3}$, then by Corollary 1 the maximal number of each of the edges labeled 0,1 and 2 is $\left\lfloor \frac{n}{3} \right\rfloor + 1$, so $\sigma_3(n) = 3 \left(\left\lfloor \frac{n}{3} \right\rfloor + 1 \right)$. For $n \le 5$, it easy to obtain $\sigma_3(n)$. \square

Corollary 3. K_n is 3-balanced if and only if $n \le 3$.

Remark 2. The reader may extend Theorem 7 for $k \ge 4$ to get $\sigma_k(n) = k\left(\left\lfloor \frac{n}{k} \right\rfloor + 1\right), \qquad n \ge 2k + 1.$

References

- I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207.
- [2] I. Cahlt, On cordial and 3-equitable labelings of graphs, Utilitas Math., 37(1990) 189-198.

- [3] **G. Chartrand and L. Lesniak-Foster**, Graphs and Digraphs (3nd Edition) CRC Press, 1996.
- [4] **G. M. Du**, Cordiality of complete k-partite graphs and some special graphs, *Neimenggu Shida Xuebao Ziran Kexue Hanwen Ban*, (1997) 9-12.
- [5] J. A. Gallian, A dynamic survey of graph labeling, *The Electronic J. of Combin.*14 (2007), # DS6, 1-180.
- [6] D. Kuo, G. Chang, Y.-H. Kwong, Cordial labeling of m K_n, *Discrete Math.*, 169 (1997) 121-131.
- [7] M. A. Seoud and A. E. I. Abdel Maqsoud, On cordial and balanced labelings of graphs, *J. Egyptian Math. Soc.*, 7 (1999) 127-135.
- [8] M. A. Seoud and A. E. I. Abdel Maqsoud, On 3-equitable and magic labelings, Proc. Math. Phys. Soc. Egypt, 75 (2000) 67-76.
- [9] S. C. Shee and Y. S. Ho, The cordiality of one-point union of n-copies of a graph, *Discrete Math.*, 117 (1993) 225-243.
- [10] D. Speyer and Z. Szaniszlo, Every tree is 3-equitable, *Discrete Math.*, 220 (2000) 283-289.
- [11] **Z. Szaniszlo**, k-equitable labelings of cycles and some other graphs, *Ars Combin.*, **37** (1994) 49-63.
- [12] **M. Z. Youssef**, A necessary condition on k-equitable labelings, *Utilitas Math.*, **64** (2003) 193-195.
- [13] M. Z. Youssef, On Skolem-graceful and cordial graphs, *Ars Combin.*, **78** (2006) 167-177.