Noncrossing matchings with fixed points *

Weiming Weng a and Bolian Liu b,\dagger

^aDepartment of Computer Science, Guangdong Polytechnic Normal University Guangzhou 510665, P. R. China, jshwwm@163.com ^bSchool of Mathematical Sciences, South China Normal University Guangzhou 510631, P. R. China, liubl@scnu.edu.cn

Abstract. The noncrossing matchings with each of their blocks containing a given element are introduced and studied. The enumeration of these matchings is described through a polynomial of several variables which is proved to satisfy a recursive formula. Results of the enumeration of noncrossing matchings with fixed points are connected with Catalan numbers. Keywords: noncrossing matchings, fixed points, Catalan numbers AMS 2000 Subject Classification: 05A15

1 Introduction

A partition $\pi = B_1/B_2/\cdots/B_m$ of a totally ordered set X is called non-crossing partition (n.c.p.) iff there do not exist four elements a < b < c < d of X such that $a, c \in B_i$, $b, d \in B_j$ and $i \neq j$. A (complete) matching on a totally ordered set X (|X| = 2n) is a partition of X of type $(2, 2, \ldots, 2)$. A matching $\pi = B_1/B_2/\ldots/B_n$ of a totally ordered set X is called non-crossing matching (n.c.m.) if and only if it is a n.c.p. of X. If |X| = 2n, since there is an obvious order preserving bijection between X and the set $[2n] = \{1, 2, \ldots, 2n\}$, we can equivalently deal with [2n] instead of X. In this case we will use the notation NCM_{2n} .

Many authors have worked on n.c.m. (see for example Lickorish [?], Simion [?] and Chen [?]).

It is well known that the number of matchings on [2n] with no crossings

^{*}The research is supported by NNSF of China (No.10771080) .

[†]Corresponding author.

(i. e. $|NCM_{2n}|$) is given by the n-th Catalan number

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

See [?] (Exercise 6.19) for many combinatorial interpretations of Catalan numbers, where item (o) refers to noncrossing matchings.

In this paper we introduce a particular class of n.c.m. More precisely, we say that a n.c.m. $\pi \in NCM(X)$ is a noncrossing matching with fixed points the elements of $A \subseteq X$ (|A| = n), if and only if every block of π contains exactly one element of A. The set of all these n.c.m. is denoted by NCM(X, A). Again if we deal with [2n] instead of X we use the notation $NCM_{2n}(A)$.

A. Sapounakis and P. Tsikouras have worked in the field of noncrossing partitions with fixed points([?],[?]). Some results of this paper are related to their works, so we must thank them for their creative study.

We will see that the cardinal number $|NCM_{2n}(A)|$ is determined by the relevant positions of the elements of A. For this reason, we also consider the equivalence relation of the translation in the set of all subsets containing n elements of [2n], defined as follows:

 $A_1 \simeq A_2$ if and only if there exists $c \in [2n]$ with $A_1 = (A_2 + c) \pmod{2n}$.

Furthermore, for $A \subseteq [2n]$ (|A| = n) we define a finite sequence $\lambda_A = (x_i)$ of length n, where x_i , $i \in [n-1]$ is the number of elements of $[2n] \setminus A$ lying between the ith and the (i+1)st element of A and x_m is the number of elements of [2n] that are either smaller or greater than every element of A.

It is easy to prove that $A_1 \simeq A_2$ if and only if each one of $\lambda_{A_1}, \lambda_{A_2}$ is a cyclic permutation of the other.

Now let $|A_1| = |A_2| = n$, $A_1 \simeq A_2$ and $c \in [2n]$; then $A_1 = (A_2 + c)$ $(mod\ 2n)$. It is obvious that the mapping $\tau : NCM_{2n}(A_1) \to NCM_{2n}(A_2)$ with $\tau(\pi) = \{(B+c) \pmod{2n}; B \in \pi\}$ is a bijection, so that we obtain the following result:

Proposition 1.1 If $A_1, A_2 \subseteq [2n]$ ($|A_1| = |A_2| = n$) with $A_1 \simeq A_2$ then $|NCM_{2n}(A_1)| = |NCM_{2n}(A_2)|$.

For every $n \in \mathbb{N}^*$ and for every sequence $\lambda_A = (x_i), i \in [n]$ in \mathbb{N} with $\sum_{i=1}^n x_i = n$ there exists at least one set $A \subseteq [2n]$ (|A| = n) with $\lambda_A = \lambda$. Indeed, for the set $A = \{t_1, t_2, \ldots, t_n\}$ with $t_1 = 1$ and $t_{i+1} = t_i + x_i + 1$, $i \in [n-1]$ we have that $\lambda_A = \lambda$.

So, we can define a function g_n of n variables as follows:

$$g_n(x_1,x_2,\ldots,x_n)=|NCM_{2n}(A)|$$

where A is any subset containing n elements of [2n], with $\lambda_A = (x_1, x_2, \dots, x_n)$.

From the previous proposition it is clear that g_n is well defined and that $g_n(x_1, x_2, \ldots,$

 $x_n) = g_n(y_1, y_2, \ldots, y_n)$, whenever the sequence (y_1, y_2, \ldots, y_n) or its reverse is a cyclic permutation of (x_1, x_2, \ldots, x_n) .

For the evaluation of the formula of the function g_n , which counts $|NCM_{2n}(A)|$, it is more convenient to express the problem in the following equivalent form:

Let $X = [n] \cup Y$, where |Y| = n and the elements of Y are distributed in the intervals (i, i+1), $i \in [n-1]$ and $(n, +\infty)$, so that $|X \cap (i, i+1)| = x_i$, $\forall i \in [n-1]$ and $|X \cap (n, +\infty)| = x_n$. We want to determine the number $g_n(x_1, x_2, \ldots, x_n) = |NCM(X, [n])|$.

In Section 2 we give a recursive formula for g_n , which is used to study the explicit formula of g_n .

In Section 3 we prove that $g_n(x_1, x_2, \ldots, x_k, 0, 0, \ldots, 0)$ where $x_i \neq 0$ for every $i \in [k]$, can be expressed in the form $2^r C_{i_1+1} C_{i_t+1} \prod_{j=2}^{t-1} C_{i_j+2}$.

2 The recursive formula of g_n

Firstly, notice that $g_n(n,0,\ldots,0)=1$. Suppose that $g_n(x_1,x_2,\ldots,x_n)=0$, if $\sum_{i=1}^n x_i \neq n$. We give a recursive formula for $g_n, n \geq 2$.

Theorem 2.1 For every sequence $(x_1, x_2, ..., x_n)$ of natural numbers, with $n \geq 2$, $x_1 \geq 1$ and $\sum_{i=1}^{n} x_i = n$ the following relation holds:

$$g_n(x_1, x_2, \dots, x_n) = g_{n-1}(x_2, x_3, \dots, x_n) + g_{n-1}(x_1 + x_2 - 1, x_3, \dots, x_n) + \sum_{t=1}^{n-2} g_t(x_2, x_3, \dots, x_{t+1}) g_{n-t-1}(x_1 + x_{t+2} - 1, x_{t+3}, \dots, x_n).$$

Proof. Let $r = max[(1,2) \cap X]$. We partition the set NCM(X, [n]) into the sets T_i , $i \in [n]$, so that each partition in T_i contains r and i in the same block. Obviously,

$$|T_1| = g_{n-1}(x_2, x_3, \dots, x_n)$$
 and $|T_2| = g_{n-1}(x_1 + x_2 - 1, x_3, \dots, x_n)$. (1)

For $k \geq 3$, we have that

$$|T_k| = g_{k-2}(x_2, x_3, \dots, x_{k-1})g_{n-k+1}(x_1 + x_k - 1, x_{k+1}, \dots, x_n).$$
 (2)

Indeed, if $\sum_{i=2}^{k-1} x_i = k-2$, to each $\pi \in T_k$ correspond two uniquely determined matchings π_1, π_2 where π_1 is a n.c.m. of $[2, k) \cap X$ with fixed points $2, 3, \ldots, k-1$ and π_2 is a n.c.m. of $([1, r) \cup (k, +\infty)) \cap X$ with fixed points $1, k+1, \ldots, n$. Thus,

$$|T_k| = g_{k-2}(x_2, x_3, \cdots, x_{k-1})g_{n-k+1}(x_1 + x_k - 1, x_{k+1}, \cdots, x_n).$$

If $\sum_{i=2}^{k-1} x_i \neq k-2$, then $|T_k| = 0$ and $g_{k-2}(x_2, x_3, \ldots, x_{k-1}) = 0$, so that we obtain again that

$$|T_k| = g_{k-2}(x_2, x_3, \dots, x_{k-1})g_{n-k+1}(x_1 + x_k - 1, x_{k+1}, \dots, x_n).$$

From (1), (2) we obtain the required result.

Note. Theorem 2.1 (and its proof) for g_n is closely related to Proposition 2.2 (and its proof) for f_n in [?].

Corollary 2.2 For every $n \in \mathbb{N}^*$, we have that

$$g_n(1,1,\ldots,1)=C_n.$$

Proof. Set $g_0 = 1$ and $g_n = g_n(1, 1, ..., 1)$. Obviously, $g_1 = 1$ and from Theorem 2.1 we obtain

$$g_{n+1} = g_n + g_n + \sum_{t=1}^{n-1} g_t g_{n-t} = \sum_{t=0}^{n} g_t g_{n-t}.$$

Hence, g_n satisfies the well-known Segner formula, i.e. $g_n = C_n$. \square Note. It is easy to show that $NCM_{2n} = NCM([2n], [n])$.

Since $|NCM([2n], [n])| = g_n(1, 1, ..., 1)$ and $|NCM_{2n}| = C_n$, we obtain a combinatorial proof of Corollary 2.2.

3 The expression of $g_n(x_1, x_2, \ldots, x_k, 0, \ldots, 0)$

Set $g_n^*(x_1, x_2, ..., x_k) = g_n(x_1, x_2, ..., x_k, 0, ..., 0)$, where $x_1 \ge 1, \forall x_i \in [k]$ and $\sum_{i=1}^k x_i = n$.

Lemma 3.1 For every positive integers n, k with $k \le n$, we have

1)
$$g_n^*(x_1, x_2, \ldots, x_k) = g_{n+1-x_1}^*(1, x_2, \ldots, x_k)$$
.

2)
$$g_n^*(x_1, x_2, \ldots, x_k) = g_{n+2-x_1-x_k}^*(1, x_2, \ldots, x_{k-1}, 1)$$
.

Proof. If $x_1 = 1$, both results are obviously true.

1) For $x \geq 2$, it follows that for every $\pi \in NCM(X, [n])$, the number ξ for which $\{1, \xi\} \in \pi$ is the least element of $(1, 2) \cap X$ since, otherwise, $|(1, \xi) \cap [n]| < |(1, \xi) \cap Y|$, so that the elements of these two sets cannot be matched.

If we delete the pair $\{1,\xi\}$ of π , we obtain a n.c.m. $\pi' \in NCM(X \setminus \{\xi\}, [n-1])$; thus we obtain a bijection between NCM(X,[n]) and $NCM(X \setminus \{\xi\}, [n-1])$ which gives $g_n^*(x_1,x_2,\ldots,x_k) = g_{n-1}^*(x_1-1,x_2,\ldots,x_k)$.

From the above equality it follows recursively that

$$g_n^*(x_1, x_2, \ldots, x_k) = g_{n+1-x}^*(1, x_2, \ldots, x_k).$$

2) We apply 1) twice, using also the fact that $(1, x_2, \ldots, x_{k-1}, x_k, 0, \ldots, 0)$ is a cyclic permutation of the reverse of $(x_k, x_{k-1}, \ldots, x_2, 1, 0, \ldots, 0)$; so, we have

$$\begin{split} g_n^*(x_1, x_2, \dots, x_k) &= g_{n+1-x_1}^*(1, x_2, \dots, x_k) \\ &= g_{n+1-x_1}^*(x_k, x_{k-1}, \dots, x_2, 1) \\ &= g_{n+2-x_1-x_k}^*(1, x_{k-1}, \dots, x_2, 1) \\ &= g_{n+2-x_1-x_k}^*(1, x_2, \dots, x_{k-1}, 1). \end{split}$$

Corollary 3.2 For every $n \in \mathbb{N}^*$,

$$g_{n+2}(2,1,\ldots,1,2,0,0)=g_{n+1}(2,1,\ldots,1,1,0)=g_n(1,1,\ldots,1,1)=C_n.$$

Lemma 3.3 If $x_i > 0$, $\forall i \in [k]$, $\sum_{i=1}^k x_i = n$ and $\exists j \in [k]$ such that $x_j > 2$, then $g_n^*(x_1, x_2, \dots, x_{j-1}, x_j, x_{j+1}, \dots, x_k)$ $= g_{n-x_j+2}^*(x_1, x_2, \dots, x_{j-1}, 2, x_{j+1}, \dots, x_k).$

Proof. In view of Lemma 3.1 we can suppose that $j \ge 2$ and $x_1 = 1$. In this case, it follows from Theorem 2.1 that for $x_j \ge 2$

$$g_n^*(1, x_2, ..., x_j, ..., x_k) = g_n(1, x_2, ..., x_j, ..., x_n)$$

$$= 2g_{n-1}(x_2, ..., x_j, ..., x_n) + \sum_{t=1}^{j-2} g_t(x_2, ..., x_{t+1})g_{n-t-1}(x_{t+2}, ..., x_n).$$
(3)
By the induction hypothesis, relation (3) gives

$$g_n^*(1, x_2, \dots, x_j, \dots, x_k) = 2g_{n-x_j+1}(x_2, \dots, 2, \dots, x_{n+2-x_j})$$

$$+ \sum_{t=1}^{j-2} g_t(x_2, \dots, x_{t+1})g_{n-t+1-x_j}(x_{t+2}, \dots, x_{n+2-x_j})$$

$$= g_{n-x_j+2}(1, x_2, \dots, 2, \dots, x_{n+2-x_j})$$

$$= g_{n-x_i+2}^*(1, x_2, \dots, 2, \dots, x_k).$$

Now it is enough to deal with $g_n^*(1, x_2, \ldots, x_{k-1}, 1)$, where $x_i = 1$ or 2, $\forall i \in [k-1]/\{1\} \text{ and } \sum_{i=1}^{k} x_i = n.$

Lemma 3.4 If $x_i = 1$ or 2, $\forall i \in [k], \sum_{i=1}^k x_i = n$ and $\exists j \in [k-1]$ such that $x_i = x_{i+1} = 2$, then

$$g_n^*(x_1,\ldots,x_j,x_{j+1},\ldots,x_k)=2g_{n-2}^*(x_1,\ldots,x_{j+1},\ldots,x_k).$$

Proof. If j = 1,

$$g_n^*(2,2,x_3,\ldots,x_k) = g_{n-1}^*(3,x_3,\ldots,x_k) + g_{n-2}^*(3,x_3,\ldots,x_k)$$

$$= g_{n-2}^*(2,x_3,\ldots,x_k) + g_{n-2}^*(2,x_3,\ldots,x_k)$$

$$= 2g_{n-2}^*(2,x_3,\ldots,x_k).$$

If j > 1, for every $\pi \in NCM(X, [n])$, the number ξ for which $\{j, \xi\} \in \pi$ is the greater element of $(j-1,j)\cap X$ or the least element of $(j,j+1)\cap X$, we have $g_n(x_1, \ldots, 2, 2, x_{i+2}, \ldots, x_k, 0, \ldots, 0)$

$$=2g_{n-1}(x_1,\ldots,3,x_{j+2},\ldots,x_k,0,\ldots,0).$$

Then we have:

$$g_n^*(x_1, \dots, x_j, x_{j+1}, \dots, x_k)$$
= $g_n(x_1, \dots, 2, 2, x_{j+2}, \dots, x_k, 0, \dots, 0)$
= $2g_{n-1}(x_1, \dots, 3, x_{j+2}, \dots, x_k, 0, \dots, 0)$
= $2g_{n-2}(x_1, \dots, 2, x_{j+2}, \dots, x_k, 0, \dots, 0)$
= $2g_{n-2}^*(x_1, \dots, x_{j+1}, \dots, x_k)$.

Now we deal with the expression of

$$g_n^*(x_{11}, x_{12}, \ldots, x_{1i_1}, 2, x_{21}, x_{22}, \ldots, x_{2i_2}, 2, x_{31}, \ldots, 2, x_{t1}, x_{t2}, \ldots, x_{ti_t})$$

where $x_{uv} = 1$, for every $u \in [t]$, $v \in [i_u]$ and $n = \sum_{i=1}^{t} \sum_{j=1}^{i_u} x_{uv} + 2(t-1)$.

We denote it by

$$g_n^*(1^{i_1}, 2, 1^{i_2}, 2, 1^{i_3}, \ldots, 2, 1^{i_t}).$$

Lemma 3.5 For every $n \ge 4$ and $i_j \ge 1$, $j \in [t]$, we have that

$$g_n^*(1^{i_1}, 2, 1^{i_2}, 2, 1^{i_3}, \dots, 2, 1^{i_t}) = C_{i_1+1}C_{i_t+1}\prod_{i=2}^{t-1}C_{i_j+2}.$$

Proof. For n = 4, we have $i_1 = i_2 = 1$ and in this case the result holds since $g_n^*(1,2,1) = 4 = C_2C_2$.

Suppose that the result holds for every $k \ge n-1$. Then, using equation (3) we have

$$\begin{split} &g_n^*(1^{i_1},2,1^{i_2},2,1^{i_3},\ldots,2,1^{i_t}) \\ &= 2g_{n-1}^*(1^{i_1-1},2,1^{i_2},2,1^{i_3},\ldots,2,1^{i_t}) + \sum_{s=1}^{i_1-2} g_s^*(1^s)g_{n-1-s}^*(1^{i_1-1-s},2,1^{i_2},2,1^{i_3},\ldots,2,1^{i_t}) + g_{i_1-1}^*(1^{i_1-1})g_{n-1-i_1}^*(2,1^{i_2},2,1^{i_3},\ldots,2,1^{i_t}) \\ &= 2g_{n-1}^*(1^{i_1-1},2,1^{i_2},2,1^{i_3},\ldots,2,1^{i_t}) + \sum_{s=1}^{i_1-2} g_s^*(1^s)g_{n-1-s}^*(1^{i_1-1-s},2,1^{i_2},2,1^{i_3},\ldots,2,1^{i_t}) + g_{i_1-1}^*(1^{i_1-1})g_{n-2-i_1}^*(1^{1+i_2},2,1^{i_3},\ldots,2,1^{i_t}) \\ &= 2C_{i_1}C_{i_t+1}\prod_{j=2}^{t-1} C_{i_j+2} + \sum_{s=1}^{i_1-2} (C_sC_{i_1-s}C_{i_t+1}\prod_{j=2}^{t-1} C_{i_j+2}) \\ &+ C_{i_1-1}C_{i_t+1}\prod_{j=2}^{t-1} C_{i_j+2} \\ &= (\sum_{s=0}^{i_1} C_sC_{i_1-s})C_{i_t+1}\prod_{j=2}^{t-1} C_{i_j+2} \\ &= C_{i_1+1}C_{i_t+1}\prod_{i=2}^{t-1} C_{i_j+2}. \end{split}$$

Now we can deal with the general case $g_n(x_1, x_2, ..., x_k, 0, ..., 0)$, where $x_i > 0$, $\forall i \in [k]$ and $\sum_{i=1}^k x_i = n$.

Following Lemma 3.1,
$$g_n(x_1, x_2, \ldots, x_k, 0, \ldots, 0) = g_n^*(x_1, x_2, \ldots, x_k) = g_{n+2-x_1-x_k}^*(1, x_2, \ldots, x_{k-1}, 1).$$

We can express $g_{n+2-x_1-x_k}^*(1, x_2, ..., x_{k-1}, 1)$ as

$$g_{n+2-x_1-x_k}^*(x_{11},\ldots,x_{1i_1},y_{11},\ldots,y_{1j_1},x_{21},\ldots,y_{t-1j_{t-1}},x_{t1},\ldots,x_{ti_t})$$

where $x_{uv} = 1$, for every $u \in [t]$, $v \in [i_u]$ and $y_{pq} \ge 2$, for every $p \in [t-1]$, $q \in [j_p]$.

Because of Lemma 3.3, 3.4 we have that:

$$g_{n+2-x_1-x_k}^*(x_{11},\ldots,x_{1i_1},y_{11},\ldots,y_{1j_1},x_{21},\ldots,y_{t-1j_{t-1}},x_{t1},\ldots,x_{ti_t})$$

$$= g_{n_1}^*(1^{i_1},2^{j_1},1^{i_2},2^{j_2},1^{i_3},\ldots,2^{j_{t-1}},1^{i_t})$$

$$= 2^r g_{n_2}^*(1^{i_1},2,1^{i_2},2,1^{i_3},\ldots,2,1^{i_t})$$

where
$$n_1 = n + 2 - x_1 - x_2 + \sum_{p=1}^{t-1} \sum_{q=1}^{j_p} (y_{pq} - 2)$$
, $r = \sum_{p=1}^{t-1} (j_p - 1)$ and $n_2 = n_1 - 2r$.

We call $2^r g_{n_2}^*(1^{i_1}, 2, 1^{i_2}, 2, 1^{i_3}, \dots, 2, 1^{i_t})$ the simplest expression of

$$g_n(x_1,x_2,\ldots,x_k,0,\ldots,0).$$

For example, the simplest expression of $g_{13}(2,3,1,2,3,1,1,0,0,0,0,0,0)$ is $2g_8^*(1,2,1,2,1^2)$.

Theorem 3.6 If the simplest expression of $g_n(x_1, x_2, ..., x_k, 0, ..., 0)$ is $2^r g_{n_2}^*(1^{i_1}, 2, 1^{i_2}, 2, 1^{i_3}, ..., 2, 1^{i_i})$, then

$$g_n(x_1, x_2, \dots, x_k, 0, \dots, 0) = 2^r C_{i_1+1} C_{i_t+1} \prod_{j=2}^{t-1} C_{i_j+2}.$$

Proof. Using Lemma 3.5, we have that $g_{n_2}^*(1^{i_1}, 2, 1^{i_2}, 2, 1^{i_3}, \dots, 2, 1^{i_t}) = C_{i_1+1}C_{i_t+1}\prod_{i=2}^{t-1}C_{i_j+2}$ and hence

$$g_n(x_1, x_2, \dots, x_k, 0, \dots, 0) = 2^r g_{n_2}^*(1^{i_1}, 2, 1^{i_2}, 2, 1^{i_3}, \dots, 2, 1^{i_t})$$

$$= 2^r C_{i_1+1} C_{i_t+1} \prod_{i=2}^{t-1} C_{i_j+2}.$$

Notice that the number r is the number of all pairs (x_i, x_{i+1}) , where $x_i, x_{i+1} \geq 2$. We have completed the discussion for the expression of $g_n(x_1, x_2, \ldots, x_k, 0, \ldots, 0)$.

So, for example

$$g_{13}(2,3,1,2,3,1,1,0,0,0,0,0,0) = g_{13}^*(2,3,1,2,3,1,1)$$

$$= g_{11}^*(2,2,1,2,2,1,1)$$

$$= g_{10}^*(1,2,1,2,2,1,1)$$

$$= 2g_{8}^*(1,2,1,2,1^2)$$

$$= 2C_2C_3C_3$$

$$= 100.$$

Notice that we can easily obtain Corollary 3.2 from Theorem 3.6 too.

We give some remarks based on Theorem 3.6.

Remarks

1. For every
$$k, n \in \mathbb{N}^*$$
, if $k \leq \frac{n}{2}$, $x_i > 1 \, \forall i \in [k]$ and $\sum_{i=1}^k x_i = n$ then

$$g_n(x_1, x_2, \ldots, x_k, 0, \ldots, 0) = 2^{k-1}.$$

2. If
$$x_i > 1$$
, $\forall i \in [k]$, $x_{k+1} = x_{k+2} = \cdots = x_{k+t} = 1$ and $\sum_{i=1}^{k+t} x_i = n$ then

$$g_n(x_1, x_2, \dots, x_n) = g_n(x_1, x_2, \dots, x_k, 1, 1, \dots, 1, 0, \dots, 0)$$
$$= 2^{k-1} \frac{1}{t+2} {2t+2 \choose t+1}.$$

3. If
$$x_i > 1$$
, $\forall i \in [k] \cup \{k+t+1, k+t+2, \dots, k+t+j\}$,
$$x_{k+1} = x_{k+2} = \dots = x_{k+t} = 1 \text{ and } \sum_{i=1}^{k+t+j} x_i = n \text{ then}$$

$$g_n(x_1, x_2, \dots, x_n)$$

$$= g_n(x_1, x_2, \dots, x_k, 1, 1, \dots, 1, x_{k+t+1}, x_{k+t+2}, \dots, x_{k+t+j}, 0, \dots, 0)$$

$$= g_n(x_1, x_2, \dots, x_k, 1, 1, \dots, 1, x_{k+t+1}, x_{k+t+2}, \dots, x_{k+t+j}, 0, \dots, 0)$$

$$= 2^{k-1}2^{j-1}C_{t+2}$$

$$= 2^{k-1}2^{j-1}C_{t+2}$$

$$= 2^{k+j-2} \frac{1}{t+3} \binom{2(t+2)}{t+2}.$$

The general case for the formula of g_n where one can have zeros between nonzero variables can be dealt with, by using Theorem 2.1, but the expression of g_n may be complicated without a new method. We propose this as an open problem.

Acknowledgments

The authors thank Professor Sapounakis for his useful comments and suggestions.

References

- [1] W.Y.C. Chen, Crossings and nestings of matchings and partitions. Transactions of the American Mathematical Society (2005).
- [2] H. Gould, Combinatorial Identities, Morgantown, W. Va, 1972.
- [3] G. Kreweras, Sur les partitions non croisées d'un cycle, Discrete Math., Vol. 1 (1971), pp. 335-350.
- [4] W.B.R. Lickorish, Invariants of 3-manidold from the combinatorics of the Jones polynomial, *Pacific J. Math.*, Vol. 149(1991), pp. 337-347.

- [5] J. H. van Lint & R.M. Wilson A Course in Combinatorics Cambridge University Press, Cambridge (1992). 205-206.
- [6] H. Prodinger, A correspondence between ordered trees and non crossing partitions, *Discrete Math.* 46 (1983), pp. 205-206.
- [7] A. Sapounakis and P. Tsikouras, Noncrossing partitions with fixed points, Australasian. Combin., Vol. 28 (2003), pp. 263-272.
- [8] A. Sapounakis and P. Tsikouras, On the enuneration of noncrossing partitions with fixed points, Ars Combin., Vol. 73 (2004), pp. 163-171.
- [9] R. Simion, Noncrossing partitions. Discrete Math., Vol. 217 (2000), pp. 367-409.
- [10] R. Stanley, Parking functions and noncrossing partitions. The Electronic Journal of Combinatorics, Vol. 4 (1997).
- [11] R. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth and Brooks/Cole, Pacific Grove, CA, 1986; second printing, Cambridge University Press, Cambridge, 1996.
- [12] R. Stanley, *Enumerative Combinatorics*, Vol. 2, Cambridge University Press, Cambridge, 1999.
- [13] W. Weng and B. Liu, A note on enumeration of noncrossing partitions. *Ars Combin.* (to appear).