GENERALIZED F-NOMIAL MATRIX AND
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ABSTRACT. In this study we define the generalized k—order Fibonacci
matrix and the n X n generalized Pascal matrix F,,(GF) associated
with generalized F'—nomial coefficients. We find the inverse of gener-
alized Pascal matrix 7 (GF) associated with generalized F —nomial
coefficients. In the last section we factorize this matrix via gener-
alized k—order Fibonacci matrix and give illustrative examples for
these factorizations.

1. INTRODUCTION

In (3] for a fixed n, the n x n lower triangular Pascal matrix
Pn= [PiJ]i,j=1,2,...,n

is defined by
o] GD) iz,
Pig = { "0 otherwise,

The Pascal matrices has many applications in probability, numerical
analysis, surface reconstruction and combinatorics. In [1] the relationships
between the Pascal matrix and Vandermonde, Frobenius, Stirling matrices
are studied. Also in [1] another applications in stability properties of nu-
merical methods for solving ordinary differential equations are shown. Lee
and Kim [13] factorized the Pascal matrix involving the Fibonacci matrix.
Pascal matrices, Binomial coefficients, Fibonomial coefficients, F — nomial
coefficients, their generalizations and factorizations are studied by many
authors. For details see [4, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 22, 23].

For integers ¢,5 and n, 1 £ 4,5 < n the n x n Pascal matrix via Fibono-
mial coefficients named as Fibo Pascal matrix P, = (p;;) similar to the
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Pascal matrix in [10] as follows

= G iy
Pig = { "o otherwise,
was studied in [20]. The inverse of this matrix was also given in [20].

Silvester [8] obtained a matrix representation for usual Fibonacci se-
quence. Kalman [7] extended this matrix representation for a generaliza-
tion of Fibonacci sequence. Kalman supposed that the (n + k)th term of
that sequence defined recursively as a linear combination of the preceding
k terms,

Qntk = C0Qn + C10n+1 + ... + Ck—10n4k—1

where cg, c1, ..., Ck—1 are constant coefficients.

Miles [16] defined the generalized k-Fibonacci numbers as shown for
n>k>2

fo=Jfo1+ fa2+ 0+ faek,
where fi = fa=..= fr_2 =0and fr—1 = fi =1
Er [6] defined k sequences of the generalized order —k Fibonacci numbers

as shown:
k

9:;-"29:;—1" forn>0and 1<i<k,
=1
with boundary conditions for 1 -k <n <0,
i _J 1 ifi=1-n,
9= 1 0 otherwise,

where g}, is the nth term of the ith sequence.

Akbulak and Bozkurt [2] defined order-m generalized Fibonacci k£ num-
bers by matrix representation. Using this matrix representation they ob-
tained sums, some identities and the generalized Binet formula of general-
ized order—m Fibonacci k-numbers.

In (14] the n x n k—Fibonacci matrix is defined and the inverse of the
k—Fibonacci matrix is given as follows:

[ 1 0 0 --+ ++o -+ 07
-1 1 0 o+ +or o 0
Fk)71=| -1 .. - o e 0. (1.1)
0 L.
: 0
| 0 0 -1 -1 1
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In (18] the n x n k—Pell matrix M(k), is defined and the factorizations
of k—Pell matrix are given. The inverse of the k—Pell matrix is given.

In this paper we define and study the n x n Pascal matrix via general-
ized F — nomial coefficients. We define the generalized k—order Fibonacci
matrix and factorize this matrix. We also find the inverse of generalized
k—order Fibonacci matrix. Finally in the last section we factorize the nxn
Pascal matrix via generalized F —nomial coefficients involving generalized
k—order Fibonacci matrix.

2. GENERALIZED K-ORDER FIBONACCI MATRIX
For a positive integer k > 2, we define the generalized k—order Fibonacci
sequence {vn(k)} as
n (k) =..= 'vk_z(k) = 0, ‘Uk_.1(k) = l,vk(k) = d]
and forn>k>2
vn(k) = d1vn_1(k) + dovn—2(k) + dzva_3(k) + ... + drvn—i(k)

We call v,(k) the nth generalized k—Fibonacci number. For example if
k = 4, then the 4th sequence of the generalized 4—order Fibonacci sequence

18
0,0,1,dy,d? + dp,d + 2dydy + d3, d} + 3d3dy + d2 + 2dyd3 + da, ...

For some special cases;
o If k=2 and d; = d; = 1 then {vn(2)} is the usual Fibonacci sequence

EF}% .k = 2 and d; = 2, d3 = 1 then {v,(2)} is the usual Pell sequence
Eﬁ'}}k' =2and d; = 1, d2 = 2 then {v,(2)} is the usual Jacobsthal sequence
EJ’it} k= 3 and d; = dy = d3 = 1 then {v,(3)} is the Tribonacci sequence
ET?f}c.il =dy =d3 = ... = dr =1 then {vn(k)} is the k—Fibonacci sequence
defined in [14].

o Ifd; =2, and dz = d3 = d4... = dx = 1 then {vn(k)} is the k—Pell
sequence.[18].
o Ifdy =1,d; = 2, and d3 = d4... = dr = 1 then {v,(k)} is the
k—Jacobsthal sequence [18].

Now we introduce new matrix. The n xn generalized k—order Fibonacci

matrix
Fo(k) = [fi,5(k)),,
is defined as for a fixed & > 2,

oy ) vieier fi—3+120,
f'ﬂ(")"{ 0 ifi—j+1<0, (2.1)
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where v, = Vp4x—2(k). For k = 4 and n = 4 the matrix is as follows:

1 0 0 0
_ dy 1 0 0
F(4) = d} + ds d 10

d} + 2d1dz + d3 d+dy dy 1

G.Y. Lee and J.S. Kim gave the factorizations of the k-Fibonacci matrix
in [14]. Now we give factorizations of the generalized k—order Fibonacci
matrix F,(k), where the method is similar to the method in [14]. The
selection of the matrices S; and G; are same with the selection of Lee and
Kim. We use this method for finding the inverse of the generalized k—order
Fibonacci matrix Fy, (k).

Let I, be the identity matrix of order n, and let Ly be a k x k lower
triangular matrix as follows:

"1 00 0 0]
dd 10 0 0
d2 01 0 0
Ly=1d; 00 1 0 (2.2)
de-y 0 0 - 0 1

Set S = Lkp1 ® I, 1 = 1,2,... . We define n x n matrices Fp(k) =
(1)®Fn-1(k), G1 = In,G2 = In_2®L2,G3 = In_3®Ls, ..., Gk = In—x®Lx,
Gis1 = In—k—1 ®Lgy1and for k+2 <1 S0, G = I @ Si—g-1. In
particular So = Lk+1 and Gn = Sp—k-1-

We have the following theorem:

Theorem 1. The generalized k—order Fibonacci matriz F,(k) can be fac-
torized by Gi, 1 <l < n, as follows:

Fo(k) = G1G2...Gy

Now we give another factorization of F,(k). An n x n matrix Dy (k) =
[dij(k)] is defined as

(A if J = l,
d,'j(k) = 1 lfj = ’l:,
0 otherwise
then we can give the following theorem:
Theorem 2. Forn > 2,
Fn(k) = Dn(k)(Iy ® Dn-1(k))(I2 ® Dn_3(k))...(In—2 ® D2(k)).
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It can be computed that the inverse of L is

l- 1 0 0 O 0]
—d; 1 0 0 0
L | - 01 o0 0
Li'=1 —dy 00 1 0
| —dr-1 0 O 0 0
and
V1 0 0
—V2 1 0
Dn(k)-1= .
—"Un 0 1

Corollary 1. Let G,-'l = H; fori=1,2,...,n. Then we have

Fo(k)™! = HpH,_,..H:H;
= (In-2® Da(k)™"...(I1 ® Dy (k) ") Da(k)?

The inverse of the matrix F,(k) is obtained as the matrix F,(k)~! =
F ','j, as

1, ifi=j7
'F:J= "dt'-—ja 0<i_.7$k

0 otherwise
that is
[ 1 0 07
—d 1
P —d :
Fk)a' = | _dy_, e @3

0
: S - 1.0

. 0 oo 0 —dg—q - —dp 1]

3. THE GENERALIZED F-NOMIAL MATRIX

In this section we will define the generalized F — nomial coefficients
which is generalization of the F' — nomial coefficients. The F — nomial
coefficients was defined as follows in [5]. Let F be a natural numbers’
sequence {nr},5q, and n, k € N, such that n > k, the F—nomial coefficient
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is identified with the symbol

), = wown

where np! =np(n — 1)p...1p with Of! = 1.[5]
We now give a generalization of F' — nomial coefficient which we name
as generalized F' — nomial coefficient.

Definition 1. Let GF be any sequence {ngr},o, whose any element is
different from 0 and n,k € N . Then generalized F — nomial coefficient
(GF — nomial coefficient) is defined and shown with the symbol

(n) _ ncp!
k GF kGF!(n - k)GF!
where ngr! =ngr (n — 1)gp...1gr with Ogr! = 1.

For some special cases:
e If GF is a natural numbers’ sequence {nr},q, 8nd 7,k € N, such that
n > k then GF —nomial coefficient reduce to F —nomial coefficient which
is defined in (5).
e If GF is sequence of natural numbers that is ngr = n the GF — nomial
coefficients reduce to ordinary binomial coefficients

(8)er = 7m= (2

e If we get GF as Fibonacci sequence {Fy},5, one obtain Fibonomial

coefficients that is
(0)or = rmci= (2)
k)cr FilFn-! k) g

e Finally if the nth element of the sequence GF is ngr = ng = u

g-—1
one can obtain g—binomial (Gaussian) coefficients.
Now we define generalization of the Pascal matrix similar to the matrices

in [10] and [20].

Definition 2. The nxn generalized Pascal matriz F,(GF) associated with
GF — nomial coefficients is defined as

Fa(GF;i,5) = (1._1) y 4,7=12,...,n, (3.1)
i=1/¢gF

i—1
. =0 if j>1.
(J—l)cp ’
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For example 5 x 5 generalized Pascal matrix associated with GF —nomial
coefficients F5(GF) is

1 0 0 0 0
1 1 0 0 0

Fs(GF) = i gg @; g g (3.2)
1 Bor Ber Gop 1

If GF is sequence of natural numbers that is ngr =n then we obtain
usual Pascal matrix [3].

If we get GF as Fibonacci numbers {F,.}n>0 we obtain Fibonomial ma-
trix [20].

If we get GF as Pell numbers {P,},,5, we obtain Pell Pascal matrix [20].

For example, if n = 5 then these matrices are given by

10000 1 0000 1 0 0 0 O

11000 11000 11 0 0 O

12100¢(,f1 110O0(,{1 2 1 00

13310 12210 15 5 1 0

1 46 41 13631 1 12 30 12 1
respectively.

We now give the following recurrence

an = —nz—:la,,(z _ 1) , a1 =1 (3.3)

for finding the inversion formula of the GF — nomial coefficients (};) ;..
The inverse of the Pascal matrix associated with GF —nomial coefficients

is given in the following theorem.
Theorem 3. Let F,;1(GF) be the n x n matriz defined by

(1 ifi> 4
Fi}(GFii.5) ={ wesnilitiop ¥i24 (3.4)

where an, s in (3.8). Then F,;}(GF) is inverse of Fn(GF) the Pascal
matriz associated with GF — nomial coefficients.

Proof. 1t’s clear that (F,,(GF)F;1(GF))i; =0 for i < j. If i = j, then we
have

(FalGF)FTNGF)s = 3 Fa(GFii ) (GF;s,1)

a=1

= Fa(GF;i,9)F 7Y GF;i,7)

i-1y o fi-1)
i—-1 GF e i—-1 GF.“ '
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We will prove that (F,(GF)F;}(GF))i; =0 for i > j. Suppose i > j then

(Fo(GF)FH(GF));5

Using (3.3), we obtain

> Fa(GF;i,s)F 1 (GF;s,5)

s=1

(23,02
. 1 .
J=1)¢r —-1/er
t1—1 j
(515020
i Jer \I—Vgr
.. +(i—1) o (i-l)
i-1)gp T\i=1gr

[t —1)er! ( ay + as
i —ler! \[i-jler!  [i—37—1cr! [LeF!

bt ot )

[¢ - jlarF!
[i - l]cp! (al[i —j]c;p!
[i — ler!li = dler! \ [t - dloF!
ag[i - j]cp!

[i =7 —1er!(l]erF!
ai—j+1fi — j]GF!)
[i - jlor!

- 1[;;;[]2Gf !J']GF! (al (2 B j) GF

i j i-j
+a2( ) +---+a-_-+1(. ) )
1 Jer \i-d) er

+---+

i = 1! 2 (-]
[ - ler'li - flor! (kz;:“" (k - 1) GF

i-j
Feei\i- i) or

> Fu(GF;i,s)F;  (GF;8,5) =0

8=1

for¢>j.
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4. FACTORIZATIONS OF THE F-NOMIAL MATRIX VIA GENERALIZED
k—ORDER FIBONACCI MATRIX

In this section, we discuss new factorizations of F,(GF) generalized
Pascal matrix associated with GF — nomial coefficients. We define new
n X n matrix £, (k, GF) as follows

k

i—-1 i—s—1
Ln(k,GF;i,5)={ . - d . , 4.1
n 2 (J"I)GF Z‘; 8( j-1 )GF “n
For k = 2 and n = 3 we have
1 0 0
L3(2,GF) = 1-4; 1 0
1-di—dp (?)GF_dl 1

Theorem 4. Let L,(k,GF) be nxn matriz as in ({.1) and F,(k) benxn
matriz as in (2.1). Then

Fn(GF) = Fu(k) Ln(k,GF).

Proof. Since the inverse of the matrix F,(k) is given in (1.1) then it is
enough to prove Fy, (k) "' Fn(GF) = Ln(k,GF). Let F, (k)1 = [f'(k):;] be
the inverse of the matrix Fj,(k) then

n
i = Y Fipa

8=1

Flipn + Fiopar + ... + F,pn1
F1'1P11

= lgr

since Fj; =0 forj > 2.

n
hij = Y Fi,psj

8=1
= Fi1p1j + Fiap2j + Fiapsj + ... + F1,Pnj
Fi1p1;
0
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since py; =0 for j > 2.

n
n = Y Fjpa

s=1

F31p11 + Fapa1 + Fagpar + ... + Fappm
F31p11 + Fiapn

-1lp+1F

= 0

since Fj; =0 for j > 2.

n
by = Y Fjps

8=1

F31p12 + F3op20 + Fy3paz + ... + Fyapn2
Fézpzz
lgr

since p; = 0 for j > 2.

n
i = Y Fips

s=1

F31p1j + Fop2; + Fgpsj + . + FanPnj
F31p15 + Faop2;

=0

since py; = 0 for j > 2.
Finally from the definition of F,(k)~? and the recurrence relation (4.1) for



i > j we have

n
D F'(k)isps; = Fhpij+..+ Filik—2)P(i—k—2);

+Ei_k=1)Pl—k-1)7 + Fi(s_r)P(i—k)s
+F}, i(i—k+1)Pli—k+1); + F; i(i—k+2)P(i—k+2)j
+o + Fly_1yPli-1); + Fiipis
+F{i41)Pli+1)j oo + FinPrj

_ _(i—k—l) _(z’—k)
J=1 Jgr \0-1/gF
_(i—k+l) _ _(i—S)
i-1 Jgr 7 \i-1/gr
(20et(GY)
J=1/¢r i=1/gr

since Fj; =0 for i —j > k.
It is obviously seen that for i < j, l;; =0 and for i = 7, l;; = 1. |

Now, we define a new n x n matrix Rn(k,GF) as follows.

k
i—1 i—1
R,(k,GF;i,/) = | . —E ds| . ) . 4.2
( h3) (J—l)cp (.7+5—1 GF (42)

§=1
For k = 3 and n = 3 we have
1 0 0
R3(3,GF) = 1-d; 1 0
1- dl(?)GF —dp G)GF —d 1
Theorem 5. Let R,(k,GF) be the matriz as in ({.2). Then
Fn(GF) = Rn(k,GF)F, (k).

5. ILLUSTRATIVE EXAMPLE
Example 1. For the sequence GF = (— 1)“ y k=3, and n =4 then

1 00
1 1 00
1§ 2
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and

1 0 0 0

_ d 1 0 0

Fa(3) = d% +ds dy 1 0
d3 +2d1dy+d3  di+d2 dy 1

The matrices

n N _ 1—d1
L (3’(-1) n? +1) - 1-d,—dp -3

and
1 0
n N _ 1- d1 1
R4 (3’ - it 1> B 131- ig-la: d2 3 -g.;d_ &
1- 3 -3 —ds §-3—dy
For first factorization
Fa3)La (3, (-1)" ==
BN n?+1
1 0 0 0
_ dy 1 00
- d% +ds dy 1 0
d? + 2d1d2 + d3 d% +ds d 1
1 0 0
” 1-d; 1 0
1-d;—d -$4-d 1
1-dy—ds—ds %-I-""—g—l—dz %-—dl
1 0 0 0
_ dy 1 0 0
- d’f +ds dy 1 0
d}+2dydp+d3  di+dy  di 1

- ()
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and the second is

Ra (3, (-1 ) Fu@

n2+1
1 0 0 0
_ 1-4d; 1 0 0
- 1+ 48 —dy —%—dl 1 0
ORI A R
1 0 0 0
« dy 1 0 0
@B +dp d; 1 0
d%+2d1d2+da d§+d2 d 1
1 0 00O
_ 1 1 00
T 1t -$ 10
3° 3
1 5 51

(1)

6. CONCLUSION

In this study we defined the generalized k—order Fibonacci sequence,
generalized k—order Fibonacci matrix and the n X n generalized Pascal
matrix F,(GF) associated with generalized F — nomial coefficients. We
found the inverse of generalized Pascal matrix F,(GF) associated with
generalized F — nomial coefficients. In the last section we factorized this
matrix via generalized k—order Fibonacci matrix. By our factorizations
the results in [13], [24], [14], [18], [19], [20] are our special cases.
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