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Abstract

We introduce quasi-almostmedian graphs as a natural nonbipar-
tite generalization of almostmedian graphs. They are filling a gap
between quasi-median graphs and quasi-semimedian graphs. We gen-
eralize some results of almostmedian graphs and deduce some results
from a bigger class of quasi-semimedian graphs. The consequence of
this is another characterization of almostmedian graphs as well as
two new characterizations of quasi-median graphs.

1 Introduction and preliminaries

Median graphs constitute the most important subclass of partial cubes, i.e.
isometric subgraphs of hypercubes. They have been intensively studied
during past 25 years. There are known more then 50 characterizations of
median graphs, see the survey [13].

Several generalizations of median graphs are known. Quasi-median
graphs are nonbipartite, see [1] or book [11], while almostmedian and semi-
median graphs remains in the class of partial cubes and where introduced
in [10], see also (3, 5, 4, 12] for more information. Quasi-semimedian graphs
were introduced by Bresar in [2] as natural nonbipartite generalization of
semimedian graphs as well as a generalization of quasi-median graphs. This
class was then further investigated in [6] where several characterization are
presented.

In this paper we define quasi-almostmedian graphs as a natural (non-
bipartite) generalization of almostmedian graphs. We will show a similar
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relation between quasi-almostmedian and quasi-semimedian graphs as it
is between almostmedian and semimedian graphs, based on equality of
two edge relations as shown recently in [3]. Furthermore we define the
almost-quadrangle property that is characteristic for quasi-almostmedian
graphs (as analogue to the semi-quadrangle property from [6]). As a conse-
quence we obtain a new characterization of almostmedian and quasi-median
graphs, as well as a connection between quasi-almostmedian graphs and
weak modularity.

We continue with definitions of several basic graph theoretical concepts
and refer to standard texts or to [11] for the terms not listed here.

The distance dg(u,v), or briefly d(u,v), between two vertices v and v
in a graph G is defined as the number of edges on a shortest u,v-path. A
subgraph H of G is called isometric, if dg(u,v) = dg(u,v) for all u,v €
V(H), and H is conver if for every u,v € V(H) all shortest u,v-paths
belong to H. Convex subgraphs are isometric.

The Cartesian product GOH of two graphs G and H is the graph with
vertex set V(G) x V(H) where the vertex (a,z) is adjacent to (b,y) when-
everab € E(G) and z = y, or a = band zy € E(H). The Cartesian product
of k copies of K is a hypercube or k-cube Q. Isometric subgraphs of hyper-
cubes are called partial cubes. Q3 is usual (graphically) cube and with Q3
we denote cube Q3 without one vertex. Graph G = K,,0K,,,0---0K,, is
called Hamming graph. Isometric subgraphs of Hamming graphs are called
partial Hamming graphs. Graph K,DKs without one vertex is called a
house.

For partial cubes, the sets W, and Uy that we shall define below play
a crucial role. Let ab be an edge of connected graph G = (V, E). Then

Wap = {w € V | dg(a,w) < dg(b,w)}, and
Uap = {w € Wyp | w has a neighbor in Wy, }.

We will use the notation Uy also for subgraphs induced by the vertices of
set Usp.

A vertex z is a median for triple of vertices u,v, and w of G if z lies on
a shortest u, v-path, on a shortest u, w-path, and on a shortest v, w-path.
A graph G is a median graph if there exists a unique median to every triple
u,v,w € V(G).

It follows from results in [1] that median graphs are precisely the bi-
partite graphs in that all Usp’s are convex. By this result, the following
definitions from [10] make sense. A bipartite graph is a semimedian graph
if it is a partial cube in that all Uss’s are connected. Similarly, a bipartite
graph is almostmedian if it is a partial cube for which every Usy is an isomet-
ric subgraph of G. It is clear that median graphs are almostmedian graphs,
that almostmedian graphs are semimedian graphs, and that semimedian
graphs are partial cubes. If we do not restrict to a bipartite case we obtain
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the following definitions: a graph G is gquasi-semimedian if it is a partial
Hamming graph and all U,;’s are connected, and G is quasi-almostmedian
if it is a partial Hamming graph and every U,; is isometric.

One of the most useful relations for the investigation of metric properties
of graphs in general and partial cubes and Cartesian products in particular
is the Djokovié relation ~ (cf. [9]). Two edges e = zy and f = wv of G
are in the relation ~ if z € Wy, and y € W,,,. Clearly, ~ is reflexive and
symmetric, however not transitive in general. This cannot happen in the
class of partial Hamming graphs where ~ is transitive (see [15]). (Note
that in the case of partial cubes we often use the notation © for ~.)

Edges e and f are in relation = if e ~ f or there exist edges e’ and f’
that belong to the same clique, such that e ~ ¢’ and f’ ~ f. The relation ~
was first introduced in [2] (denoted there by A) and is reflexive, symmetric
and is transitive for partial Hamming graphs [2]. Also ~C=.

Another relevant relation defined on the edge set of a graph is §. We
say an edge e is in relation d to an edge f if e = f or if e and f are
opposite edges of an induced 4-cycle. Clearly § is reflexive and symmetric.
Moreover, it is contained in ~. Thus its transitive closure §* is contained
in ~ and in = in the class of partial Hamming graphs. In [6] it is shown
that a bipartite graph is quasi-semimedian if and only if ~= §*.

Suppose that e = e1dezd...d0ex = f is a sequence of edges by virtue
of which e and f are in relation §*. The union of squares that contain e;
and e;4+1, where i = 1,2,...,k — 1 forms a ladder. In such a case we shall
say that e and f are connected by a "ladder”. Clearly a ladder does not
necessarily provide a shortest path between e and f.

We will frequently use the following results of Bresar [2], Chepoi [7],
and Wilkeit [14], respectively.

Theorem 1 A connected graph G is partial Hamming graph if and only if
() the relation = is transitive,
(#3) for edges ab,zy € E(G) : if ab ~ zy then W,y = Wy, and
(748) If P is a path connecting the endpoints of an edge zy, then P
contains an edge ab with Ty =~ ab.

Lemma 2 Let G be a partial Hamming graph and K a clique in G. Then
for any vertez u € V(G) the distances from u to vertices of K are either
equal or there exists a unique x € K that is closer to u than other vertices

of K.

Lemma 3 If G is a partial Hamming graph then: if a verter w € V(G) has
the same distance to adjacent vertices ¢ and y of G, then any two neighbors
of a € Wy and b€ Wy, of w are adjacent.
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2 The main result

Suppose that vertices u, w, z, y of G have the following properties: d(u,z) =
d(u,y) = k = d(u,w) — 1 and w is adjacent to z and y. The quadrangle
property for these vertices is fulfilled if there exists a common neighbor v
of z and y with d(u,v) = k — 1. In [6] the semi-quadrangle property was
introduced. The difference is that there exists an edge ab with the property
abd*zw and d(u,a) = k — 1. Note that if abdzw and b = y we have the
quadrangle property. The almost-quadrangle property is fulfilled if there
exists an edge ab with abdzw and d(u,a) = k — 1, see Figure 1. Again
if b = y we obtain the quadrangle property. The graph G satisfies the
almost-quadrangle property if the almost-quadrangle property is fulfilled
for all vertices u,w, T,y with the above properties.
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Figure 1: Almost-quadrangle property

In this section we prove that the almost-quadrangle property is char-
acteristic for quasi-almostmedian graphs in the class of partial Hamming
graphs as analogue to the result for quasi-semimedian graphs and semi-
quadrangle property from [6], as well as analogue from [3] where convex
cycle Can, n > 3, is forbidden and ~= §* must hold. But first a lemma.

Lemma 4 Let P be a shortest path in a partial Hamming graph G. Then
no two edges of P are in relation =.

Proof Suppose that edges uv and ab of the shortest path P are in relation
~. We may assume that u is the first vertex of P and b the last one. Thus
u,v € Wy and a,b € W,,. Since P is a shortest path, uv « ab. Thus
there exist two edges zy and wz of the same clique in G with uv ~ zy and
wz ~ ab. We can chose the notation so that y € Wy, and z € W,. If
zy and wz are not incident, y is closer to v than both w and z by Lemma
2. This is a contradiction to v € Wy, since by Theorem 1 (i) v should
be closer to z. Thus Ty and wz must be incident and suppose that y = z.
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Again by Theorem 1 (i4), Wy = Wyz. A contradiction with b € Wy, since
d(b,y) = d(b,z). We have similarities in all the other cases when y = w,
T =z, or £ = w and the proof is complete. a

Theorem 5 Let G be a partial Hamming graph. The following assertions
are equivalent:

(2) G is quasi-almostmedian,

(i2) G satisfies the almost-quadrangle property,

(¢1d) 6* =~ and G does not contain convez cycles Ca,, v > 3.

Proof (i) = (ii) Let G be a quasi-almostmedian graph. Then G is a
quasi-semimedian and semi-quadrangle property holds. Let u,z,y,w be
vertices with properties d(u,z) = d(u,y) = k = d(u,w) ~ 1 and w be a
common neighbor of £ and y. By semi-quadrangle property there exists
(at least) an edge ab that is in relation § with zw. Thus, also ab ~ zw.
Let P be a shortest u, z-path and let @ be a shortest u, y-path. Consider
the path that is a subwalk of the walk PUQ U {yw} and starts in z and
ends in w. On this path exists an edge zv for which zv =~ zw holds by
(#4%) of Theorem 1. Suppose that there exists a clique with edges e and f
such that zw ~ e and f ~ zv. Since zv is on a shortest path from u, one
of the vertices z or v is closer to u. Hence by Theorem 1 (ii) one of the
endvertices of f is closer to u than the other. If e and f have no vertex
in common we deduce by Lemma 2 that this endvertex of f is closer to u
than both endvertices of e. This contradicts u € W,,,, since by Theorem 1
(42), u should be closer to one endvertex of e. Otherwise, if e and f have a
vertex in common it must be by Theorem 1 (i) and Lemma 2 closer to u
than the remaining vertices s and ¢ of e and f, respectively. Consider now
the path starting in ¢t and proceeding by the f, zv-ladder to v continuing
on @ to y, then to w and down the wz, e-ladder to s. By Theorem 1 (1)
there exists an edge on this path that is in relation ~ with st. This edge
must be yw, since all the other edges on this path lie on some shortest
path already containing an edge in relation ~ with st (otherwise we get a
contradiction with Lemma 4). By the transitivity of ~ we have zw =~ wy,
which is impossible.

Thus we have 2v ~ zw. Suppose that z is closer to u than v. The
ladder between ab and zv is isometric in W,,; and has the same length as
a shortest v, w-path. But then

d(e,v) < d(a,z)+d(z,u)

= d(b,v) +d(v,u) -1
d(w,v) —1+d(v,u) -1
= k-1
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Moreover, a is a neighbor of z and d(u, z) = k. Thus d(u,a) > k— 1 which
yields the desired equality.

(id) = (#44) Suppose that G contains a convex cycle C of length 2k
for k > 2. Pick two antipodal vertices © and w of C and let z,y be the
neighbors of w on C. By almost-quadrangle condition, there exists an edge
ab as in Fig. 1. Since C is convex and a lies on a shortest path between v«
and z, we conclude that a € C. Since b belongs to a shortest path between
the vertices @ and w of C, we obtain a contradiction with convexity of C.

Thus 6* #~. Since §* C~ in partial Hamming graphs, we have ~¢Z §*.
Thus uv ~ ab and there is no ladder between uv and ab. Among all such
pairs of edges in G let they be chosen such that their distance n > 2 is
as small as possible. The assumption that G fulfills the almost-quadrangle
property will lead us to a contradiction. Indeed, let w be a neighbor of v on
a shortest v, b-path. Then by the almost-quadrangle property for a,u, w,v
there exists an edge ry with ryduv and d(z,a) = n — 1. However zyduv
implies zy ~ uv and by transitivity of ~ in partial Hamming graphs we
have zy ~ ab. Hence a contradiction with minimality of n, because the
ladder between zy and ab would imply the ladder between uv and ab.

(443) = (i) In this part of the proof we closely follow the proof of the
Theorem 4 from [3]. The main difference is that here we must deal with
relation = not with ~ (9).

Since for G §* =~ holds, G is quasi-semimedian. Let G be without con-
vex cycles Cax, k > 2. The assumption that G is not quasi-almostmedian
will lead us to a contradiction. If G is not quasi-almostmedian then there
are two edges ab and zy which are in relation ~ but no ladder between
them is isometric. Among all such pairs of edges in G let they be chosen
so that their distance n > 2 is as small as possible. Let C be a cycle
formed by a shortest path a = ug, uiu2,...,un = z, edge zy, a shortest
path y = v, Vn_1,...,v1,% = b and edge ba.

The assumption that there exists a path P that violates the convexity
of C will lead us to a contradiction. We may assume that P connects two
vertices of C so that internal vertices of P are not on C, and that P is a
shortest path between its endvertices. We distinguish three cases.

Case 1. Suppose P is a shortest path between u,. and vy, that is shorter
than at least one of the ux, um-paths on C. Note that in thiscase0 <k <n
and 0 < m < n. Note that any path from a vertex in Wy, to a vertex in
Wi contains at least one edge that is in relation =~ with ab. If there are
two such edges this path is not the shortest path and by Lemma 3 there
exists an edge e = uv on P that is in relation ~ with ab. Thus P contains
an edge e = uv ~ ab since ux € Wy, and v € Wha.

Notice that P together with C defines two cycles, and at least one of
them is shorter than C. Without loss of generality we may assume that the
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cycle shorter than C contains the edge ab. Since C is a shortest cycle in
G with respect to having two edges in relation ~ with no isometric ladder
between them, we infer that there is an isometric ladder between ab and
e = uv, to prevent a contradiction with minimality of C. Let wz be the
edge on this ladder, forming a square with ab. We claim that w # wu,.
Indeed, if w = v, then d(w,z) = d(a,z) — 1, and since wz ~ zy ~ ab we
have d(w,z) = d(a,z) — 1 = d(z,y) = d(b,y) — 1. Thus the cycle formed
by wz, zy, the shortest w,z-path, and the shortest z,y-path would be
shorter than C. However, wz and zy are also not connected by an isometric
ladder (because such a ladder would imply the existence of isometric ladder
between ab and zy), so we get a contradiction with minimality of C. This
proves that w # u; and by symmetry 2 # v;.

If aw is not in relation ~ with any usu:1+1 consider a path between a and
w that first traverses the path uy,...,ux, then goes along P between wu;
and u, and finally traverses one side (in W,;) of the isometric uv, wz-ladder.
By Theorem 1 (4i:) there exists an edge on this path that is in relation ~
with aw. This edge is not on the uv, wz-ladder since there would be two
edges in relation = on a shortest a, u-path contrary to Lemma 4 and must
thus lie on the P.

Suppose now that aw is in relation ~ with some edge on C between
uwg and ux. Suppose aw = wgtp+1. If aw ~ wugueyq, then we infer that

d(w, us41) = d(a, us41) — 1, hence
d(w,z) = d(a,z) - 1.
Since wz ~ ab ~ Ty we get
d(w,z) =d(a,z) — 1 =d(z,y) =d(b,y) -1

which leads to the same contradiction with minimality as before (namely,
wz ~ zy and the distance between wz and zy is smaller than n, yet there is
no isometric ladder between them, because the ladder obtained from such
an isometric ladder by adding ab would be an isometric ladder between ab
and zy). Thus aw ~ uguey1 and suppose that there exists a clique with
edges e and f such that aw ~ e and f ~ wusu;yy. By Theorem 1 (i) one
of the endvertices of f is closer to a than the other, since v, is closer to
a than u;41. If e and f have no vertex in common we deduce by Lemma
2 that this endvertex of f is closer to a than both endvertices of e. This
contradicts that a € W,,,y,,,, since by Theorem 1 (ii) a should be closer
to one endvertex of f. Otherwise, if e and f have a vertex in common it
must be by Theorem 1 (4¢) and Lemma 2 closer to a than the remaining
vertices s and t of e and f, respectively. Now consider a s, t-path that is
a subwalk of the walk that starts in s and traverses one side (in W,,) of
the e, wa-ladder to w, proceeds on the side of W,,, in wz, uv-ladder to u,
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returns by P to uy, follows to vertices uk—1,Uk—2,. .., Ut+1, and returns to
t by the uus41, f-ladder on the side of Wy, ,u,. On this path there exists
an edge that is in relation ~ with st. This edge can not be on wz, uv-ladder
which is a subladder of isometric ab, uv-ladder, since there already is aw.
This edge is also clearly not on uoux-path (since there is usu¢41 and thus
must be on the path P.

In each case we have an edge on P in W, that is in relation =~ with aw.
By applying the same reasoning in the subgraph W;, we infer that bz is in
relation &~ with some edge on P in W,,. Since aw =~ bz we derive that two
different edges of P are in relation ~. By Lemma 4, P is not a shortest
path and this case is concluded.

Case 2. P is a shortest path between u; and vy, that is of the same
length as both uk, vm-paths on C, otherwise we have Case 1. Let C, and C;
be the cycles that P creates with C; note that they are of the same length
as C. Since P is a shortest path, all its edges are pairwise not in relation
~ by Lemma 4. Hence, by Theorem 1 (ii) there exists for every edge e
on P exactly one edge on C;\P (respectively C2\P) that is in relation =
with e. Hence all edges of C; (respectively C2) on C between ux and vm
are pairwise not in relation x. Thus they form a shortest uk,vm-path on
C) (respectively Cp). We infer that ux_1ux ~ Umw, where w is a neighbor
of v,, on P, and also ux41ux ~ vmw (if k& = 0 replace ux—; by vo and
if k = n replace ug41 by vn). Since ~C= and ~ is transitive, we have
Uk_1Uk ~ Ug4+1uk Which is clearly a contradiction.

Case 3. P is a shortest path connecting two vertices of C in Wgp (or
Wia). Since the ug, un-path is shortest (as well as vo, vn-path), we infer
that P is of the same length as the path between the corresponding vertices
on C. This observation combined with Case 1 implies that C is isometric.
Note that the cycle C’ (obtained by replacing in C the uj, um-path with P)
is also isometric from the same reason as C. Let wg4; be the neighbor of
uk on P. We infer that edges uxur+1 and ugwi41 are in relation ~ with the
same antipodal edge on C in Wp,. As in Case 2 this yields a contradiction.

We conclude that C is convex, a desired contradiction. m]

3 Some consequences

The equivalence of (i) and (i) in Theorem 5 immediately implies the follow-
ing result in bipartite case, which is a new characterization of almostmedian

graphs.

Corollary 6 A graph G is almostmedian if and only if G is o partial cube
that satisfy the almost-quadrangle property.
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In [6] the semi-triangle property was introduced as follows. A graph G
satisfies the semi-triangle property if for any vertices u,z,y € V(G) where
d(u,z) = d(u,y) = k > 2 such that zy € E(G), there exists a triangle with
vertices a, b, ¢ such that zyd*ab and d(u,a) — 1 = d(u,b) — 1 = d(u,c) < k.
This is a generalization of the triangle property where z =a and y=b. A
graph G is called semi-weakly-modular if it satisfies both semi-quadrangle
and semi-triangle property and weakly modular if it satisfies both triangle
and quadrangle property.

Let Hn(u,v) be a graph obtained from P,0OP,, n > 1, where additional
vertex u is adjacent to both endvertices of one edge of P00 P, where both
endvertices have degree 2 and similarly vertex v to the other such edge in
P,0OP,. Furthermore, with

Ig(u,v) = {w € V(G) | w is on a shortest u,v-path}
we denote the interval between u and v. In [6] the following result was
shown.

Theorem 7 A graph G is quasi-semimedian if and only if

(1) G is semi-weakly-modular,

(1) for every induced Hn(u,v), n > 1, we have Ig(u,v) N Hp(u,v) =
{u,v}, and

(¢43) for edges ab,zy € E(G) : if ab ~ zy then Wy, = Wy,

We can not define the almost-triangle property from the semi-triangle
property in the same manner as in the case of quadrangle properties. This
can easy be seen if we delete vertex v from H,(u,v), n > 2, since this
graph is quasi-almostmedian but the “almost-triangle property” is not sat-
isfied. Thus we define a graph to be almost-weakly-modular if it satisfies
the almost-quadrangle and semi-triangle property. We can now show the
analogue of the above theorem.

Corollary 8 A graph G is quasi-almostmedian if and only if

(%) G is almost-weakly-modular,

(i1) for every induced Hy(u,v), n > 1, we have Ig(u,v) N Hu(u,v) =
{u,v}, and

(i14) for edges ab,zy € E(G) : if ab ~ zy then Wy = Wy,

Proof Let G be quasi-almostmedian. Then G is quasi-semimedian and
(#4) and (4i) follows from Theorem 7, as well as semi-triangle property. The
almost-quadrangle property follows from Theorem 5. Let now (%), (ii), and
(#4%) be fulfilled for a graph G. If G is almost-weakly-modular, then G
is semi-weakly-modular. Thus G is quasi-semimedian by Theorem 7, and
from (i) and Theorem 5 we yield the desired result. O
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At the end of this paper we state two new characterizations of quasi-
median graphs. The most appropriate definition for quasi-median graphs
is from (8). Graph G is quasi-median if it is a weakly-modular graph that
does not contain K4 — e or K>3 as an induced subgraph. We recall also a
part of Theorem 4.1 from [6] that a graph G is quasi-median if and only
if G is a quasi-semimedian graph without Q3 and without a house as a
convex subgraphs. With this result the next corollary is clear.

Corollary 9 A connected graph G is quasi-median if and only if G is
quasi-almostmedian and G has neither Q3 nor a house as a conver sub-
graph.

If we combine the last two corollaries we receive the second characteri-
zation of quasi-median graphs.

Corollary 10 A connected graph G is quasi-median if and only if

() G is almost-weakly-modular,

(#) for every induced Hn(u,v), n > 1, we have Ig(u,v) N Hp(u,v) =
{w,v},

(433) for edges ab,zy € E(G) : if ab ~ xy then Wy = Wyy, and

(iv) G has neither Q3 nor a house as a convez subgraph.
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