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Abstract

This paper investigates tilings of a 2 x n rectangle using ver-
tical and horizontal dominos. It is well-known that these tilings
are counted by the Fibonacci numbers. We associate a graph to
each tiling by converting the corners and borders of the dominos to
vertices and edges. We study the combinatorial, probabilistic, and
graph-theoretic properties of the resulting “domino tiling graphs.”
In particular, we prove central limit theorems for naturally occurring
statistics on these graphs. Some of these results are then extended
to more general tiling graphs.

2000 Mathematics Subject Classification: 05A15, 05A16, 05C15, 05C45.

1 Introduction

A domino is a 1 x 2 rectangle in the z, y-plane whose corners are located at
integer coordinates. A horizontal domino has width 2 and height 1, while
a vertical domino has width 1 and height 2. Given a region S in the plane
that is a union of unit squares, a domino tiling of S is a covering of the
squares of S by non-overlapping dominos. Such tiling problems have been
extensively studied in the combinatorial literature [1, 4, 7, 9]. For example,
Kasteleyn [10] and Fisher and Temperley [6] proved the following celebrated
formula for the number of domino tilings of an m x n rectangle:

m n .
mn 2 JT 2 km
4 HH[°°S (2m+1)+"°s (2n+1)]'
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Figure 1: A graph built from a domino tiling.

In the case where m = 2, this formula reduces to the Fibonacci number
Fy41. To prove this directly, let a,, be the number of domino tilings of a 2xn
rectangle. For n > 2, we can build such a tiling either by appending one
new vertical domino to any of the a,—; tilings of a 2 x (n — 1) rectangle,
or by appending two horizontal dominos to any of the a,_2 tilings of a
2 x (n — 2) rectangle. Thus, @, = an-1 + @n—2 for n > 2. The initial
conditions are ag = 1 = a;, and hence ap, = Fr41. '

This. paper considers a graph-theoretic variant of the domino tiling prob-
lem, which was originally proposed by Anant Godbole [8]. We convert a
domino tiling into a graph by putting a vertex at the corner of each domino
and converting the borders of the dominos to edges in the natural way. For
example, Figure 1 displays a graph obtained from a domino tiling of a2 x 9
rectangle.

Suppose we randomly select a domino tiling of a 2 x n rectangle. We
can then ask for information about the distribution of various combinato-
rial statistics on these graphs, such as the number of vertical dominos used,
the number of vertices, the number of edges, the diameter, etc. This article
derives combinatorial generating functions for these quantities, which lead
to formulas for the mean, variance, and moment generating functions of the
associated random variables. We use a result of E. Bender to prove central
limit theorems that establish the asymptotic normality of these distribu-
tions as n tends to infinity. We also study other graph-theoretic properties
of domino tiling graphs such as the chromatic number, the existence of
Hamiltonian cycles, etc. Some of these results are extended to tilings of an
m x n rectangle by m x 1 and 1 x m subrectangles.

2 Domino Graphs: Combinatorial Analysis

For each integer n > 0, let 2, be the set of all graphs arising from domino
tilings of a 2 x n rectangle, and let 2 be the union of all the sets Q.
We regard each €, as a probability space where each graph G € Qn has
equal probability [Q,|~! = 1/Fn41. We will be studying random variables
X, : Q, — N that measure graph-theoretic quantities. To facilitate this



discussion, we first derive ordinary generating functions (OGF’s) for various
statistics defined on all of Q. These will be used later to find the moment
generating functions (MGF’s) of the random variables X,,. Recall that the
OGF of a weight function X : Q — N is the power series

Hx(z)= 3 25O,
Geq

Since we want to keep track of the width of the graphs involved, we usually
calculate the two-variable OGF

Hx(w,z) = Z w™idth(G) , X(G).
Gen

For a detailed discussion of generating functions, see the texts [3, 13].
In addition to the width of the graph, we will study the following statis-
tics on graphs G € Q:

Ny(G) = number of vertical dominos in G;
Ni(G) = number of horizontal dominos in G;
V(G) = the number of vertices in G;
E(G) = the number of edges in G;
Diam(G) = the graph-theoretic diameter of G.

(Recall that, if we write d(v, w) for the shortest path between vertices v and
w of G, we have Diam(G) = max,,,, d(v,w).) For example, the graph G
shown in Figure 1 has width(G) = 9, N,(G) = 3, Nx(G) =6, V(G) =19,
E(G) =27, and Diam(G) = 7.

2.1 Word of a Graph

We can encode graphs G € Q as words in the alphabet {a, b}, where a rep-
resents a vertical domino and b represents two horizontal dominos stacked
atop each other. For example, the graph shown in Figure 1 is encoded by
the word ababba. This encoding defines a bijection between 2 and the set
W = {a, b}* of all strings of a’s and b’s.

This encoding leads to an easy derivation of the generating functions
for width, Ny, and N,. Thinking of the letters a and b as non-commuting
indeterminates, the binomial theorem and geometric series formulas lead
to the formal power series expansion

1
d z=1+a+btaa+ab+ba+tbb+---=Y (a+b)P=—r- .
RS



When we pass from a word z to the corresponding graph G, every letter
a contributes 1 to the width and every letter b contributes 2 to the width.
Therefore, we can obtain the width generating function by replacing a by
w! and b by w?, where w is a new indeterminate:

> v - (3°2)

GeN zeW

1

1—w—w?
a—w,b—w?

Of course, this is just a shift of the generating function for the Fibonacci
numbers. If we want to keep track of N, and Nj, as well as the width, we
need only replace a by vw and b by h?w?, where v,w,h are commuting
indeterminates. Thus,

. 1
width(G)  No(G)pNa(G) — _____ ~
26-;"’ v 1 —vw — h2w?

Evidently, Ny,(G) + Ni(G) = width(G) for any G, so it suffices to keep
track of just one of the variables N, or Np.

2.2 Vertices and Edges

Our next task is the derivation of the generating functions

Hy(z,w) = Z 2V(G)yywidth(G)., He(y,w) = Z yE(G)yyWidth(G),
Gen cen

Recall that a planar graph with v vertices, e edges, and f faces satisfies
Euler’s relation v — e + f = 2. Since the number of faces in any tiling of a
2 x n rectangle is n + 1 (n dominos plus the outside region), we have

E(G) = V(G) + F(G) — 2 = V(G) + width(G) — 1

for any domino tiling graph G. Therefore, Hg(y, w) = y~ Hy (y, wy), so it
suffices to find the OGF Hy(z, w).

Let H; = 3 2V(Glqy"idth(G) where we sum over all graphs G whose
rightmost tile is a vertical domino. Let Hy = 3 zV(G)w*dth(®) summed
over all G with two horizontal dominos at the right end. Finally, write H
for Hy(z,w). We have

H = z%u® + H, + H;, (1)

where the 22 term comes from the unique domino tiling graph of width
zero, which (by convention) has two vertices and one edge.

We can build the graphs counted by H; by either taking a single vertical
domino, or appending a vertical domino to a graph ending in a vertical



domino, or appending a vertical domino to a graph ending in two horizontal
dominos. Therefore,

Hy = 2% + Hy2%w! + Hy2%w!. (2)

The first term arises since the graph for a single vertical domino has 4
vertices and width 1. The extra factor 22w in the second and third terms
comes from the addition of the new vertical domino, which always adds two
new vertices and increases the width by 1.

Similarly, we can build the graphs counted by Hs by either taking two
stacked horizontal dominos, or appending two such horizontal dominos to
a graph ending in a vertical domino, or appending two horizontal dominos
to a graph ending in two horizontal dominos. Reasoning as above leads to
the formula

H, = 2%w? 4+ Hy2*w® + Hy2®w?. 3)
Note that adding two horizontal dominos after a vertical domino creates
a new vertex in the middle of the old right boundary, plus three new ver-
tices on the new right boundary, explaining the 2* factor in the previous
equation.

We can solve the linear equations (2) and (3) over the field Q(z,w),
which yields the following formulas for H; and Hj:

24w — 27w + 283
1 — 22w — 23w2 — 2893 4 253"’
P
1 — 22w — 23w2 — 283 4 253"

H =

Hy, =

Putting these expressions into (1) yields

22 + 252 — 2542
— 22 — 23w2 — 263 4 253"

Hy(z,w) = 3 (4)

2.3 Extension to Long Dominos

For each integer m > 2, define a long horizontal domino to be a rectangle of
width m and height 1, and define a long vertical domino to be a rectangle
of width 1 and height m. A natural extension of the preceding discussion is
the tiling of m x n rectangles (for m fixed) by long dominos of area m. Such
tilings can still be encoded by words in W = {a, b}*, where a represents a
single long vertical domino and b now represents m long horizontal dominos
stacked atop each other. Reasoning just as before, we have the generating



function

Z wWidth(G) No(G)p, Na(G) (Z a:)

GeQtm) €W

a—vw,b—hMmuym
1
1 —vw — hm™’

where (™ is the set of all tiling graphs of an m x n rectangle using long
dominos of area m.

The generating function for width and number of vertices can be found
by solving equations similar to (1), (2), and (3). More precisely, equations
(1) and (2) still hold, while (3) becomes

H2 = 22m+2wm + le2m m +szm+1 m_
Solving, we obtain the generating function

(m)(z w) = Z w"idth(G) ,V(G)
Genim)
z2 + z2m-i'-2.wm - zm+3,wm

1 = 22 — zmHiym 22m+2q;m+1 + zm+3ym+l *
Using Euler’s formula as before, the edge generating function is
g g

H (y,w) =y HY (y, wy).

3 Domino Graphs: Probabilistic Analysis

Now that we have OGF’s for the various combinatorial statistics under
discussion, we are ready to analyze the distributions of the associated ran-
dom variables on the probability spaces €,. The exact distributions of
these random variables are uniquely determined by their moment gener-
ating functions (MGF’s), which are easily derivable from the OGF’s. In
particular, the exact mean, variance, and higher moments of the random
variables can immediately be found by differentiating the MGF’s. We givea
sample of these calculations in the first subsection below. The next subsec-
tion considers the asymptotic behavior of these distributions as n (the width
of the graph) tends to infinity. A central limit theorem due to Bender [2]
will allow us to prove the asymptotic normality of many of the statistics
being studied with a minimum of calculation. A third subsection calculates
the expected diameter of a domino tiling graph. Finally, we consider some
symmetry properties of these graphs.



3.1 Moment Generating Functions

Suppose we are given a sequence of random variables X, : Q, — N on the
finite sample spaces Q,,. The OGF

Hw,z)=) w" ) z%®

n>0 GeN,

records information about all of the random variables X,,. To compute a
quantity involving a particular X, or Q,, we must eventually extract the
coefficient of w™. For example, note that the probability of selecting a
particular graph in Q, is 1/|Q,| = 1/H(w, 1)|yn = 1/F,41. Using this, we
can compute the expectation of X,, in terms of H:

8H (1) 1)[un
EXa= Y X.(G)P{GY) =F:} Y Xa(G) = ?;{;((w 11))'!” .

Gef, Ge,

For example, if X,(@) = V(G) for all n, we can use the OGF (4) to obtain
the following exact expression for the expected number of vertices on ,,:

(V5(7Tn + 15) — 150 — 3)(—a)~" + (V5(7n + 15) + 15n + 3)(—B)~"
10(an+1 — gn+l) )

(Here and below, we set o = (1 + v/5)/2 and 8 = (1 — v/5)/2, so that
Fp = (@™ - f")/v5.) 1t is just as easy to use H to find the moment
generating functions (MGF’s) of the X,,’s. Recall that the MGF of X, is
defined as mx,, () = E[e!*] for real ¢ in some neighborhood of 0. Noting
that H(w,e') = 35, W™ Tgeq, €%n(©), we therefore obtain the formula

H(w,et)|un

mx, (t) = m. (5)

All the moments of X, can now be found by differentiation, using the
well-known formula E[X%] = mgé). (0). Finally, we can compute the vari-
ance Var(X,) = m¥% (0) — m/ (0)? and the standard deviation ox, =

v Var(X,).

We illustrate these MGF calculations with the random variables N, (G).
From 2.1, we have the OGF H(z,w) = (1 — zw — w?)~! for the random
variables X,,. Application of (5) produces

mx, (t) = (1 — we' — wz)_l'w"/Fn-l-l-

Factoring the quadratic polynomial in w, decomposing into partial frac-
tions, and using the geometric series expansion, we obtain the following



exact expression for this MGF:

(et + VEE T — (¢t — VEF A
2“+1\/52‘+4'Fn+1 .

mx, (t)

Taking derivatives, we compute the expected number of vertical dominos
on ), to be

2(a" = ) + (e + )

E[X,] = E[N,]| = 5v5 - Fry1

The second moment E[N?] is

2"(8a™ — 86" + 4n(B" (6 — 8) + a™(6a + 2)) + 5n?(2a™+! — 24711))
25V/5 - Foi1 ’

The variance is then given by Var(N,) = E[NZ] — E[N,]?.

3.2 Asymptotic Analysis

Given a sequence of random variables X, : 2, — N as above, how can
we determine the asymptotic behavior of the X,,’s as n tends to infinity?
It is clear intuitively that the means and variances grow with n, so we
must first normalize the X,,’s. Consider the standardized random variables
Zn = (Xn — E[X4))/+/Var(X,). One might hope that the cdf’s of the
Z,’s converge to the cdf of a standard normal random variable Z when n
goes to infinity. By the Continuity Theorem from probability, this will hold
provided .
: _ 32
Jim mz, (t) =mz(t) = e /

for all ¢ near zero. Furthermore, writing Z, = aX, + b with a = o,
and b = —E[X,]/ox,, we have mz_(t) = e®mx, (at). Thus, in principle,
the calculations in the previous subsection furnish all the data we need to
find the limiting behavior of N,, V, etc. In practice, however, the exact
expressions we derived above are far too messy to allow the calculation of
the required limit, even with the aid of a computer algebra system.

Fortunately, we can invoke the following theorem of Bender [2] to obtain
the desired result using a much simpler computation. Suppose

fw,2) = L22)  $ o (kyura,

h(w,z) e

where: (a) h(w, 2) is a polynomial in w whose coefficients are continuous
functions of z; (b) for some 7, h(r,1) = 0 and all other roots of h(w,1)
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have larger absolute value; (c) g(w, z) is analytic for z close to 1 and w <
7| +¢; and (d) g(r,1) # 0. Define random variables X,, by setting P(X,, =
ko) = cn(ko)/ 3o ca(k) = g(w, 2)|ynzko /g(w,1)|wn. Then the X,’s are
asymptotically normal with mean nyu and variance no?, where

= hz (hz/h‘w)2hww - 2(hz/hw)hwz + hz + hzz
# thy' They

with all partial derivatives being evaluated at (w, z) = (r,1). We abbreviate
the conclusion by writing X, ~ N(nu,no?).

To illustrate the use of this theorem, consider again the random variables
Xn(G) = Ny(G) for G € Q,. We apply the theorem to the OGF f(w,z) =
1/(1— zw —w?), taking g(w, 2) = 1 and h(w, 2) = 1 — zw — w?. Hypotheses
(a) through (d) clearly hold if we choose r = —f (the root of 1 — w — w?
with smallest absolute value). The required partial derivatives are

02=u2+

H

hw = -2 2w, hz = —Ww, hzw = "'1) hww = —2’ hzz =0.

Evaluating at (r,1) and using the formulas above, we obtain

Y ~ .
= 5B =) 1/v/5 = 0.4472;

o2 = 154 BICB=1P(=2) ~AB/(B-1)(-1) +8+0 _ 48
—B(2B-1) 25
So N, ~ N(0.4472n,0.3578n) where n is the width of the graph. We can
apply the same sort of analysis to f(w,2z) = 1/(1 — w — 2%w?) to find the
asymptotic behavior of Nj,. Alternatively, since N, + Nj, = n for all graphs
of width n, we see immediately that N, ~ N(0.5528n,0.3578n).

Now consider X, = V, the number of vertices. Given the OGF (4), we
must take g(w, 2) = 22+ 2%w% - 25w? and h(w, z) = 1- 22w —23w? — 28uwd+
z5w3. Conditions (a) through (d) hold, taking r = —3 again. After some
calculation with partial derivatives, we obtain u = 1 + (2/V/5) ~ 1.8944
and 02 = 46v/5/25 — 4 ~ 0.1143. Thus, V ~ N(1.8944n,0.1143n). Since
E=V+n-1onQ,, we also conclude that E ~ N(2.8944n,0.1143n).

3.3 Diameter

Suppose G € 2, where n > 1. We will show by induction on n that the
diameter of G is given by the formula
Diam(G) = N,(G)+ Nx(G)/2

+ 2 if the word of G begins and ends with b;
1 otherwise.

11



One easily verifies the formula when n = 1 or n = 2. For the induction
step, consider n > 3. Assume that the graph of G is drawn in the first
quadrant of the plane, in the n x 2 rectangle with coordinates (0,0), (0, 2),
(n,0), and (n,2). We first compute maxd(v, w) where v is a vertex of G
on the line z = 0 and w is a vertex of G on the line x = n. A shortest
path from v to w will clearly traverse exactly Ny, (G) + Nx(G)/2 horizontal
edges. Furthermore, it is easy to see that such a path will use zero, one,
or two vertical edges. By choosing v and w to have different y-coordinates,
we can force the path to use at least one vertical edge.

Under what circumstances can we force the path to use two vertical
edges? If the tiling happens to consist entirely of horizontal dominos, and
v and w are opposite corners of the n x 2 rectangle, then clearly we will need
to use two vertical edges. If the tiling uses at least one vertical domino,
but begins and ends with stacked horizontal dominos, we can again force
two vertical edges to be used by choosing v = (0,1) and w = (n,1). For,
a direct horizontal path from v to w along the line y = 1 must be blocked
somewhere in the middle by a vertical domino, which can only be bypassed
by taking two extra vertical steps. In all other cases, only one vertical
edge need be used. Consider, for example, the case where the word of G
begins with a and v = (0,0). If w = (n,0), no vertical edges are needed; if
w = (n,1), we go across to (n,0) and then take one vertical edge up to w;
if w = (n,2), we take one vertical edge up to (0,2) and then go across to
w. The other cases are handled similarly.

So far, we have shown that the maximum value of d(v,w) forvonz =0
and w on z = n is given by the right side of (6). If we consider a pair of
vertices v, w not lying on the extreme edges of the rectangle, then v and w
belong to a subgraph G’ of G that arises from a domino tiling of a rectangle
of width smaller than n. So d(v, w) < Diam(G'). By induction, Diam(G’) =
Ny(G') + Nn(G')/2 + one or two, and this quantity is no greater than the
right side of (6). So, in the defining formula Diam(G) = max,, d(v, w),
the maximum is attained for suitably chosen vertices v, w on the extreme
edges. This completes the proof of (6).

Assuming n > 4, what is the probability that the word of G begins and
ends with b? Erasing the initial and final b’s leaves us with the word of
a domino graph of width n — 4. This process is reversible, so the desired
probability is Fn,_3/Fn+1. Taking expectations in (6), we find that the
expected diameter for domino graphs of width n is

E[Diam] = E[Ny] + E[Nu)/2+ 1+ Faca/Fay1  (n24).

12



3.4 Symmetric Domino Graphs

Recall that Q™ is the set of all graphs obtained from tilings of an n x m
rectangle by long dominos of area m. Define a{™ = |Q$,"‘)|; these numbers
satisfy the generalized Fibonacci recurrence

af™ =al®) +a),
subject to the obvious initial conditions. We will compute the probability
that a graph G € o™ is symmetric about the line £ = n/2. This event
occurs iff the word of G is a palindrome.

There are three general methods for building symmetric graphs. First,
we can concatenate an arbitrary graph in Qf:;'g with its mirror image in the
line z = n/2; clearly, this can only be done when n is even. Second, we can
place one vertical domino centered on the line z = n/2, then add a domino
tiling graph of width (n — 1)/2 to its left, and put the mirror-image graph
to its right. This is only possible when 7 is odd. Third, we can place a
stack of m horizontal dominos centered on the line z = n/2, then add a
domino tiling graph of width (n — m)/2 to the left of the stack, and put
the mirror image of this graph to the right of the stack. Evidently, the
third method is possible iff (n — m)/2 is an integer, so that n and m must
have the same parity. Considering the four possible cases, we conclude that
P(CG € O™ is symmetric) =

( (a,(:;‘% + ag:‘_) m)/2) /o™ if m is even and n is even,;
agrl 1 /2/a$.m) if m is even and n is odd;
af:;'g Jal™ if m is odd and n is even;

{ (agr_)l) 2t agrlm) /2)/a$,m) if m is odd and n is odd.

4 Hamiltonian Cycles

Recall that a Hamiltonian cycle in a graph is a cycle that visits each vertex
exactly once. Hamiltonian paths are defined similarly. It is easy to see that
every graph G € ™ has a Hamiltonian path. Starting at the northwest
corner, we greedily take vertical edges whenever we can, moving to the
right only when we hit the upper or lower boundary of the rectangle. On
the other hand, the question of whether Hamiltonian cycles exist in these
graphs is more subtle. Our goal in this section is to prove the following
result. ~

13



NW NE

SW SE

Figure 2: The grid graph Gr(4,5).

Theorem 1. Let G € Q™ be a domino tiling graph with word w. G has
a Hamiltonian cycle iff m is odd or every mazimal string of consecutive b’s
in the word bwb has odd length.

4.1 Grid Graphs

The first step towards proving Theorem 1 is to analyze grid graphs. For in-
tegers ¢, d > 1, define Gr(c, d) to be the graph with vertex set {1,2,...,¢} x
{1,2,...,d} and edge set

{{(x,y),(l"l'l,y)}I1S$<C,15y3d}u
{=9),(zy+1)}:1<z <1 <y <d}.

For example, Figure 2 displays the graph Gr(4,5). It will be convenient to
label the four corner vertices as follows:

SW=(1,1), NW=(1,d), SE=(c1), NE=(cd).

One easily confirms that Gr(c,d) is bipartite with vertex partition Vy =
{(z,y) : z2+y =0 (mod 2)}, Vi = {(z,y) : 2 +y = 1 (mod 2)}. The
following observation will be the key to understanding Hamiltonian paths
and cycles in grid graphs and domino tiling graphs:

Any path from v € V; to w € V; must have length £=i—3 (mod 2).
(6)

Lemma 2. Fiz integers ¢,d > 1.
(1) Gr(c,d) has a Hamiltonian cycle iff ¢ or d is even.

(2) Gr(c,d) has a Hamiltonian path from NW to SW (resp. from SE to
NE) iff c is odd or d is even.

14



(3) There exist paths P, from NW to NE and P, from SE to SW in
Gr(c,d) such that each vertex of Gr(c,d) belongs to ezactly one of
these paths iff ¢ or d is even.

Proof. (1) It is easy to find Hamiltonian cycles in G if c or d is even, by
following the patterns indicated in Figure 3. For the converse, assume ¢ and
d are both odd. A Hamiltonian cycle in Gr(c, d) would have cd vertices and
cd edges. This cycle would be a closed path from NW € V; to NW € V,
of odd length, in violation of observation (6).

(2) By symmetry, it suffices to consider the case of paths from NW to
SW. Figure 4 illustrates how such paths may be constructed when c is odd
or d is even. Conversely, assume c is even and d is odd. The vertices NW
and SW both belong to V; in this case, so every path from NW to SW must
have even length. But, for this path to visit every vertex once, the length
must be cd — 1, which is odd. So no Hamiltonian path from NW to SW
exists.

(3) Figure 5 shows how to construct P, and P, in the cases where ¢ is
even or d is even. Conversely, assume ¢ and d are both odd. Let ¢;,¢; be
the number of edges in paths P, and P;. Since all four corners lie in Vo,
£, and £; are both even, by (6). On the other hand, the requirement that
each vertex appear in exactly one of the paths implies that ¢, + £3 = cd —2
is odd, which is a contradiction. a

4.2 Simplifying Domino Graphs

Henceforth, we consider a fixed domino graph G € Q{™ with word w.
Suppose that w contains two consecutive a’s. The corresponding portion
of the graph G is shown in Figure 6. Since the removal of edges uv and
zy disconnects the graph, it is clear that a Hamiltonian cycle in G (if one
exists) must use both of these edges. Similarly, the cycle must use vw and
yz. Therefore, the edge vy cannot be used in the cycle. If we delete this
edge and erase the vertices v and y (replacing the edges uv, vw with uw
and replacing zy, yz with zz), then the new graph has a Hamiltonian cycle
iff the old graph does. The new graph is the domino tiling graph whose
word w’ is obtained from w by deleting one of the consecutive a’s. Note
also that the condition in Theorem 1 holds for w iff it holds for w’. By
iterating, we see that it suffices to prove the theorem in the case where w
never has two consecutive a’s.

Next, consider a domino tiling graph (using m-dominos) whose word is
b*. This graph consists of a k x m array of m x 1 dominos. Shrinking the
horizontal dimension of each domino from m to 1, we see that this graph is
isomorphic to Gr(k+1,m+1). In particular, by part (1) of the lemma, this
graph has a Hamiltonian cycle iff m is odd or k is odd. Thus, the theorem

15
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Case 1.1: ceven

Case 1.2: d even

Figure 3: Building Hamiltonian cycles in a grid.

=

Case 2.1: codd
Case 2.2: d even

Figure 4: Building Hamiltonian paths in a grid.

I

SW
Case 3.1: ceven SW
Case 3.2: d even

Figure 5: Building P; and P.
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Nw, NE NW,  N| NE,

SW,  SE, SW, SE~5w, SE,

Figure 7: Viewing a domino graph as a series of linked grids.

is true when the word of G contains no a.

In the remaining cases, by shrinking horizontal dominos as above, we
can think of G as a concatenation of grid graphs linked by “bridge edges”
coming from the vertical dominos, as shown in Figure 7. If the word of G
is w=b""ab™ab"? - -- ab™, then the grid graphs in the figure (from left to
right) are copies of

Gr(no+1,m+1),Gr(n1 +1,m+1),...,Gr(ng +1,m + 1).

Here the leftmost grid graph is absent if ng = 0, and the rightmost grid
graph is absent if ny = 0. Thus there are four cases to consider. We prove
the theorem in each of these cases in the next subsection.

4.3 Case Analysis

In all four cases, notice that a Hamiltonian cycle (if it exists) must use all
of the “bridge edges” shown as arcs in Figure 7. More precisely, suppose we
traverse the cycle starting with the bridge edge from NEy to NW,. What
is the next bridge edge we visit? It cannot be the edge from SW; to SEj,
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lest we never use the bridge edges leading to the right side of the graph.
It cannot be the edge from SE; to SW, since there would be no way to
get back from NE, to SW; on the “return trip” without crossing the path
from NW; to SE;. Thus, the next bridge edge must be NE; to NW,.
Proceeding similarly, we see that the bridge edges must be visited in the
following order:

NEo, NWy; NE,,NWy; ...; NE,_1, NW;
SWi,SEi_1; ...; SW,, SEy; SWy, SEy.

For each grid graph between two adjacent vertical dominos, we must there-
fore find two paths P; and P; as in part (3) of the lemma. For the leftmost
grid (if it is present), we must find a Hamiltonian path from SEp to NEy to
complete the Hamiltonian cycle. For the rightmost grid (if it is present), we
must find a Hamiltonian path from NW; to SWi. Part (2) of the lemma
tells us when such paths exist. It is now easy to analyze the four cases.
Write the word of G as w = b™0ab™ab™ .. ab™ as above, where k > 0,
ng,nx = 0 and ny,...,nk—1 > 0.

(1) Suppose ng = ny = 0. Part (3) of the lemma shows that the required
Hamiltonian cycle exists iff m is odd or n; isodd forall1 <i < k—1.
The second alternative holds iff every run of b’s in bwb has odd length.

(2) Suppose ng > 0 and n; = 0. By parts (2) and (3) of the lemma,
the required cycle exists iff m is odd, or ng is even and n; is odd for
1 < i < k—1. The second alternative holds iff every run of b’s in bwb
has odd length.

(3) Suppose ng = 0 and n, > 0. The cycle exists iff m is odd, or ny is
even and n; is odd for 1 < i < k — 1, which holds iff every run of b’s
in bwb has odd length.

(4) Suppose ng,nx > 0. The cycle exists iff m is odd, or ng is even and
nk is even and n; is odd for 1 < i < k — 1, which holds iff every run
of b’s in bwb has odd length.

5 Coloring Properties

This section determines the chromatic number, the chromatic index, and
the chromatic total of domino tiling graphs in Q{™.
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subword baa word begins ab...

Figure 8: Odd cycles in domino graphs.

5.1 Chromatic Number

A graph G is k-colorable iff there exists a labelling of the vertices of G
using k available colors such that any two adjacent vertices are assigned
different colors. The chromatic number of a graph G, denoted x(G), is the
minimum & such that G is k-colorable. It is easy to see that x(G) = 2 iff
G is a bipartite graph with at least one edge.

Theorem 3. Let G € Q5™ be a graph with word w. Then G is bipartite
(so x(G) = 2) iff m is odd, or w = a* for some k, or w = b for some j,
or the word awa does not contain two adjacent a’s. Otherwise, x(G) = 3.

Proof. If w = a* or w = b7, then G is isomorphic to a grid graph, which
(as observed earlier) is bipartite. If awa has no two adjacent a’s, then G
is isomorphic to a subgraph of a grid graph, so is bipartite. (To see this,
shrink the horizontal dimensions of all horizontal dominos from length m
to length 1, and note that all edges in the resulting graph have length 1.)
If m is odd, color the vertices of G by coloring (z,y) red if = + y is even,
and coloring (z,y) blue if z +y is odd. Since all edge lengths in G are odd,
each edge connects a blue vertex to a red vertex. Thus x(G) = 2 in all
these cases.

Conversely, suppose m is even, w contains both a’s and b’s, and awa
contains two adjacent a’s. If w itself contains two adjacent a’s, w must
have a subword of the form baa or aab. In this case, we can get an odd-
length cycle by traversing the edges on the perimeter of the vertical domino
associated to the middle a of this subword (see Figure 8). Bipartite graphs
have no odd cycles, so x(G) > 2 in this case. Similarly, if w begins with
ab or ends with ba, traversing the perimeter of the initial or final vertical
domino will also yield an odd cycle (see Figure 8).

Take a graph G as in the preceding paragraph. We show that G is 3-
colorable, thereby proving that x(G) = 3. We define the color of a vertex
of G by induction on the z-coordinate of the vertex. Our coloring will have
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the property that all vertices on a given vertical line z = c will be colored
with one of two colors (which may depend on c). For the base step, label
the vertices on the line = 0 with two alternating colors. For the induction
step, assume ¢ > 0 and all vertices to the left of x = ¢ have already been
colored. Now consider varjous cases.

o The line z = ¢ has only two vertices, located at (c,0) and (c,m). If
(¢~1,0) and (¢ -1, m) have the same color, use the two other colors
to color (c,0) and (c,m). Otherwise, color (c,0) the same color as
(¢ —1,m), and color (¢, m) the same color as (¢ - 1,0).

o The line £ = c has m+1 vertices, all of which are joined by horizontal
edges to vertices further left. By induction, these vertices (on the line
z = ¢ — m) alternate between two colors as we scan from bottom to
top. By alternating the same two colors in the other order along the
line = ¢, we can extend the proper coloring to this line.

e The line £ = ¢ has m + 1 vertices, but only the top and bottom
vertex are joined to vertices further left. If the vertices (¢ — 1,0)
and (¢ —1,m) have the same color, use the two other colors in an
alternating pattern to color the vertices on z = ¢. Otherwise, if
(c—1,0) and (c—1,m) have two different colors, use the third color for
(¢,0), and then alternate between this color and the color of (c—1,0)
as you scan up the line z =c.

O

5.2 Chromatic Index

The chromatic index of a graph G, denoted x1(G), is the minimum number
of colors required to label the edges of the graph so that no vertex is incident
to two edges of the same color. Vizing’s Theorem [11] states that the
chromatic number of a simple graph G with maximum degree A is either
Aor A+1. A graph G is called class 1 iff x1(G) = A(G), and class 2
otherwise. Erdés and Wilson [5] showed that, asymptotically, almost all
graphs on n vertices are class 1.

Theorem 4. All graphs G € Q5™ are class 1.

Proof. Fix G € Q,(,m), and let A be the maximum degree of any vertex in
G. Obviously A < x1(G), so it suffices to exhibit a proper edge-coloring of
G using only A colors. We consider three cases.

e Case 1: A = 4. Figure 9 indicates how to color the edges of G using
4 colors. For convenience, horizontal dominos have been shrunk to
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unit squares in the figure. Given this shrinking convention, we color
horizontal edges between the lines = = 2k and z = 2k + 1 red, and
color horizontal edges between the lines z = 2k +1 and z = 2k + 2
blue, for all k. Use a similar coloring rule for vertical edges of unit
length, using two new colors (say yellow and green). Any “long”
vertical edge can be colored green. It is clear from the figure that this
edge-coloring is proper.

¢ Case 2: A =3 and m is odd. Figure 10 shows how to find a proper
edge-coloring of G using 3 colors. Color all horizontal edges red and
blue, as in Case 1. We must use the third color (say green) for all long
vertical edges. The remaining vertical edges all form paths of length
m from y = 0 to y = m. Since the maximum degree is not 4, each such
path has a vertical domino to its immediate left or right. Therefore,
the horizontal edges touching this path in the region 1 < y < m—1 (if
any) all have the same color. See Figure 10. If this color is red, say,
then we can label the edges of the path green, blue, green, blue, ...,
green from bottom to top. If this color is blue, we alternate between
green and red instead. In any case, every such path can be colored
without needing a fourth color.

e Case 3: A =3 and m is even. Figure 11 shows how to find a proper
edge-coloring of G using 3 colors. The pattern is similar to the one in
Case 2, except we modify the colors for horizontal and vertical edges
in the region 1 < y < 2 as shown in the figure, so that the vertical
paths can still begin and end with green edges.

]

5.3 Chromatic Total

The chromatic total of a graph G, denoted x1(G), is the minimum number
of colors required to label the vertices and edges of G so that: (a) no two
adjacent vertices have the same color; (b) no two edges touching a given
vertex have the same color; and (c) an edge does not have the same color
as either of its endpoints. One sees immediately that x7(G) > A(G) + 1,
where A(G) is the maximum degree of G. Vizing’s total coloring conjecture
states that A(G) + 1 < x7(G) < A(G) + 2 for every graph G.

Theorem 5. For allm,n > 1 and all graphs G € Q™ x7(G) = A(G)+1.

The proof of this result is rather long, so we divide it into steps.
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Figure 11: Edge-coloring a graph when A = 3 and m is even.

Step 1: Coloring Grids

We first prove that for all grid graphs G with A(G) # 1, x7(G) = A(G)+1.
(The exceptional case consists of a graph with one edge, in which A(G) =1
and x7(G) = 3.) This result follows by inspection of the coloring pattern
illustrated in Figure 12, which shows how to totally color grid graphs of
maximum degree 4 using 5 colors. By restricting to the subgraph consisting
of the top two rows of vertices (resp. the top row), one obtains total
colorings of grid graphs of maximum degree 3 (resp. 2) using 4 (resp.
3) colors.

Now take a domino graph G € Q™. We will produce a total coloring
of G using five colors. Modify G by shrinking horizontal edges of length
m to length 1 and deleting any vertical edges of length m (but not their
endpoints). The resulting graph G’ is a subgraph of a grid graph, and can
therefore be totally colored with 5 colors. Observe that the two colors used
for vertical edges in Figure 12 (denoted by x’s and —’s) are never used to
color vertices or horizontal edges. Therefore, we can safely use either of
these colors to color the long vertical edges in G that are not present in G'.
This produces a total coloring of G using five colors.

Since x7(G) > A(G) + 1, the proof is complete for domino graphs of
maximum degree 4. We are also done when m = 1 or when the graph
uses only horizontal or only vertical dominos, since domino graphs are grid
graphs in those cases. For the rest of the proof, assume m > 1, A(G) = 3,
and both horizontal and vertical dominos are used in the graph. We need to
find a total coloring of G using only four colors. This coloring will be built
from special colorings of certain subgraphs of G, which we now analyze.
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Figure 12: A total coloring of a grid graph.

Step 2: Coloring Ladders

A grid graph Gr(2,k) will be called a vertical ladder with k rungs (the
horizontal edges). The graphs obtained by omitting the top rung, the
bottom rung, or both will also be called ladders. Grid graphs Gr(k,2) will
be called sideways ladders.

We need to understand how a partial coloring of the top of a vertical
ladder can be extended, one rung at a time, further down the ladder. Con-
sider the situation in Figure 13, in which the two vertices and three edges
shown in the left picture have already been colored in such a way that the
left vertex has the same color as the top-right edge. (Here and below, the
letters A, B, C, D are variables standing for four distinct colors.) We claim
there are exactly two ways to extend this coloring down to the next rung,
as shown in the right two pictures of the figure. Furthermore, the two ex-
tensions retain the property that the left vertex of the bottom rung has
the same color as the edge just above the right vertex of that rung. Thus,
the extension process can be iterated. It is clear that the two pictured ex-
tensions are valid colorings possessing the indicated property. To see that
there are no other extensions, first observe that the colors used for the two
new vertical edges are forced by the definition of the total coloring and the
fact that only four colors are available. Next, the lower-left vertex can only
be colored D or B. If it is colored D, then the remaining edge and vertex
must be colored A and B in some order, and either order leads to a valid
coloring. If the lower-left vertex is colored B instead, then the lower-right



Figure 13: Building a coloring rung by rung.

vertex must be colored A, leaving no color for the edge between these two
vertices. This completes the proof of the claim. The same argument shows
that there are two ways to color the top rung of the ladder (located just
above the part of the ladder shown in the figure), and in both colorings the
top-right vertex will be colored D. Thus, the pattern of equal colors indi-
cated by the diagonal dotted lines in the figure persists all the way down
the ladder, provided that it is present in the first rung from the top. Of
course, we can reflect and rotate this coloring pattern to obtain other valid
colorings of vertical and sideways ladders.

Step 3: Coloring Horizontal Domino Stacks

We know that our graph G contains stacks of horizontal dominos, no two
of which are consecutive (lest A(G) = 4). Here we find some total colorings
of each individual stack of horizontal dominos that have certain additional
properties. Consider a vertical ladder Gr(2,m + 1), which represents a
stack of m horizontal dominos. Given a total coloring of this ladder with
4 colors, and given a corner vertex v of the ladder (i.e., one of the vertices
NW, SW, NE, or SE), let c¢(v) be the color assigned to vertex v, and let
S(v) be the set of two distinct colors assigned to the edges leading to v.
Note that ¢(v) € S(v), and there is a unique color z(v) not in {c(v)}US(v).
We say that the given total coloring has property L iff ¢(SW) € S(NW)
and ¢c(NW) ¢ S(SW). We say that the given total coloring has property R
iff ¢(SE) = z(NE) and ¢(NE) € S(SE).

We claim that for all m > 2, there exist total colorings of Gr(2,m + 1)
with property L and property R. Figure 14 exhibits such colorings using
colors 1, 2, 3, and 4 for m = 5,6,7. (For ease of reading, vertices are
indicated by large circles and edges are not drawn.) To obtain such colorings
for other choices of m > 2, start with the graph in the figure whose number
of dominos is congruent to m mod 3, and either omit or duplicate the
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Figure 14: Total colorings with properties L and R.

portion of the graph enclosed in a dotted box to obtain the desired number
of rungs. For every m, other valid total colorings with the same properties
can be obtained by permuting the four colors in any fashion.

Step 4: Linking Horizontal Stacks

Our given domino tiling graph has maximum degree 3, which implies that
there are never two adjacent stacks of m horizontal dominos in the graph.
Instead, each such stack is linked to the next stack either by a two-edge
“bridge” formed by a single vertical domino, or a sideways ladder formed
by multiple vertical dominos. Furthermore, there may be a sideways ladder
(with right rung missing) linked on the left side of the leftmost horizontal
stack. Similarly, there may be a sideways ladder (with left rung missing)
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linked on the right side of the rightmost stack. We show that all of these
possible linkages between and appendages to the horizontal stacks can be
colored with four colors without violating the total coloring property. The
key is to always color the horizontal stacks using colorings with properties
L and R.

We start with the leftmost horizontal stack in G. Arbitrarily color it
using a total coloring with 4 colors that has properties L and R. If thereis a
sideways ladder to the left of this stack, begin to color the ladder following
the pattern shown in panel 1 of Figure 15. Here we use the fact that
the stack coloring has property L. Then use step 2 (adapted to sideways
ladders) to extend this coloring to the left end of G.

Returning to the leftmost horizontal stack, we now extend the total
coloring to the right, one step at a time. Suppose we have just colored a
given horizontal stack, which is adjoined on the right by a sideways ladder
(with left rung missing) formed by a succession of at least two vertical
dominos (or one vertical domino at the far right end). We can begin to
color this sideways ladder as shown in panel 2 of Figure 15, thanks to
property R. Then use step 2 to extend this coloring to the right end of the
sideways ladder. Here there are two cases. If the right end of the ladder
is the right end of the whole graph, we are done. If the right end of the
ladder links to a new horizontal stack, then panel 3 of Figure 15 shows that
we can find a total coloring of this stack (with labels suitably permuted)
that has properties L and R. Thus, the inductive coloring construction can
continue.

The final possibility is that a horizontal stack is linked immediately
to another horizontal stack by a two-edge “bridge” arising from a single
intervening vertical domino. In this case, panel 4 of Figure 15 shows how
the coloring of the first stack (which has property R on the right) can be
extended to a coloring of the next stack (with property L on the left and
R on the right) with a suitable permutation of the colors. This completes
the proof of the theorem.
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