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Abstract

In this paper, we consider labelings of graphs in which the label on
an edge is the absolute value of the difference of its vertex labels. Such a

labeling using {0,1,2,...,k -1} is called k-equitable if the number of

vertices ( resp. edges) labeled { and the number of vertices (resp. edges)
labeled j differ by at most one and is called k-balanced if the number of

vertices labeled I and the number of edges labeled j differ by at most

one. We determine which graphs in certain families are k-equitable or k-
balanced and we give also some necessary conditions on these two

labelings.
Keywords: Cordial labeling, k-equitable and k-balanced labelings.

1. Introduction
All graphs in this paper are finite, simple and undirected. We fellow
the basic notations and terminology of graph theory as in [3].

Let G bea (p,q) graph with vertex set V (G ) and edge set
E(G) and let us denote the set {0,1,2,...,k} by [0,k]. A vertex
labeling f :V(G) — [0,k —1] induces an edge labeling
f*: E(G) — [0,k —1], defined byf‘(xy)=|f(x)-f () |
for each edge Xxy€E€E(G). For i(i€[0,k-1], let
n(f)=|EVG): f¥)=i} and
m,(f )=|{e€E(G): f'(e)=i}| . Alabeiing f of agraph Gis k-
equitable  (resp.  k-balanced) If | n(f)-n,() Isl and

|m,(f)=-m,(f)|s1 wesp. |n,(f)-m,(f)|s1 ) for a
i,J €[0,k —1]. A graph G is called k-equitable (resp. k-balanced) if it
admits a k-equitable (resp. k-balanced) labeling.

The notion of k-equitable labeling of graphs was introduced by Cabhit
[2]in 1990, who introduced first the notion of 2-equitable labeling under the
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name of cordial labeling in 1987 [1], while the notion of k-balanced labeling
was introduced by Seoud and Abdel Magsoud [7] in 1999.

Cahit [1] proved the following : every tree is cordial; K . Iscordial if
and only ifns3; K, 6 s cordial for al m and n; the wheel
W_=C_ +K, iscordialifandonlyif n # 3 (mod 4); C, is cordial if
andonly if 7 # 2(mod4) and an Eulerian graph is not cordial if its size is
congruent to 2(mod4). Shee and Ho [9] determined the cordiality of
Cf,','), the one-point union of n copies of C - Cahit [2] has shown the
following: C , is 3-equitable if and only if 72 #3(mod 6); the friendship
graph C{"is 3-equitable if and only if 72 is even; an Eulerian graph with

q =3(mod 6) edges is not 3-equitable and all caterpillars are 3-
equitable. Kuo, Chang and Kwong [6] determined all m and 7 for which
mK . Is cordial. Szaniszlo [11] showed that K , IS not k-equitable for

3sk <n, and C_is k-equitable if and only if K meets all of the
following conditions: n = k ; if kK =2,3(mod4), then n=k -1, i
k =2,3(mod4),then n # k (mod 2k ).

Youssef [12] proved that if G is a k-equitable Eulerian graph of ¢

edges and kK =20r 3(mod 4), then g # k (mod 2k ), we call this
necessary condition the k-equitable parity condition. As a corollary of the k-
equitable parity condition, he also proved that if k = 2or 3 (mod 4) and

G is odd (p,g) graph wih p=0(modk) and

p +q =k (mod 2k ), then G is not k-equitable, we call this necessary

condition the k-equitable odd parity condition. In [13] Youssef gave some
variations on the definition of cordial graph and defined what he called semi-
cordial graph and establish some relations between semi- cordial and

graceful graphs.

Seoud and Abdel Magsoud [8] proved that K, |, 3sm snis3-
equitable if and only if (m,n)=(4,4), K ,,, n =2 is 3-equitable if
andonly if n=2(mod3) and K,,,. 3sm snis 3-equitable if
and only it (m,n) =(3,4). Seoud and Abdel Magsoud [7] proved that
Pn2 is k-balanced if and only if 7 =2,3,40r6 and K, , ,.m snisk-
balanced if and only if () m =1,7n =1or 2and k =3; (i) m =1and
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k =n+lor n+2;or (i) k =2(m +1)(n +1). For more details of
known results of graph labelings see Gallian [5].

In the next section of this paper we deal with k-equitable graphs. We
determine the maximal number of edges in a 3-equitable graph of order 72,

we show that C | + K, is 3-equitable If and only if 72 is even and n = 6.

Finally we show that C : is 3-equitable if and only if 7 = 8. Section 3 deals

with k-balanced graphs. We give some necessary conditions for a graph to
be k-balanced. Some relations between k-equitable and k-balanced

labelings are given.

2. k-equitable graphs
In this section, We give an exact formula for the maximal number of
edges in a 3-equitable graph of order n. We also determine the 3-

equitablity of the graphs C, + K, and C? .
Note that If G is (p,g) graph having k-equitable labeling f , then

tleind?] o [tomird] =

i €[0,k —1],and k —1~f isalso ak-equitable labeling of G .

Du (4] determined the maximal number of edges in a cordial (that is, 2-
equitable) graph of order7 . We extend this result for 3-equitable graphs.

Let J, (n) be the maximal number of edges in a k-equitable graph of order
n. For example, we can easily show that: §,(n)=n -1 for n <3,

8,(4) =5 and8,(5) = 8.

Theorem 1. If n =12 then

2
(n? +2, n =0(mod3)

3

m={E2 02 aimoay)

.(n—+1)i+2
. 3

Proof. Let G be 3-equitable graph of order 7 with k-equitable labeling f
of maximal number of edges. We note that the edges labeled 2 induced

n =2(mod3)

1
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only from the vertices labeled Othat are adjacent to the vertices labeled 2
and the maximal number of edges labeled 2 in a 3-equitable graph of order

nijin+l

nis ? T . The maximal number of edges labeled O in
2

G isZ(ni ¢)
i=0 2

M,f)<M (f)<M(f). so O,(n)=3M,(f)+2, where
M ,(f ) is the maximal number of edges labeled i in G . By considering
ditferent cases of 7 modulo 3, we complete the proof.O

J . tn=12, one can show that

Remark 1. (i) One can easily calculate ,(n), for 6 s n <11, using the
same argument as above and obtain:

6,(6)=11,6,(7) =17,6,(8) =23,4,(9) = 28,

6,(10) =37 andd,(11) =47. Also, we can unify the cases in the head

of the above theorem in one case asd,(n)= 3[%_'[’1 ; lJ +2,

n =12 . (i) In light of the proof of Theorem 1, one can extend the resuit for

k =4 in the same argument and getd, (n) =k l’ %]lnTHJ +k -1,

nz3k.

Lemma 1. If Gis a (p,q)k-equitable graph withp = 0(mod k),
then

() G + K, is k-equitable, and
(i) G + K, is k-equitable.
Proof. Let G be k-equitable (p,q) graphwithp = 0 (mod k). Now,

(i) Label the vertex of K, by the label 0
(i) Label the two vertices of K, by the labels O andk — 1.0

54



Cahit [2] showed that W,. is 3-equitable if and only if
n # 3 (mod 6), while Seoud and Abdel Magsoud [8] proved that the fan

F, =P +K, is3-equitableifandonlyif 72 =1 except n =2, all
double fans P,. + IE: , are 3-equitable exceptfor n = 4 and they

conjectured that W _ is 3-equitable if and only if 7 ¢ 3 (mod 6 ), but
Youssef [12] showed that one direction of the result of Cahit about the 3-
equitablity of W _ is not correct by proving that W _ is 3-equitable for all

nz4.
There are three known reasons at which a graph G fails to be k-
equitable:

(1) G has too many edges,
(2) G has the wrong k-equitable parity condition , and

(3) G has the odd parity condition.

In the following theorem we show that the graph in certain case is
not 3-equitable for other reason not from the above list.

Theorem 2. For n =6, the graph C, + K , Is 3-equitable If and only if
n is even.

Proot. If n = 0 (mod 6), then C |, is 3-equitableby by [2] and then

C, + K , is 3-equitable by Lemma 1. Ifn = 2 ( mod 6), let
n=6m+2, m z1. Welabel the vertices of the cycle C, successively

m=1
by the labels: (110 )(H( 200211))(20021) and we label the

vertices of K. , bythelabels OQand2.1f n = 4 (mod 6), let
n=6m +4,m =1. We label the vertices of the cycle successively by

m-1
the labels: (111200202)(H(110220))(l) and we label the

vertices of K. , by the labels Oand?2 . One can easily verify that the
labelings in the above two cases are 3-equitable.

Conversely, suppose 7 =3 isodd and C, + K , Is 3-equitable with
3-equitable labeling f and assume that n;,n,' and n; are the number of
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the vertices labeled 0,1 and 2 respectively which lie on the cycle C, ,
m,,m, and m, are the number of edges labeled 0,1and 2 respectively
restricted to the cycle C . AS C , Is Eulerian graph, then m,' is even [2].

It n isoddand nz7,then ml' >0, since otherwise all vertex

labels on the cycle are all 1 or all either O or2 which implies that
n(f)zn or n(f)s2, which is absurd in both cases, since

3=n,(f ) <n . We have the following three cases for the possibilities of

the vertex labels of K 2t

case 1: f (V (K,)) ={0,0}0r{0,2}0r{2,2}

In this case, m,(f ) = 2n, + m,, thatis, m,(f ) is even, which
contradicts the fact that ml(f ) must be equal to n which is odd.

case2: f V (K,)) ={0,1}or{1,2}

m,(f )=n,+n+n,+m =n+m/ >n,whichisabsurd.
case3: f V (K,)) ={L1}

m,(f ) =2n, +2n, + m/, which is even, a contradiction as in Case 1.
Hence C, + K, is not 3-equitable it nisoddand 7 =7

it n=>5,it m >0, then C, +K, is not 3-equitable as above. If
m, =0,then m,(f ) =10 a contradiction.

It n=3,then C, + K , Is not 3-equitable since this graph has 5
vertices and 9 edges while J,(5) =8.

tn=4,then C, + K , Is not 3-equitable by Remark 1 since this
graph is of size 12 while 4,(6) =11.0

56



The following lemma is similar to a result in the proof of I"’”2 is 3-

equitable in [8].

Lemma2.lf C : has 3-equitable labeling such that there exists two
adjacent vertices of C, labeled 1, then C 2, . is 3-equitable also.

Proot. LetV (C,) ={v,v,,...,} wherev v , EE(C,) i and only i
i — j =+1(mod n ) and let C *has 3-equitable labeling f such that
f©,)=f,)=1.Cutthecycle C, around the vertex v by
removing theedges vy , v,V andvy ., andlet
V (Pg) ={u, ty,...tt g } where uu, EE (P,g)it and only i

Ii - jl =1. Now, connect v, to, and U, to v and add all edges
between vertices whose the distance between them is 2 to obtainC 2, .
Now label the vertices of P, successively by the

labels: 1,1,2,2,0,0,2,2,0,0,1,1,0,0,2,2,1,1. WeaddedtoC? 6

vertices labeled zero, 6 labeled one and Glabeled two. For the edge labels,
we added 12 edges labeled zero, 12 edges labeled one and 12 edges

labeled two. Hence C 2, , is 3-equitable. O

Seoud and Abdel Magsoud [8] sowed that 1""2 is 3-equitable for all

nz1 but 3 and conjectured that C* is not 3-equitable for all 7223,
however we show the following.
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Theorem 3. C ? is 3-equitable if and only if n = 8.

Proof. C 32 =C, is not 3-equitable by [2]. C 42 =K,andC 52 =K, are
not 3-equitable by [11]. C 62 =C, + K , Is not 3-equitable by Theorem 2. if
n =7, suppose C .,2 has 3-equitable labeling f . As C .,2 is Eulerian

graph, then m,(f ) =4 ,butsince 2sn,(f )s3,then m,(f )26 a

contradiction . Conversely, we will give a 3-equitable labeling f of
C:8sn=<25wihf W, )=f ®,)=1,then applying Lemma 2

completes the proof by induction. We label the vertices of C :
8 < 1 = 25 successively as patten: (f ¢V \).f ¢,)...f 0,))

n=8: (0,2,0,2,0,2,1,1).
n=9: (0,0,2,2,0,2,1,1,1).

n=10: (0,0,2,2,0,2,2,1,1,1).
n=11: (0,1,2,0,2,0,0,2,1,11).
n=12: (0,1,2,0,0,2,2,,0,2,1,1,1).
n=13: (0,1,2,0,2,0,2,0,0,2,1,1,1).

n=14: (0,0,1,2,2,0,2,0,2,0,2,1,1,1).
n=15: (0,1,1,2,0,2,0,0,2,2,0,2,1,1,1).

n=16: (0,0,1,2,2,0,0,2,2,0,2,0,1,1,1,1).

n=17: (0,0,2,2,0,2,2,1,1,0,0,2,2,1,1,1,1).

n=18: (0,0,1,1,1,2,2,0,0,2,2,0,0,2,2,1,1,1).

n=19: (0,0,2,2,0,0,0,2,2,1,1,0,0,2,2,1,1,1,1).

n=20: (0,0,2,21,0,0,2,2,1,0,0,2,2,0,2,111,1).
n=21: (0,0,2,2,0,0,2,2,,0,2,0,2,1,2,0,1,1,1,1,1).
n=22: (0,0,2,2,0,0,2,2,1,0,2,0,2,1,2,0,0,1,1,1,1,1).
n=23: (0,0,2,2,1,1,0,0,2,2,1,0,2,0,2,0,0,2,2,1,1,1,1).
n=24: (0,0,2,2,0,0,2,2,1,0,0,2,2,1,1,1,0,0,2,2,1,1,1,1).
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n=25: (0,0,2,2,0,0,2,2,1,0,0,2,2,0,1,1,1,1,2,2,0,1,1,1,1) .0

3. k-balanced graphs

In this section, we give some necessary conditions for a graph to be
k-balanced and also present some relations between k-equitable and k-

balanced labelings.
Lemma3. 1t G isa (p,q) k-balanced graph, then ' P —q ,s k.

Proof. Let G be k-balanced graph with k-balanced labelingf , then
k-1 k-1 k-1
|p=a]=|Sn¢)-Zm o)< Sp¢)-m )l k.0
im0 i=Q im
The following lemma is stronger than the result above.

Lemma 4. If G is a (p,q) k-balanced graph, then [ %—-’ —[stl if

14 q .
gzpo|—|-|=|[slitp=gq.
7 [ k ] tk J
Proof. Let ¢ = p and let G be k-balanced with k-balanced labeling f |
then using the pigeonhole principle, there exists [ €[0,k —1] such that

m,(f) z[ %-I, since otherwise m, (f ) <[-Z—] for all { €[0,k -1]

k-1
and hence Zmi f)<k [%] <(¢ , a contradiction. Again, there exists
i=0

JE€[0,k -1] such that n,()s [f J Now,

[_Z_}_l\f_Jsmlv)_nj(f)sl.SimiIarlythecasewhenp 2q .0

Proposition 1. If G is a (p,q)graph having k-balanced labeling f and
there exist i , j €[0,k — 1] such that ,n,. f)-n ,f ), =2 (resp.

[, (F Y =m ,(f )] =2 ), then m, (f ) =m,(f ) toral
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i,j€[0,k -1] andhence g =0 (mod k) (resp. n,(f ) =n,(f )
forall i, j €[0,k —1]andhence p =0(mod k) ) .
Proof. Immediate. O

Corollary 1. 1t G isa (p,q) graph having k-balanced labeling f , then
@ tp=0(modk) andg #0(modk), then n,.(f)=f for all
i €[0,k -1].

(i)t g=0(modk)andp #0(modk), then m,(f)=% for all
i €[0,k -1].

Proof. () If n,(f )#% for somei €[0,k —1], then there exists
J €[0,k —1] such that In,(f )-n,(f )|=2 and by Proposition 1,

m,(f )=% for al i€[0,k-1] which is absurd

sinceq # 0 ( mod & ) .Case (ii) is obtained in a similar manner. O

Theorem 4. Let k =2 o0r 3 (mod 4). If G is k-balanced Eulerian
(p,q) graphand g =k (mod 2k ),thenp =0(mod k).

Proof. Let kK =20r 3(mod 4) andlet G be k-balanced graph with k-
balanced labeling f and ¢ =k (mod 2k). As G is Eulerian graph,

then Z If w-f )I =0 (mod 2) . On the other hand,

w€E (G)
k=1 q
Z If w)-fu )l = Zi m,(f ) andas = is odd, then there
wEE(G) i=0 k

exists i €[0,k —1] suchthat m, (f ) is even, since
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k-1
otherwise )i m, (f ) is odd which is absurd, and hence there exists
iw0

J €[0,k —1] such that Im,. f)-m(f ), = 2 and from Proposition 1,
p=0(modk).o

Combining the above result and the k-equitable parity condition of
Youssef [12], we get that if G is Eulerian (p,q ) graph with

g=k (mod2k), p#0(modk) andk =20r 3(mod 4), then

G is not k-equitable and not k-balanced.

The following result gives a necessary condition for k-equitable graph
to be k-balanced graph in certain case.

Proposition 2. Let G bea (p,q) k-equitable graph
withporqg=0(modk).

If I P -9 ls k ,then G is k-balanced.
Proof. Let f be k-equitable labeling of G . If p =0(mod k), then

n,.(f)=71:- for al i E[0,k —1] and as Ip—qlsk, then

f—lsmi(f)s{—-i-l or al i€[0k-1] ., that is

’ n(f)-m,(f) lsl and hence G is k-balanced. Similarly, if
g =0 (mod k ) with same argument as above, G is k-balanced. O

The following result is a gives another relation between k-equitable and
k-balanced graphs which generalizes Proposition 2.

Theorem 5. Let Gbe a (p,g) keequitable graph. If
-p(modk)<g-p<k -p(modk) or
—g(modk)<sp-g=<k —qg(modk),then G is k-balanced.

Proof. For fixed p, assume that G has k-equitable labeling f . If
-p(modk)sqg-psk-p(modk), as
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p =p—p(modk) P P
[kJ P , we get k[kqu sk([kJ+l). and

then {—f—Jstf ) s{%J-&-l, for {€[0,k —1] and hence

I, (F )=, (f )| s Lor ai i, j E[0,k ~1] , then G is k-balanced.
The proot is similar for the second inequality. O

The following result shows that every k-equitable tree (resp. unicyclic
graph) is k-balanced. Its proof is easy and we omit it.

Proposition 3. If G is (p,q) k-equitable graph with | D —-q |s 1, then
G is k-balanced.

Cahit [2] conjectured that all trees are k-equitable and proved his
conjecture for kK =2 in[1]. Speyer and Szaniszlo [10] proved Cahit's
conjecture for kK = 3. Applying Proposition 3 on these two results, we get
the following.

Corollary 2. All trees are 2-balanced and 3-balanced.

Again, Proposition 3 and the conjecture of Cahit [2], motivate us to
conjecture that .

Conjecture 1. All trees are k-balanced, k =4.

Theorem 6. C _ is 3-balanced ifand onlyif n =3.

Proof. itn #3(mod 6), then C is 3-equitable by [2] and then 3-
balanced by Proposition 3. Itn =3(mod 6), letn =6m +3, m =z0.
Let f :V (C,) —{0,1,2} be described as follows: We label the

vertices of the cycle by the successive labels (201)f1(102201). It is

straightforward to verity that n,(f )=2m +1 for each i €[0,2]
andm,(f )=2m -1, m(f)=2m+2, m,(f)=2m +1, then
f is a3-balanced labelingof C, . D
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The above result along with the results of Cahit[2] about the 3-
equitablity of C . and of Speyer and Szaniszlo[10] about the 3-equitablity of
trees, make us settle for the foliowing conjecture.

Conjecture 2. All connected unicyclic graphs are 3-balanced. And all except
C,., are 3-equitable.

Analogous to J, (n), let O, (n) be the maximal number of edges in a
k-balanced graph of order n. The following theorem gives the number

o,(n).

[3([-’31J+1), n=z5s

Theorem 7. 0,(n) =4 5, n=4

n
—(n -1), n=1273
2(n )

S

Proof. If n =6, then by Lemma 3, o,(n)sn+3and if

n=0(mod3) ,then oO,(n)=n+3 andif n =lor 2(mod 3),
then by Corollary 1 the maximal number of each of the edges labeled

0,1and 2 is [§J+l ,s0 g;(n) =3([%J+l). For n <5, iteasyto

obtaino,(7).0

Corollary 3. K, is 3-balanced if and only if # < 3.

Remark 2. The reader may extend Theorem 7 for kK =24 to get

ak(n)=k([%J+l), n=2k +1.
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