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Abstract

The spectral radius of a graph is the largest eigenvalue of its adja-
cency matrix. Let % be the set of unicyclic graphs of order n with
girth g. For all integers n and g with 5 < g < n — 6, we determine
the first €] + 3 spectral radii of unicyclic graphs in the set %;J.
Key words: Unicyclic graph, girth, characteristic polynomial, spec-
tral radius.
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1 Introduction

Let G be a simple graph with vertex set V(G) = {v1,v2,...,v,} and
edge set E(G). Its adjacency matrix is defined to be the n x n matrix
A(G) = (ai;), where a;; = 1 if v; is adjacent to v;; and a;; = 0, otherwise.
The characteristic polynomial det(zI — A(G)) of A(G) is called the char-
acteristic polynomial of G, and is denoted by ®(G, z) (or ®(G) for short).
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The eigenvalues of G are the eigenvalues of A(G); they are real numbers
(since A(G) is symmetric). As usual, p1(G) > p2(G) 2 - - - 2 pn(G) are the
eigenvalues of G in non-increasing order. The largest eigenvalue of G, i.e.
p1(G), is also called the spectral radius of G, denoted by p(G). When G is
connected, A(G) is irreducible and by the Perron-Frobenius Theorem, the
spectral radius is simple and has a unique positive unit eigenvector. We
will refer to such an eigenvector as the Perron vector of G. For v € V(G),
let Ng(v) (or N(v) for short) be the set of vertices which are adjacent to v
in G and dg(v) = |N(v)| (or d(v) for short) be the degree of v. A pendent
vertex is a vertex of degree 1. Let d(u,v) and A(G) denote the distance be-
tween vertices u and v (in G) and the maximum degree of G. We use G-z
or G — zy to denote the graph that arises from G by deleting the vertex
z € V(G) and the edges incident with z or the edge zy € E(G). Similarly,
G + zy is a graph that arises from G by adding an edge zy ¢ E(G), where
z,y € V(G). Let S, C, and P, be the star, the cycle and the path of
order n, respectively. Readers are referred to [2] for undefined terms.

The investigation on the spectral radius of graphs is an important topic
in the theory of graph spectra. Recently, the problem concerning graphs
with maximum and minimum spectral radius of a given class of graphs has
been studied extensively (see, e.g., [1,4,7,8,10-15,17]).

Let ;2 be the set of trees of order n with diameter d (2 <d <n-—1).
Obviously, if T € 2, then T is a star Sy, and if T € J;7~ !, then T is a
path P,. Very recently, Guo et al. [10] and Simié et al. {13] characterized
the first [¢] + 1 spectral radii of trees in the set J¢ (3 < d < n —4),
respectively.

In light of the information available for spectral radius of trees, it is
natural to consider other classes of graphs, and the unicyclic graphs are a
reasonable starting point for such an investigation. Indeed, The spectral
radius of unicyclic graphs has been studied by many authors (see Belardo
et al. [16], Chang et al. [4), Simié [14]).

Let %, be the set of unicyclic graphs of order n, and %9 be the set of
unicyclic graphs of order n with girth g (3 < g < n). Obviously, if U € %7,
then U is a cycle Cp; if U € %!, then U 2 U, ,,_;(shown in Figure 3).
In this paper, the first |£] + 3 spectral radii of unicyclic graphs in the set
#%g (5 < g < n—6) are determined, where |z denotes the largest integer
no more than z.
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2 Preliminaries

In this section, we present some known results which will be used in this
paper.
Lemma 2.1 ( [5]) Let G be a graph. Then the eigenvalues of G and G —v

interlace, that is
P1(G) 2 p1(G —v) 2 p2(G) 2 p2(G —v) 2 -+ 2 pn—1(G — v) 2 pn(G).

Lemma 2.2 ( [5]) Let e = uv be an edge of G, and ¥(e) be the set of all

cycles containing e. Then the characteristic polynomial of G satisfies
B(G) = B(C - ¢) = B(C —u=1v) ~ 2T peeey B (G \ V(C)),

where the summation extends over all C € %(e).

A special case of Lemma 2.2 is when e = uv is a cut edge.

Corollary 2.3 Let e = uv be a cut edge of G. Then
O(G)=d(G—-¢e)-B(G-u-v).

Note that the spectral radius p(G) is just the largest root of (G, z) = 0.
Hence, (G, z) > 0 for all £ > p(G). Accordingly, the following lemma is
often used to compare the spectral radii of graphs.

Lemma 2.4 ( [6,17]) Let G, and G3 be two graphs.
(i) If G2 is a proper spanning subgraph of Gy, then p(G1) > p(G2) and
®(G3) > B(Gy) for x > p(Gy).
(@) If ®(G2) > ®(G)) for x 2 p(G2), then p(G1) > p(Gs).

Recall that p(S,) = v/n—1. Then Lemma 2.4 implies that p(G) >
p(Sa+1) = VA for any G of order n with maximum degree A, since Sa+1U
(n — A —1)8; is a spanning subgraph of G.

Lemma 2.5 ( [17]) Let v be a vertez of a graph G and suppose that two
new paths P: vv v+ vx and Q : vujug - - uy, of lengthk, m (k> m > 1)
are attached to G at v, respectively, to form a new graph Gy ., where
V1,v2,...,V and uy,uz,...,Un are distinct. Then for z > p(Gk,m), we
have ®(Gr+1,m-1) > ®(Gk,m). In particular, p(Gr,m) > p(Gk+1,m-1)-

Lemma 2.6 ( [10]) Leta = iﬂ@ and b= @@. Then
B(P) = Sghmg(a™t! — boH),
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Lemma 2.7 ( [6]) Let u,v be two vertices of a connected graph G. Sup-
pose that vy, va,...,vs € N(W)\N(v) (1 < s <d(v)) andx = {z1,T2,...,Zn}
is the Perron vector of G, where z; corresponds to the vertexv; (1 <i <n).
Let G* be the graph obtained from G by deleting the edges (v,v;) and adding
the edges (u,v;) (1 < i< s). If zy 2 2y, then p(G) < p(G*).

From Lemma 2.7, the following corollary is immediate.

Corollary 2.8 Lete = uv (does not belong to C3) be an edge of a connected
graph G with d(u) > 2 and d(v) > 2. Let G’ be the graph obtained from
G—uv by identifying u with v to form a new vertez w together with attaching
a new pendant vertez w' to w. Then p(G') > p(G).

To state the next result (due to Hoffman and Smith [9]), we need more
definitions. An internal path in a graph, denoted by v,vs,...,vr—1,vr, is
a path joining vertices vy and v, which are both of degree greater than two
(not necessarily distinct), while all other vertices (i.e. vz,...,vr_1) are of
degree equal to 2. We denote by C, and W, the cycle and the double-
snake (the tree on n vertices having two vertices of degree three which are
at distance n — 5).

Lemma 2.9 ( [9]) Let G’ be a graph obtained from a graph G # Cn, W,
by inserting a vertez of degree 2 in an edge e. Then the following holds:
(i) If e belongs to an internal path, then p(G) > p(G');
(ii) If e does not belong to an internal path, then p(G) < p(G').

If G =C, (Wy,) and G' = Cpy1(resp. Wpyy), then p(G') = p(G) = 2.

Lemma 2.10 ( [3,14]) For any U € %,, we have p(C,) =2 < p(U) <
p(Sy), where S, denotes the graph obtained from S, by joining any two
vertices of degree one in S,. The lower bound is attained if and only if
U = C,; the upper bound is attained if and only if U = S;.

Note that the characteristic polynomial of S is ®(S3;) = z"%(z +
Dad—2? — (n—1)z+n-3]. Let f(z) =28 -2 — (n—1)z+n—3 and
z; > x2 > x3 be three roots of f(z) = 0. Then p(S},) = z;. Note that
f(=vn=1)=-2<0, f0)=n-3>0forn >3, f(1) = -2 <0and
f(yn) = V3-32>0for n > 9. Then we have z3 < 0, z3 € (0,1) and
z,=p(S:) < ynforn>9.
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Recall that %7 is the set of all unicyclic graphs of order n with girth
g- Then for each U € %¢, U consists of the (unique) cycle (say Cg) of
length g and a certain number of trees attached at vertices of Cy having
(in total) n — g edges. We assume that the vertices of C, are v1,va,...,v,
(order in a natural way around C,, say in the clockwise direction). Then
U can be written as C(T},T3,...,T;), which is obtained from a cycle C,
on vertices vy, v2, . .., vy by identifying v; with the root of a tree T; of order
n; for each i = 1,2,...,g, where n; > 1 and }°7_| n; = n. If T, for each
i, is a path of order n;, whose root is a vertex of minimum degree, then we
write U = P(ny,n,,...,ny); If T;, for each i, is a star of order n;, whose
root is a vertex of maximum degree, then we write U = S(ny,na,...,n,).

Lemma 2.11 ( [16]) Let U € C(T1,Ty,...,T,), where |V(T;)| = n; for
i=12,...,g and Y ;_,ni=n. Then

p(P(ny,n2,...,ng)) < p(U) £ p(S(n1,n9,...,1n4)),
where the degree of the root in P,, (Sp;) is 1 (resp. n; —1). Moreover, both
eztremal graphs are unique.

3 Main results

Firstly, we introduce some notation to be used in this section. Let
T,,4(%)(shown in Figure 1) be the tree on n vertices (with diameter d)
obtained from a path Py : v+ :vgvq41 (of length d) by attaching
n —d —1 new pendant edges v;Vg4+2, Vi¥d+3, - . - ViU to the vertex v;, where
2<d<n-2and2<i<d . Clearly, T, 4(i) = Tha(d + 2 — ) for
i=2,...,d

vd +2 V,

Y v Vi
Figure 1: Trees Ty, 4(i), where i = 2,3,...,d.
Let U, ¢(i)(shown in Figure 2) be the unicyclic graph on n vertices

(with girth g) obtained from a cycle Cy : vjvg---vyu; (of length g) by
attaching n — g — 1 new pendant edges v1v441,v1¥g42,...,V10n_1 to the
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vertex v; and a new pendant edge v;v, to the vertex v;, respectively, where
3<g<n-2and2<i<yg. Clearly, Upy(i) = Upa(g +2—i) for i =
2,...,9. Let U g = {Ung(3):1=2,3,...,|%] +1}. Then %, C %2.
Let U;, 4(é)(shown in Figure 2) be the unicyclic graph on n vertices (with
girth g) obtained from a cycle C, : v1v2 - - - v,v; (of length g) by attaching
n — g — 2 new pendant edges v1vg41,v1Vg42,...,V1Un_2 to the vertex v
and two new pendant edges v;v,—1, ¥;V, to the vertex v;, respectively, where
3<g<n-3and2<i<g Cleary U, (i) = U, 4(g+2—i) fori =
2,...,9. Let %, = {U} ,(5):i=2,3,..., %] +1}. Clearly, %, , C %,
and %n,..n-s = %n,n—a-

U, () U,
Figure 2: Unicyclic graphs Uy ¢(i) and Uy, ,(i), where i = 2,..., [£] +1.

Let Uy, be the unicyclic graph on n vertices (with girth g) obtained
from a cycle Cy : v1va - - - vgy (of length g) by attaching 7 — g new pendant
edges V1Ug41,V1Vg+2,- -+, V1Vn tO the vertex v;. Let U,‘,':g be the unicyclic
graph on n vertices (with girth g) obtained from a cycle Cy : v1v3 - - - vy (of
length g) by attaching a new path P; : v19g41v,(of length 2) and n — g —2
new pendant edges v1Vg42,V1Ug+3, - - -, V1Un—1 to the vertex vy, respectively.
U, o and U,;“, o are shown in Figure 3. Similarly, we can define the follow-
ing four unicyclic graphs(of order n with girth g) U} ,, U2 ,,U3  and U},
which are shown in Figure 4.

.
Use

+
Usg

Figure 3: Unicyclic graphs Uy, ; and U} .
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U U
Figure 4: Unicyclic graphs Uy ;, U2, U3 and U3 ,.
Lemma 3.1 Forn > g+ 4, we have p(Uy ;) > p(UZ ).

Proof. Take e = v;744, in Corollary 2.3, we have

S(Upn ) = B(P)®(Up_3,) — 2971 8(P,-1) and
(U2 ;) = B(Sn—g)®(Cy) — "9 9(P,_1).

Note that ®(Cy) = z®(Py-1) — 28(Py-2) — 2 and P,_» U K, is a proper
spanning subgraph of P,_;. Therefore, by Lemmas 2.2 and 2.4(i), for z >

p(UZ,) > p(Py—2), we have

B(UZ,) - (Us,)
=®(5n—g)®(Cq) — B(P3)2(Uz_3,4)
=z""972[z? — (n — g - 1)]®(Cy)

—z(z? - 2) [z"79739(C,) — (n — g — B)z" "I B(P,-1)]
=(n— g —3)z" 97 [(2? - 2)B(Py-1) — 2®(C,)]

=2(n— g — 3)z" 973 | 2®(Py_2) — B(Py-1) +z| > 0.

>0

Thus Lemma 2.4(ii) implies that p(U, ;) > p(UZ2 ;).

71



Theorem 3.2 For any C(Ty,...,Ty) € %f (n 2 g+4) withng = ... =
ng = 1, where |V(T3)| = ng fori =1,...,9, # C(T, .., T,) ¢ {Us Ui, UL,
then we have p(C(Th,...,Ty)) < p(U, ). Moreover, p(Uy; ;) > p(Ut,) >
p(Ung)-

Proof. By Lemma 2.7, we have p(Uy; ;) > p(Uf,) > p(Uy ;) since n >
g+4. Let v, € V(T1) be a pendent vertex such that d(v;, v,) is maximum.
Then d(vi,vn) 2> 2 since C(Th,...,T,) # Uy ;. We consider the following
two cases.

Case 1. d(v1,vn) = 2.

Let & = (z1, %2, .., Zn) be the Perron vector of C(T1,...,Ty), where z;
corresponds to the vertex v; (1 < ¢ < n), and N(vy) = {v2,vg, Vg1, -, Vg4t }
where ¢t =d(v;) — 2. Thent > 1.

Ift =1, then C(Th,...,Ty) = U2, since d(v1,vn) = 2. Then the result
follows from Lemma 3.1;

If t > 2, then let Tg4i = max{:z:g.,.l,. '-)mg+t} (Z € {1, . ,t}). By
Lemma 2.7, we can construct a new graph U* such that p(C(T1,...,Ty)) <
p(U*), where U* obtained from C(T1,...,Ty) by deleting all pendent edges,
and then adding new edges between v,4; and all isolated vertices. Then
dy-(vg+:) > 2 since C(Ty,...,T,) # Ut,. If U* = U, , then the result
follows. If U* # U} ,, then dy-(vg+s) > 3. Moreover, Lemma 2.7 implies
et < [ AU i1 220

P( ) < { p(UE'g) if T < Tgti-
Then by Lemma 3.1, we have p(U*) < p(Uy ,), the result follows.
Case 2. d(vy,vn) 2 3.

By Corollary 2.8, we can construct a new graph U’ such that the max-
imum distance between v; and a pendent vertex in U’ is 2 and
p(C(T1,...,Tg)) < p(U’). Then by a same argument as Case 1, we have
p(U") < p(Uy o), the result follows.

The proof is completed. O

Lemma 3.3 Forn > g+5, we have p(U3 ;) > p(Uy ;).

Proof. Recall that @ = Z£YZ =4 p — 2=¥27=d gnd ; < |§] +1. Then
ab=1andg—i+12>1. Andfor:zz%,é,wehave
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222v/22 — 4 - (22 - 1)a > Sﬁfﬂ [3vzZ-4-1z] >0.
Then take e = v1v44, in Corollary 2.3, and by Lemmas 2.2 and 2.6, for
z > p(U3,) > p(Se) = V5 > %,é since n > g + 5, we have

&(U,4) — B(U3,)
=®(Sn-g-1)®(Ugy1,g) — D(P2)2(Un-2,(3))
—(n— g - 8)2" 974 [2028(P,3) + 27 — (a? — 1)8(Pic2)®(B, )]
Il k) il DY Ny U SO

z2 -4
— (2% = 1)(a*! = 1) (@f7 ! — bTHY) 4 222 (2 — 4)]
N

>0

—qg—3)z" 914
>0 = YT 2 a7 (a8~ — b

z2 —4

— (2? — 1)(af — a?7HH b1 4 b9 — @i 1pI YY)
<0

e n-g—4
> (n gmz i)z {[2z®V/22 — 4 — (2% — 1)a)a®"!

—22%/32 — 4b971 4 (22 — 1) @9 1pi 1}

>abs-1

g n—g-4
S -"z2 i)z [2:1:2\/x2 —4— (22 - 1)al (a* ! — b9-1) > 0.

Thus Lemma 2.4(ii) implies that p(U3 ;) > (U3 ). a
By Lemmas 2.7 and 3.3, and a similar argument as Theorem 3.2, we
have the following theorem.

Theorem 3.4 For any C(Th,...,T;) € %S (n > g+ 5) withn; =2(i €
{2,...,18| +1}) and ng = -+ = nymy = nyyy = --- = ng = 1, where
IV(T_.T)l =1y fOTj =1,... '3, ifC(Tlr‘ . -:Tg) ¢ {Un,g(i)jUz,g}; then we
have p(U) < p(U3 ;). Moreover, p(Un,¢(4)) > p(U3 ).

Lemma 3.5 Forany2 <i<j < |%]+1, we have p(U, 4(3)) > p(Un 4(5))-
Moreover, p(Uy ;) > p(Un,g(2)) > p(Un,g(3)) > -+ > p (Un,g (12] +1)).

Proof. In order to obtain the desired result, we only need to prove the
case § =1+ 1. From Corollary 2.3, we have

®(Un,g(1)) = 2®(Un,g(?) — vivn) — ®(Ung(3) \ {vi,v2}) and
B(Ung(i +1)) =20(Up,g(i + 1) — vig1vn) — ®(Un,g(i + 1) \ {vig1,vn}).
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Note that Un'g(i) \ {1),', 'Un} = Tn_g,g_g(i - 1) and Un'g(i + 1) \ {‘Ui+1, ’Un} o
Tn-2,9—2(3). Then take v = v; in Lemma 2.5, we have ®(U,,q @E\{vi,vn}) >
®(Un,g(i + 1) \ {vit1,vn}), for £ > p(Un g(i + 1) \ {vi41,9n}). Moreover,
Ung(3) — vivn = Unyg(i + 1) — vig19n. Then for z > p(Ung(i + 1)) >
P(Un,g(i+1)\ {vis1,n}), we have B(Un 5 (i+1)) — B(Un (i) = ®(Un,q(i)\
{vi,v2}) —®(Un ¢ (i+1) \ {vi4+1,7a}) > 0. Thus, Lemma 2.4(ii) implies that
P(Un,g(2)) > p(Un,g(i+1)) fori =2,...,| %]. Moreover, Lemma 2.7 implies
that p(Un ;) > p(Un,g(2)). Then the result follows. 0

Note that

B(U}, 4(3) =2*®(Uy, o (4) — vivn—1 — vivn)
— 228U}, 4(i) \ {vi,¥n-1,vn}) and
®(Up (i +1)) =m2‘I>(U,’t’g(i +1) — Vit1Vn—1 — Viy1¥n)
—228(U,, o(i + 1) \ {vis1,Vn—1,vn});

UL o(8) = vivn—1 — vivn = Up (i + 1) — vig1¥n-1 = Yiga¥n and Uy, ,(4) \
{'Uia Un-—-1, 'Un} = Tn—3.g-2(i—1) and U:l,g(i+1)\{vi+1, Un-1, vn} = Tn—3,9—2(i)'
Then similar reasoning implies that the following result holds.

Lemma 3.6 Forany2 <i< j < |§]+1, we have p(Uy, ,(3)) > p(Uy, 4(5))-
Moreover, p(Uz ) > p (Ut 4(2)) > p (Ur4(3)) > -+ > p (Un, (L§] +1))-

Lemma 3.7 Forn > g+ 6 and g > 5, we have p(Un 4(2)) > p(Ux,) >
P(Un,g(3))-

Proof. Note that Up ¢(2)\{v2,vn} = Th-24-1(2) and U, ¢(3)\{vs,vn} =
Tn-2,g—2(2). Then from Corollary 2.3, we have

B(Un,g(2)) = z2(Un_1,9) — B(Tn-2,6-1(2)),

<I>(U:,g) = xQ(U;—l,g) - Q(U;—Z,g) and

®(Un,g(3)) = xQ(U*—l,g) = &(Th-2,9-2(2)).
Since T2 4-1(2) is a proper spanning subgraph of Uy_, ,, Lemma 2.4(i)
implies that ®(Tn—2,9-1(2)) — ®(Un_s,4) > 0 for z > p(U;_5 ). Thus for

z > p(Ufg) > p(Usi_p,4), we have (U ;) — 8(Ung(2)) = ®(Tn-2,-1(2))—
®(Uz_s,4) > 0. Then Lemma 2.4(ii) implies that p(Ut ;) < p(Un,¢(2)).
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Recall that &(C,) = ®(P,) — ®(Pnr-2) — 2 and &(P,) = z®(P,-1) -
®(P,—2). By Lemma 2.2, we have

®(Un,g(3)) - @(Uxy)
=@(U;_2,) — B(Tr-2,-2(2))
= [z"79728(C,) - (n — g — 2)z" "9 73®(P,-1)]
— [&" 777 8(Py-1) — (n — g = 1)z 797 ®(P,—3)]
=z""9-3 {(n — 9)z®(Py—y) + [(n — g — 2) — 22D (P,_3) — 2:1:} (3.1)

Note that A(Ut,) = A(Uy,g(3)) = n—g+1. Then p(U},), p(Un,4(3)) >
vn =g +1. Moreover, Lemmas 2.7 and 2.9 imply that po(U} ), p(Ur4(3)) <
oUs,) < P(Si-yvs) < VA= F3. That is V7 < yA=g 1 < p(UZ,),

P(Ung(3)) < /A —g+3 since n — g > 6. Recall that a = ztifE and
b= ’—'545’5. Then ab = 1, a™*! — b"*1 > o™ — b" and z(a? — b?) —
22v/2% — 4 = /2% — 4(z—-2) > 0 for z > 2. Then by (3.1) and Lemma 2.6,

for VT<\m—g+1<z<+n—-g+3, we have
B(Un,e(3)) — 2(U,)

\/n:rgi{(" 9)z(?=3 = =) + [(n — g — 2) - 2%)(a%"2 - b2)
- 2zv/22 — 4}
n—g-3
= zzzg_—4{(n —-g- 1)2(0.9—3 _ b9—3) + [(n —g- 2) _ x2](ag—2 _ bg_z)
+2 (@07 — %) —92/z? — 4
2a?~b?
xn—g-3 {(n 9~ 1)z(a9"3 —b97%) + [(n — g — 2) — 2%](a9~2 — b9-2)
+?(“ — ) — 22+/22 — 4}
> 1’""9-—3 {(n _20 B 1) ( g-3 bg—3 2 g—2 2
SV A i) G A e Gl k) SOt
>5 <5
\/:_zg; {52(a?™° = b9"%) - 5(a®"2 - b~%)}
5xn—9—3
~Va-4 (@™ - 4% > 0. (3.2)
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Moreover, note that Uy, ¢(3) —v1 = Tg,g—2(2)U(n—g—1)8) and Uf j —v; =
P, 1UPU(n—g—2)S;. Then Lemma 2.1 implies that pa(Un,¢(3)) <
P(Un,g(3)—v1) = p(Tg,g-2(2)) < 2and p2(Ug,) < p(Ug—v1) = p(Fy-1) <
2. Recall that p(U,¢(3)), p(Us,) > v7 > 2. Then (3.2) implies that
pUL5) > p(Un,g(3)). a

Lemma 3.8 Forn > g+5, we have p(Ung(|£] + 1)) > p(U;, 4(2)).
Proof. From Corollary 2.3, we have
g * — -
8 (Vng(1F) + 1) = 220Uz ,) 3" 8(Py-) = 8 (Ta-z0-2(15)))
8(U, 4(2)) = 2°@(Us_2,0) — 259(Tn-3,4-1(2))-

Recall that a = Z+YZ=4 Then 4 (2v2Z — 4 — ) —2vzZ — 4 = 422 — 4—
2z > 0 for z > 443, Note that p(Un¢(|$] +1)) = p(S7) = V6 > 48 since
n > g+5. Thus by Corollary 2.3 and Lemma 2.6, for z > p(Un ¢(|£]+1)) >
\/5, we have

(Up4(2) — BUns(13] +1))

=29 18(Py-1) + 8(Tn-2,g-2((5))) — 208(Tn-30-1(2))

=z" 97 8(Py-1) + [a" 9T @(Py-1) — (n — g — 1)z "I 2@(Prg1-1)B(Pg)-1
— 222" 9"28(Py1) — (n — g — 2)z" "I 2(P,-3)]

=2(n— g — 2)z""I"2(Py_z) — (n — g — 1)z "7 2®(Pr41_1)8(P g)-1)
a9~V — a5 b7
—(n—g-1)(al# - bI#T)(ald) —plE]Y)
S (-9 - DV — st b57Y)

— (a9 — ol #1pLE) 1+ b9 — alBIbIEN)) — 24/22 — 4(a97* — b9~1)}
<0

xn—g—2

>m{(" —g—1)[a1(2Vz% — 4 —a) — 21/22 — 4b91 4 o[ §1plE]]

>ab9o-1!
—2/22 — 4(a?" — b1}
ST i g D)2V = d— )@t — b

2 -4

— 222 — 4(a%"! — b))
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T2 -4

ST a9 Y [(n— g~ 1)(2v/aT - a) - 222 — 4
>4

T (@ -7 [4 (v —d- ) —2v27 =]

Tz2-4
n—g—2
=S (@ -7 (1P —4-20) >0
Then Lemma 2.4(ii) implies that p(Un¢(| ] + 1)) > p(U}, 4(2)). O

Lemma 3.9 Forn > g+ 4, we have p(Uy, ,(2)) > p(Uy ;).
Proof. From Corollary 2.3, we have

(UL ,) = 22®(U;_,,) — 228(U};_5 ,) and
2(Uy,4(2) = 2*(Us_2,0) — 208(Tn-3,9-1(2)).

Since T,_3,9-1(2) is a proper spanning subgraph of Un-3,4) Lemma 2.4(i)
implies that ®(Th_3,-1(2)) — ®(Ur_34) > 0 for z > p(Uy;_3 ,). Thus for
z > p(Upn ;) > p(Us_3,4), we have

B(UL,) — B(U 4(2)) = 25 [8(Ta-s,0-1(2)) — B(Us_s,)] > 0.
Then Lemma 2.4(ii) implies that p(Uy, 4(2)) > p(U3 ;). O

Theorem 3.10 For any unicyclic graphU € %,f\{U,‘;,g, Un,g, Ui, U,",g(2)}
withn > g+5 and g > 5, we have p(U) < p(U}, ,(2)).

Proof. Since for each U € %9, as mentioned before, U can be re-written

as the form C(T1,T3,...,Tg). Let |V(T3)| = n; for i = 1,2,...,9. Then
g

n; > 1 and ) n; = n. We consider the following three cases.

Case 1. Atlfelast three of n1,ny,...,n, are greater than or equal to 2.
Lemma 2.11 implies that p(U) < p(S(ny,n2,...,n,)). Moreover, by
Lemma 2.7, we can construct a graph U* € %, , such that p(S(ny, n2,...,n,)) <
p(U*) since at least three of n1,ng,...,ny are greater than or equal to 2.

Thus, the result follows from Lemma 3.6.
Case 2. Exactly two of ny,ny,...,n, are greater than or equal to 2.
Without loss of generality, we assume that n; > n; > 2, where i,j €
{1,2,...,9} and i # ;.
If n; > 3, then Lemma 2.11 implies that

p(U) < p(S(L,..., 1m0 1,...,1,m51,...,1)).
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Let £ = (z,%2,...,Ts) be the Perron vector of
s@,...,1,n;1,...,1,n4,1,...,1), where z; corresponds to the vertex v;
(1 £i £ n). Then Lemma 2.7 implies that

p(SQ,...,1,n4,1,...,1,n;,1,...,1))

< p(S(1,...,1,3,1,...,,n; +n; = 3,1,...,1)) if z; <z,
p(SQA,...,1,ni+n;—3,1,...,1,3,1,...,1)) ifz > g

Since S(1,...,1,3,1,...,1,n; +n; — 3,1,...,1) = 8(1,...,1,n; + n; —
3,1,...,1,3,1,...,1) € %, 4, the result follows from Lemma 3.6.

If n; = 2, then Theorem 3.4 implies that p(U) < p(U3 ) since U ¢ %, q.
Moreover, Lemma. 2.7 implies that
p(U3 ;) < max{p(U} ,(3)),p(Us;)}. By Lemmas 3.6 and 3.9, we have
max{p(U}, ,(i)), (U2 ;)} < p(U}, 4(2)). Thus the result follows.
Case 3. Only one of ny,ny,...,ny is greater than or equal to 2.

By Theorem 3.2, we have p(U) < p(Uy, ,) since U ¢ {Uy; ;,Ut }. Then
the result follows from Lemma 3.9.

The proof is completed. O

Combing Theorem 3.10 with Lemmas 3.5, 3.7 and 3.8, the main result
of this paper is immediate.

Theorem 3.11 The first | 2] + 3 spectral radii of unicyclic graphs in the
set % withn — g > 6 and g > 5 are as follows:

pUsng) > P(Ung(2)) > p(Udg) > p(Ung(3)) > p(Ung(4)) > -+ >
P (Ung (1] +1)) > o(U7, 4(2)).

4 Concluding remarks

In this paper, we determine the first | ] + 3 spectral radii of unicyclic
graphs in the set %¢ withn > g+ 6 and g > 5. But for case n — g = 2,
giving a total ordering (i.e, the first [ ] + 2 spectral radii) on the set %;~2
is difficult, since computer experiments show that p(Unn—2(|252] + 1)) >
p(U},_;) when n < 13; p(Unn—2(1252] + 1)) = p(Ut,,_;) when n = 14;
pUn,n-2(5)) > p(UT,_3) > p(Un,n—2(6)) when 15 < n < 40. For Cases
n—g = 3,4,5, a lot of computational results show that p(Un4(2)) >
p(Ut,) > p(Ung(3)). But providing a mathematical proof seems to be
difficult. We close the paper with the following conjecture.
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Conjecture 4.1 For n — g = 3,4,5 and g > 5, we have p(Uy, 4(2)) >
p(Ug) > p(Ung(3)).
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