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Abstract. The noncrossing matchings with each of their blocks contain-
ing a given element are introduced and studied. The enumeration of these
matchings is described through a polynomial of several variables which is
proved to satisfy a recursive formula. Results of the enumeration of non-
crossing matchings with fixed points are connected with Catalan numbers.
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1 Introduction

A partition m = By /By/--- / By, of a totally ordered set X is called non-
crossing partition (n.c.p.) iff there do not exist four elementsa < b < c<d
of X such that a,c € B;, b,d € Bj and i # j. A (complete) matching on
a totally ordered set X (|X| = 2n) is a partition of X of type (2,2,...,2).
A matching 7 = B,/B3/ ... /B, of a totally ordered set X is called non-
crossing matching (n.c.m.) if and only if it is a n.c.p. of X. If | X| = 2n,
since there is an obvious order preserving bijection between X and the set
[2n] = {1,2,...,2n}, we can equivalently deal with [2n] instead of X. In
this case we will use the notation NCMs,,,.

Many authors have worked on n.c.m. (see for example Lickorish [?],
Simion [?] and Chen [?]).

It is well known that the number of matchings on [2n] with no crossings
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(i. e. INCMay,|) is given by the n-th Catalan number

1 [(2n
Cum e ( n ) .

See [?] (Exercise 6.19) for many combinatorial interpretations of Catalan
numbers, where item (o) refers to noncrossing matchings.

In this paper we introduce a particular class of n.c.m. More precisely,
we say that a n.c.in. # € NCM(X) is a noncrossing matching with fixed
points the elements of A € X (JA] = n), if and only if every block of w
contains exactly one element of A. The set of all these n.c.m. is denoted by
NCM(X, A). Again if we deal with [2n) instead of X we use the notation
NCMa,(A).

A. Sapounakis and P. Tsikouras have worked in the field of noncrossing
partitions with fixed points([?],[?]). Some results of this paper are related
to their works, so we must thank them for their creative study.

We will see that the cardinal number |[NCMa,(A)| is determined by the
relevant positions of the elements of A. For this reason, we also consider the
equivalence relation of the translation in the set of all subsets containing n
elements of [2n] , defined as follows:

A, ~ A if and only if there exists ¢ € [2n] with 4; = (A2 + ¢) (mod 2n).

Furthermore, for A C [2n] (|A| = n) we define a finite sequence Ay = (z;)
of length n, where z;, i € [n — 1] is the number of elements of [2r]\A lying
between the i¢th and the (¢ + 1)st element of A and z,, is the number of
elements of [2n] that are either smaller or greater than every element of A.

It is easy to prove that A; ~ Aj if and only if each one of As,, A4, isa
cyclic permutation of the other.

Now let |A;| = |A2| = n, A; =~ Az and ¢ € [2n]; then A; = (A2 +¢)
(mod 2n). It is obvious that the mapping 7 : NCMy, (A1) = NCMjn(A2)
with 7(7) = {(B + ¢) (mod 2n); B € =} is a bijection, so that we obtain
the following resuit:

Proposition 1.1 If A;, A2 C [2n] (|Ai| = |A2| = n) with A} ~ Ay then
|INCMazn(A1)| = INCM2n(A2)]-

For every n € N* and for every sequence A4 = (z;),% € [n] in N with
n
3" z; = n there exists at least one set A C [2n] (|A| = n) with A4 = A.
i=1
Indeed, for the set A = {t1,%a,...,t,} With ¢y =1 and t;41 =& + 2 + 1,
i € [n — 1] we have that A4 = A.

So, we can define a function g, of n variables as follows:

gn(Z1,%2,...,2Zn) = [INCMa,(A4)|
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where A is any subset containing n elements of [2n], with A4 = (z1,z2,.. .,
Tn).
From the previous proposition it is clear that g, is well defined and that

gn(xl, T2y,
Zn) = gn(¥1,Y2,...,Yn), Whenever the sequence (y1,2,...,¥s) O its re-
verse is a cyclic permutation of (z1,z2,...,ys).

For the evaluation of the formula of the function g,, which counts
|NC M3, (A)|, it is more convenient to express the problem in the following
equivalent form:

Let X = [n]UY, where |[Y| = n and the elements of Y are distributed
in the intervals (¢,i + 1), i € [n — 1] and (n, +00), so that |[X N ({,i + 1)| =
z;, Vi € [n—1] and | X N(n, +00)| = z,. We want to determine the number
gn(Z1,22,...,2Z0) = INCM(X, [n])|.

In Section 2 we give a recursive formula for g,,, which is used to study
the explicit formula of g,,.

In Section 3 we prove that g,(z1,z2,...,2%,0,0,...,0) where z; # 0 for

t—1
every i € [k], can be expressed in the form 27C;, 41C;, 41 [] Ci; 4.
) 23

2 The recursive formula of g,

Firstly, notice that gn(n,0,...,0) = 1. Suppose that g,(z1,Z2,...,Zn) =

n
0, if 3 z; #n. We give a recursive formula for g,, n > 2.

=1
Theorem 2.1 For every sequence (z1,Z2,...,Zy) of natural numbers, with
n
n>2,z1>1 and Y z; =n the following relation holds:
i=1
9n(T1,T2,- .+, Tn) = Gn-1(T2, T3, ..., Zn) + gn-1(21 + 22 — 1, 73,...,Z0)+
n-2

Z gt(x2: x3,..., 3t+l)gn—t—1(xl + ey — lamt+3s ey xn)‘
=1

Proof. Let r = maz((1,2) N X]. We partition the set NCM (X, [n]) into
the sets T3, ¢ € [n], so that each partition in T; contains r and ¢ in the same
block. Obviously,

IT1| = gn-1(z2, 3, . .- ,Zn) and |T3| =gn-1(z1 + 22 — 1, 73,.. -sn). (1)
For k > 3, we have that

[Tk| = gr—2(z2, T3, ..., Tk—1)gn—k+1(Z1 + Zk — 1, Tp41,...,Zn).  (2)
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k=1

Indeed, if 3 z; = k — 2, to each m € T} correspond two uniquely deter-
=2

mined matchings 71,72 where 7, is a n.cm. of [2,k) N X with fixed points

2,3,...,k—1and my is a n.cm. of ([1,7) U (k,+00)) N X with fixed points

1,k+1,...,n. Thus,

|Tk| = gr—2(22, 3, , Th1)Gn—k+1(Z1 + Tk = 1, Thp1, -+ , Tn)-
k-1
If 3 z; # k—2, then |T}| = 0 and gi-2(z2,23,...,Zk—1) = 0, so that we
1=
obtain again that
| Tk = gk-2(x2,Z3,. . ., The1)Gn—-k+1(Z1 + Tk — 1, Tk41,- . -, Tn)-

From (1), (2) we obtain the required result. a
Note. Theorem 2.1 (and its proof) for g, is closely related to Proposition

2.2 (and its proof) for f, in [?].
Corollary 2.2 For every n € N*, we have that
gn(l,l,-- .,1) = Cn.

Proof. Set go =1 and g, = gn(1,1,...,1). Obviously, g; = 1 and from
Theorem 2.1 we obtain

n—1 n
Gnt1=Gn+Gn+ Y GeGn-t =D GiGn-t.
t=1 t=0
Hence, g, satisfies the well-known Segner formula, i.e. g, = Cy. O

Note. It is easy to show that NCMas, = NCM([2n], [n]).
Since [INCM([2n], [n])| = gn(1,1,...,1) and |[NCMp,| = Cr, we obtain
a combinatorial proof of Corollary 2.2.

3 The expression of g,(z1,2s,...,2k,0,...,0)

Set g,";‘(arl,:cg,... yTk) = gn(Z1,%2, ..., 2k, 0,...,0), where z; > 1,Vz; € [k]

and ) z; =n.
i=1

Lemma 3.1 For every positive integers n,k with k < n, we have
1) gn(z1,22,...,2k) = gp 41—z, (1, T2y - - ., k).
2) gn(z1,%2,. . 1 ZTk) = Gny2—z,~z, (1, T25 -+ Th=1,1).

f
i
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Proof. If z; = 1, both results are obviously true.

1) For z > 2, it follows that for every m € NCM(X, [n]), the number
& for which {1,£} € = is the least element of (1,2) N X since, otherwise,
I(1,€) N [n]] < |(1,€)NY], so that the elements of these two sets cannot be
matched.

If we delete the pair {1, £} of 7, we obtain an.c.m. 7’ € NCM(X\{£}, [n—
1]); thus we obtain a bijection between NCM (X, [n]) and NCM (X \{¢}, [n—
1]) which gives g}(z1,z2,...,2k) = gi_1(z1 — 1,22,...,2).

From the above equality it follows recursively that

g:;(zl: Z2y..., xk) = g:,+1_zl (1, T2yevey xk).

2) We apply 1) twice, using also the fact that (1, z,. .., 21, 2k, 0,...,0)
is a cyclic permutation of the reverse of (zk,Zk—1,...,22,1,0,...,0); so,
we have

9 (21, %25, Tk) = Gnpy—z, (L T2s - ., Tk)
= Ont1-z, (Thy Th=1, . .-, T2, 1)
= gni2—zi—zp (1, zk—1,-..,22,1)
=g;+2_¢l_xk(1,$2,...,.’L‘k_l,l). O

Corollary 3.2 For every n € N*,
9n+2(2,1,...,1,2,0,0) = gpn1(2,1,...,1,1,0) = ¢,(1,1,...,1,1) = C,.

k
Lemma 3.3 Ifz; >0, Vi€ [k], Y z; =n and 35 € [k] such that z; > 2,
i=1
then g (z1,%2,...,Tj—1,%j, Tjt1, .. -, Tk)

= g;_,j+2(a:1,a:2,.. . ,xj_1,2,z'_.,-+1,. ..,:Zk).

Proof. In view of Lemma 3.1 we can suppose that j > 2 and z; = 1. In
this case, it follows from Theorem 2.1 that for z; > 2

gn(l,z2,...,25,...,2x)
=gn(1)$2’~”1xja'“szn)

j=2
=2gn_1(2,. .., Tjy...,Zn) + 21 ge(T2, .. s Te41)gn—t-1(Te4+2,. - -, Tn)- (3)
t=

By the induction hypothesis, relation (3) gives
g:;(]-)xZ’ creaTgyeney xk) = 2gn—zj+1(z2a rery 2) see smn+2—a:,-)

i—2
+ 21 ge(z2,. .., Ze41 )yn—:+1—:c,~ (Te425 -0y $n+2-a:j)
t=

= gn—-zj+2(1; T2y 2y00n, xn+2—z;)
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=g;_,,j+2(l,a:2,...,2,...,:ck). O
Now it is enough to deal with g} (1,z2,...,2k-1,1), where z; = 1 or 2,

Vie[k—-1]/{1} and zk:m.- =n.
i=1

k
Lemma 3.4 Ifz; = 10r 2, Vi€ [k], Xz =n and 3j € [k — 1] such
i=1
that ; = zj41 = 2, then
g;(a:l, RS 7 PRI ES PR ,.’L'k) = 29;_2(581, e ,:Dj+1, cee ,a:k).
Proof. If j =1,

gn(2,2,z3,.. : k) = gn_1(3,%3,...,%k) + gp_2(3,23,...,Zk)
g;_2(2, T3y.eny .’L‘k) + 92_2(2, T3y..., xk)
= 2gr_o(2,z3,...,Zk)-

If j > 1, for every 7 € NCM(X, [n]), the number £ for which {j,£} €«
is the greater element of (j -1, j) NX or the least element of (5,5 +1)NX,
we have gn(z1,...,2,2,%42,...,2%,0,...,0)

= 2gn—l(zla'°')37wj+2) axky 0)

Then we have:

gn(T1y. oy T, Tjg1y .- Tk)
g,,(ml,...,2,2,2_.,-.,.2,...,:ck,O,...,O)
= 2gn-1(z1,...,3,Zj42,.. ., %k, 0,...,0)
= 2g,,_2(x1,...,2,a:j+2,...,a:k,O,...,O)
= 2g;_2(z1, IEREE J XS P .,:tk). O

Now we deal with the expression of

* -
In(Z11, 125 -+ T1iy 1 2, T21, T225 + -+ 3 82095 2, 315 - - - » 2, Tt , Te2, - - - 5 Ttiy)

where z,, = 1, for every u € [t], v € [i,] and n = E Z Ty + 2( — 1).
.—-.1 .—-
We denote it by ' ) ) ) =
gn(1,2,1%2,2,1%,...,2,1%).
Lemma 3.5 For everyn >4 and i; 2 1, j € [t], we have that

t—1
g:l(lil 2, 1i2: 2, 1‘.31 cer 2, li') = Ci1+ICi¢+1 H C'ij+2-
j=2
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Proof. For n = 4, we have i; = i3 = 1 and in this case the result holds .

since gX(1,2,1) =4 = CoCs.

Suppose that the result holds for every k > n— 1. Then, using equation

(3) we have
ga(1%,2,17,2,1%,...,2,1%)

“ 91—-2
=2¢; 1 (1771,2,1%,2,1%,...,2,1%) + )~ g;(1°)gh_;_, (117172, 2,
s=1
12,2,1%,...,2,1%) + g _, (1" gn_;_; (2,1%2,2,1%, ... 2,1%)
71—2

=20;_1(177,2,1%,2,1%,...,2,1%) + 3~ gi(1°)gn_;_,(17 71722,

s=1

11'2 2, 1:’3 02, 1«':)+g:l_l(lia—l)g;_2_il(11+i2 2’1i3’_“’2’ li‘)

i1-2 t—1
= 2Ct1 C'1c+1 H Clj+2 + Z (C 011—8011'0-1 H +2)
j=2 s=1 j=2
t—1
+Ci-1Ci 41 H Ci+2
i=2
i t-1
= (D CsCi,=s)Cir1 [[ Ciye
8=0 i=2
i
= Ciy41Cic+1 [ ] Cijra-
j=2

0

Now we can deal with the general case gn(z1,22,...,%k,0,...,0), where

k
z; >0,Vie[k]and Y z; = n.
=1
Following Lemma 3.1, g,(z1, z2,...,2*,0,...,0) = gi(z1,Z2,. - ., Tk)
= Gn42-zy -z (L T2y 0y Tp, 1),
We can express gn o, . (1,22,...,2k-1,1) as

g:1+2—:|:1—zk(m11) <+ o3 T2, Y11, - - - Y155 T21, - 0 Yt—150_1sTt1y .- - )xtig)

where z,,, = 1, for every u € [t], v € [i.]) and ypq > 2, forevery p € [t—1],

q € [jp]-
Because of Lemma 3.3, 3.4 we have that:

. o
gn+2—zl—xk(xlla o3 Tl Yl1y .- o5 Y15y, 21, - - - yYt—1je11Ttly .- - )xtig)

= g;l(1i1’2.'i1’ liz, 2.7':’ 153’ . ’2]}-1, lig)
= 2"9:,2(1"l , 2;1iz’ 2"13'3, 2, li;)

167



wheren; = n+2—z1—zz+ E Z (Yypg—=2), 7 = Z (4p—1) and ng = ny —2r.
p=1q=1

We call 2'g,,2(1",2, 12,2,1%,...,2,1%) the sxmplest expression of
gn(z1,22,...,2,0,...,0).

For example, the simplest expression of g;3(2,3,1,2,3,1,1,0,0,0,0,0,0)
is 2¢3(1,2,1,2,1%).

Theorem 3.6 If the simplest expression of gn(21, 29,...,2k,0,...,0) is
27ghn, (111,2,1%2,2,1%,...,2,1%), then

t—1

gn(zly zg,.. zkl 0) 2" Ctl-l-lch-l-l H CtJ +2-
j=2

Proof. Using Lemma 3.5, we have that g},(1%,2,1%,2,1%,...,2,1%) =
Ci, +1Ci,+1 H Ci,+2 and hence
J.—

on(71,%2,...,26,0,...,0) = 27g} (1,2,1%,2,1%,...,2,1%)
t=1

2"Ci +1Ci 41 H Ci;+2. O

=2

Notice that the number r is the number of all pairs (z;,zi+1), where
i, Ti+1 = 2. We have completed the discussion for the expression of

gn(zlizZ) yz’h 0)
So, for exa.mple

913(2,3,1,2,3,1,1,0,0,0,0,0,0) = g¢}4(2,3,1,2,3,1,1)
91:(2,2,1,2,2,1,1)
g50(1,2,1,2,2,1,1)
293(1,2,1,2,1%)
2C,C3C3

100.

Notice that we can easily obtain Corollary 3.2 from Theorem 3.6 too.
We give some remarks based on Theorem 3.6.
Remarks
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k
1. Forevery k,n € N*, if k< %, 2; >1Vi€[k] and ) z; =n then
; i=1

gn($1,$2,...,$k,o,...,0)'—"2k—l.
K+t
2. Ifz; >1, Vi€ k], zx41 =Tkp2 =+ = Tg4e = 1 and Y z; = n then

i=1

gn(Z1,%2,...,%,) = gnlz1,22,...,2%,1,1,...,1,0,...,0)

o gkl 1 [2t+2
t+2\t+1)/°
3. Ifz; >1, Vieklu{k+t+1Lk+t+2,...,k+t+3},
ktt+j
Tpy1 =Tp42 =+ =Tyt =1and ), z;=n then
i=1

gn(zlym2)° .. ,1'1;)
gn(zl’m?-’ cosZhy Lo L Tt 1, Thpth2, - - - 9xk+t+j)03 cee )0)
2k—12_1—10t+2

= ok+i-2_1 2(t+2)
t+3\ t+2 )’

The general case for the formula of g,, where one can have zeros between
nonzero variables can be dealt with, by using Theorem 2.1, but the expres-
sion of g, may be complicated without a new method. We propose this as
an open problem,
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