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Abstract

In this paper we develop a technique that allows us to obtain
new effective construction of 1-resilient Boolean functions with very
good nonlinearity and autocorrelation. Our strategy to construct a
1-resilient function is based on modifying a bent function, by toggling
some of its output bits. Two natural questions that arise in this con-
text are “at least how many bits and which bits in the output of a
bent function need to be changed to construct a 1-resilient Boolean
function”. We present an algorithm which determines a minimum
number of bits of a bent function that need to be changed to construct
a l-resilient Boolean function. We also present a technique to com-
pute points whose output in the bent function need to be modified to
get a l-resilient function. In particular, the technique is applied upto
14-variable functions and we show that the construction provides 1-
resilient functions reaching currently best known nonlinearity and
achieving very low autocorrelation absolute indicator values which
were not known earlier.
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1 Introduction

One of the most general types of stream cipher systems is several Linear
Feedback Shift Registers (LFSRs) combined by a nonlinear Boolean func-
tion. This function must satisfy certain criteria to resist different attacks
(in particular, correlation attack suggested by Siegenthaler [17] and dif-
ferent types of linear attacks). Important properties of Boolean functions
for use in stream cipher are balancedness, high order resiliency, high al-
gebraic degree, and high nonlinearity. Constructions of Boolean functions
possessing a good combination of these properties have been proposed in
[14, 15, 18, 19, 6, 21, 1, 2]. In [16, 5], it had been shown how bent functions
can be modified to construct highly nonlinear balanced Boolean functions.
A recent construction method [10, 11] presents modification of some output
points of a bent function to construct highly nonlinear 1-resilient functions.
In (10, 11), a lower bound on the minimum number of bits of a bent func-
tion that need to be modified is given. However the bound is not tight for
functions with more than 10 variables. In this paper, we give a better lower
bound on the minimum number of bits of a bent function that need to be
changed. The bound is proved to be tight for functions up to 14 variables.
Further [11] does not provide any technique to select the points whose out-
put in the bent function need to be modified and the points are selected by
computer simulation. OQur main contribution here is a construction to select
those points whose output in the bent function need to be modified to get a
1-resilient function. For the first time, we give a combinatorial construction
which can be used to obtain a 1-resilient function for any n. In particular,
we concentrate on construction of 1-resilient Boolean functions up to 14
variables with best known nonlinearity and autocorrelation. Throughout
the paper we consider the number of input variables (n) is even. Here, we
identify Maiorana-McFarland type bent functions which can be modified
to get 1-resilient functions with currently best known parameters. We get
1-resilient functions with better nonlinearity and autocorrelation absolute
indicator values that were not known earlier for n = 12,14 variables.

1.1 Preliminaries

A Boolean function on n variables may be viewed as a mapping from {0,1}"
into {0,1}. A Boolean function f(z1,...,z») is also interpreted as the
output column of its truth table f, i.e., a binary string of length 2™,

f= [f(ovoa'” ’0):.f(1301"’ ,0),f(0,1,--- 10),"'1f(1:1a"' vl)]'
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The Hamming distance between two binary strings S;, S, is denoted
by d(S51,82), i.e., d(S1,52) = #(S1 # S2). Also the Hamming weight or
simply the weight of a binary string S is the number of ones in S. This
is denoted by wt(S). An n-variable function f is said to be balanced if its
output column in the truth table contains equal number of 0s and 1s (i.e.,

wt(f) = 2n71).
Denote addition operator over GF(2) by @. An n-variable Boolean
function f(z1,...,%,) can be considered to be a multivariate polynomial

over GF(2). This polynomial can be expressed as a sum of product repre-
sentation of all distinct k-th order products (0 < k < n) of the variables.
More precisely, f(zi,...,%s) can be written as

20® P arid P 0yziz; ®... 01227172, . Tn,
1<i<n 1<i<j<n

where the coefficients ao,a4j,...,612..n € {0,1}. This representation of f
is called the algebraic normal form (ANF) of f. The number of variables
in the highest order product term with nonzero coefficient is called the
algebraic degree, or simply the degree of f and denoted by deg(f).

Functions of degree at most one are called affine functions. An affine
function with constant term equal to zero is called a linear function. The
set of all n-variable affine (respectively linear) functions is denoted by A(n)
(respectively L(n)). The nonlinearity of an n-variable function f is

nl(f) = min d(f9)

i.e., the distance from the set of all n-variable affine functions.

Let £ = (zy,...,7,) and w = (wy,...,wy) both belong to {0,1}" and

T w=z1w; D... D Tpwy,.

Let f(x) be a Boolean function on n variables. Then the Walsh trans-
form of f(z) is a real valued function over {0,1}" which is defined as

Wiw)= ) (-1feeee,
z€{0,1}»

In terms of Walsh spectrum, the nonlinearity of f is given by

_ 1
ni(f) =2 =5 max W)l

For n even, the maximum nonlinearity of a Boolean function can be 2%~ —
2%-1 and the functions possessing this nonlinearity are called bent func-
tions [13]. Further, for a bent function f on n variables, Wy (w) = £2% for
all w.
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In [7], an important characterization of correlation immune and resilient
functions has been presented, which we use as the definition here. A func-
tion f(x1,...,Zn) is m-resilient (respectively m-th order correlation im-
mune) iff its Walsh transform satisfies

Wy(w) =0, for 0 < wt(w) < m (respectively Wy(w) =0, for 1 < wi(w) < m).

We use the notation used in [14, 15], by an (n,m,d,o) function we
denote an n-variable, m-resilient function with degree d and nonlinearity
ag.

We will now define restricted Walsh transform which will be frequently
used in this text. The restricted Walsh transform of f(z) on a subset S of
{0,1}" is a real valued function over {0,1}" which is defined as

Wi(w)|s = Z(_l)f(z)Qz.w‘
z€ES

Now we present the following technical result.

Proposition 1 [11] Let S C {0,1}" and b(z), f(z) be two n-variable Boolean
functions such that f(z) = 1@b(z) when z € S and f(z) = b(z) otherwise.
Then Wy(w) = Wp(w) — 2Wp(w)ls.

Propagation Characteristics (PC) and Strict Avalanche Criteria (SAC) [12]
are important properties of Boolean functions to be used in S-boxes. Fur-
ther, Zhang and Zheng [22] identified related cryptographic measures called
Global Avalanche Characteristics (GAC).

Let @ € {0,1}" and f be an n-variable Boolean function. Define the
autocorrelation value of f with respect to the vector a as

Af(a) = Z (-1)/(0(z00)
z€{0,1}»

and the absolute indicator

Ag ac( X ¢.6|Af(a)|-
A function is said to satisfy PC(k), if Ay(a) = 0 for 1 < wt(a) < k. Note
that, for a bent function f on n variables, As(a) = 0 for all nonzero q, i.e.,
Af=0.

Analysis of autocorrelation properties of correlation immune and re-
silient Boolean functions has gained substantial interest recently as evident
from [20, 23, 8, 3]. In [8, 3], it has been identified that some well known
constructions of resilient Boolean functions are not good in terms of au-
tocorrelation properties. Since the present construction is modification of
bent functions which possess the best possible autocorrelation properties,
we get very good autocorrelation properties of the 1-resilient functions.
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2 Main Results

In this section, we present an algorithm which determines a minimum num-
ber of bits of a bent function that need to be changed to construct a 1-
resilient Boolean function. We also provide a construction that computes
the points whose output in the bent function need to be modified to get a
1-resilient function. Initially we start with a simple technical result.

Proposition 2 Let {(n) be the minimum distance between n-variable bent
and 1-resilient functions, that is

¢(n) = min {d(b, f) : b is a bent function , f is a 1-resilient function }.
Then &(n) > 231,

Proof: The weight of a bent function b on n variables can take two val-
ues: 2771 4 23-1 or 271 _ 2%-1, Note that for a balanced function f,
wt(f) = 2"~1. So we need to change at least 22! points of b to get a bal-
anced function. This shows that the distance of a bent function from the
balanced functions is at least 22 1. The 1-resilient functions are balanced
by definition and hence the result. [ |

For a bent function b on n variables the Walsh spectrum values are +2%
- or —2%. In this paper, we consider the bent functions b with Wy(w) = +2%
for 0 < wt(w) < 1. Let S be a subset of {0,1}" and f(z) be an n-variable
Boolean function obtained by modifying the b(z) values for £ € S and
keeping the other bits unchanged. That is,

flz) = 1obz), ifzesS
= b(z), otherwise.

Then from Proposition 1,
Wi(w) = Wiy(w) — 2Wp(w)|s V w,
and in particular,
Wy(w) = 2% — 2Wp(w)|s for 0 < wt(w) < 1.
It is known that f is 1-resilient iff Wy(w) =0 for 0 < wt(w) < 1, i.e., iff
Wy(w)|s =272 for 0 < wt(w) <1.

Thus the problem is to find a subset S of {0,1}" of minimum cardinality
and a suitable bent function b(z) that satisfy the following conditions:

Why(w)|s =251 for 0<wtw)<1 (1)
We(w) = +2% for 0L wt(w) <1 (2
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2.1 Determining a minimum number of bits of an n
variable bent function that need to be modified to
construct a l-resilient function

For the convenience of the reader, we would like to write subset S as matrix
S whose rows are the elements of S. Formally, given S = {z*,z%,...,z%*} C
{0,1}", consider the matrices

Skxm = (gh 2%, )T, B(S)F*! = (b(zh), b(x™),...,b(z*))T, and

(S @ b(S))**" = (z% @ b(z™), 2 ® b(z2),...,z%* @ b(z™*))T.
By AT we mean transpose of a matrix A. Also by abuse of notation,
z% @ b(z*) means the GF(2) addition (XOR) of the bit b(z*) with each of
the bits of z%.

Consider Condition 1 with wt(w) = 0. If ko is the number of 0s in b(S)
and k; is the number of 1s in 5(S), then we have that, ko — k; = 2%~1.
Also, kg + k1 = k. Solving these two equations, kg = % +2%-2 and
ky = £ — 2%-2, Note that k is always even since ko and k; are inte-
gers. Now consider Condition 1 with wt(w) = 1. Let w be the unit vector
having a 1 in position j and 0 in all other places. Then the jth column

(5 @b(z"), 2 @b(z"), ..z} eab(:c‘*))T of S@b(S) has £ +23-2 0s and
£ _2%-2 1s5. Thus by Condition 1, we have that there are exactly § +2% 2
many 0’s and £ — 2%~2 many 1’s in 5(S) and in each column of S & b(S)
respectively.

Without loss of generality we assume that the first £ + 222 entries of
b(S) are 0s and the last £ — 252 entries are 1s. Denote the sub-matrix
consisting of the first !2‘- +2%-2 rows of S as block Sy (the corresponding
elements are in Sp) and the sub-matrix consisting of the last -’25 —2%-2 rows
of S as block S; (the corresponding elements are in Sy).

S =58,US, and S = (S, S;)7.

Since S is a set, all the rows of S are distinct and furthermore, as the first
£ +2%-2 entries of b(S) are Os and the last & —2%~2 entries are 1s, the rows
of So @ b(Sp) are distinct among themselves as are the rows of S; ® b(S;).
Further, the Boolean complement of any row of So & b(Sp) is not a row in
S0 b(Sl)

Our problem is now to construct a matrix S @ b(S) = (So ® b(So), S;1 ®
b(S1))7 satisfying the conditions (Condition 1 in matrix notation):
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(2) No. of rows in So @ b(So) is £ +2%-2, and
no. of rows in S; ® b(S,) is £ — 2%-2,
(b) Weight of each column of S @ b(S) is & — 282,

(¢c) Rows of So @ b(So) are distinct among themselves and so are the
rows of S; @ b(S;). Further, the Boolean complement of any row of
So @ b(So) is not in S; & b(S,).

Note that, for the above condition to be satisfied, weight of each column
of S @ b(S) must be at least one for, if it is zero all rows of S @ b(S) will
be zero row vectors and hence identical. So, £ —2%-2 > 1 which gives
k>2%"149

Suppose that one such matrix S & b(S) is constructed. Note that the
minimum number of 1s required for the distinct rows of So ® b(So) is at

leas
t g:lz() (ro+1)( +2%8-2— gg(’:))

where rg is such that
To n k ro+1 n
Z 4922
(%) <z (1)
i=0 =0

is satisfied (using all the rows upto weight o and some of the rows with
weight r7o+1). Similarly the minimum number of 1s required for the distinct
rows of S; @ b(S,) is at least

1 1 n
)
>(5) -2
where r; is such that
L2 r1+1
(5)s5-<x(7)
i=0 =0

is satisfied.
So the minimum number of 1s required to form S & b(S) is at least

Z()reom (500 () eon (32 £ (1)

where 79 and r; are as above.
On the other hand, Condition 1b says there would be exactly n x (-’-2°- -

2%~2) many 1s in S®(S) as each column contains exactly § —2%~2 many
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1s and there are n columns If using rows of lower weight we obtain columns
of weight less than £ — 2%-2 then we may increase the wexght of our rows.
However, if the welght of some column is greater than £ § - 272 then we
cannot do with k rows and must increase k. This is the basis of the next
algorithm which computes a lower bound on £(n).

The above arguments tell us that k£ must satisfy the following condition.

Si(0) +wen (5o 55 () + ()
(r1+1)(——2i‘ -2 g(?))snx(g_ﬁ—z)_

Here is an algorithm to compute the minimum & satisfying this condition.

Algorithm 1
Input: number of variables n.
Output: number of points required k, ro and 7.

1. Set ¥ = 2%8-1 4+ 2 and w = 1 where w is the weight of columns of
S@b(S). (w==%-2%-2)

2. Compute rg and r; such that
o n k _ ro+1 n T n k 52 n+1
£ (1) <kers 3 (1) 52(7) b ¥
=0 i=0 i=0 =0
are satisfied.
3. Set minimum number of 1s in S @ b(S),

z-—Z( )+(ro+1)< 4232 _ i(’:))

()£ (1))

4. If 2 < n-w, stop. k is the required number of points.

5. k=k+2 w=w+1. (w=%—2%2, s0 that when & increases by
2, w increases by 1.)

6. Go to step 2.
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The following table illustrates the number of points k, as computed by the
above algorithm for different values of n.

[ » [ 8[10[12]14[ 16 [ 18 [ 20 ] 22 | 24 | 26 |
[ro+1 22221333 3 4 4 |
[n+1fl1 17117222 2 3 3 ]
[k /10 ]227] 4486|168 ] 342 | 684 | 1350 | 2662 | 5430 ||

Theorem 1 The above algorithm gives a lower bound on the number of
bits of an n-variable bent function that need to be modified to construct a
1-resilient function, that is k < £(n).

Proof: Let b be a bent function and f, a l-resilient function such the
distance between b and f is £(n), that is the number of points where b and
f give different values is £(n).

Let S be the set of points where b and f give different values (|S| = £(n)).

S = {z e {0,1}" : b(z) # f(x)}.

Then by modifying the bits of b corresponding to elements of S we ob-
tain f. Hence ¢(n) must satisfy the necessary Conditions la, 1b & lc for
k. The above algorithm computes the minimum k that satisfies Condi-
tions la, 1b & 1c, and hence k < £(n). [ ]

The algorithm in the next section computes k points satisfying Condi-
tions 1a, 1b & 1lc. Then, to get a 1-resilient function, we will need a bent
function b which has the desired output values at the points given by the
next algorithm, namely, b must be such that

_J 0, forzeS
b(z)_{l, forz € §;

Since the class of bent functions is very large, it may be conjectured
that we can find a bent function satisfying the above condition. Then, the
above algorithm gives us the minimum distance since it is already a lower
bound.

For n = 8,10,12,14 we identify Maiorana-McFarland type bent func-
tions which can be modified to get 1-resilient functions, using the points
given by the next algorithm. This shows that the bound given by the above
algorithm is tight and is the minimum distance for these values of n.

2.2 Finding points whose output bits in the bent func-
tion need to be modified to get l-resilient function

To find an n variable 1-resilient function from a bent function, we modify
output for certain points of the bent function. Essentially, we look only
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at the S & b(S) matrix where S is the set of points to be modified and
b is the bent function. Our aim is to find a set of points S satisfying
Condition 1. Here we give a construction of S with the number of rows
k given by Algorithm 1, £ + 2%~2 rows in So @ b(Sp) and § — 2%-2 in
S1 @ b(S1). Our technique is as suggested by Algorithm 1.

Since we want S satisfying Conditions 1la, 1b & 1¢ with minimum num-
ber of rows, we use rows of minimum weight. If we use rows of higher
weight, column weight £ — 2% =2 also increases so that we need more num-
ber of points k. First we construct the matrix So®b(So). Matrix S; ®b(S;)
is also constructed in a similar manner. As in Algorithm 1, to construct
So ®b(So) we use all points of weight < ro. These rows will have a uniform

o (n

column weight Eﬁf‘—'(-‘l Further we need mo = £ +2%-2 - 37 (7) rows
of weight r9 + 1.

We want to select the remaining rows of weight ¢ 41 such that the weight
of all n columns is more or less uniform to keep the total weight of each
column in S @ b(S) as % —23-2 Tetwy = l'—"‘ﬂgﬂj and t; be the
remainder so that mg % (ro +1) = n X wo +tp. By a careful selection of mg
rows of weight 7o + 1, we can get tg columns of weight wo + 1 and n — ¢o
columns of weight wp, that is the column weights do not differ by more
than 1. We now need a few definitions.

The circular shift operator ROT rotates the Boolean vector x by d positions.
That is, if y = ROT(z, d) then y is the vector obtained by a circular shift of
the bits in = by d positions. For example, ROT(z,2) = (0,0,0,1,0,1,0,0),
where z = (0,0,0,0,0,1,0,1).

A set C of Boolean row vectors is called a circular block if for any = € C,
C = { ROT(z,d) : d is an integer}. That is, the vectors in C are identical
up to circular shifting and C is closed under circular shifting.

Example 1 When z = (0,0,0,0,0,0,1,1) in the above definition, we get

the circular block C =

{(9,9,0,0,0,0,1,1), (0,0,0,0,0,1,1,0), (0,0,0,0,1,1,0,0), (0,0,0,1,1,0,0,0),

(0,0,1,1,0,0,0,0), (0,1,1,0,0,0,0,0), (1,1,0,0,0,0,0,0), (1,0,0,0,0,0,0,1)}.
An important characteristic of circular blocks is that all columns are of

equal weight. Note that |C| < n. Also, a circular block may not have n
vectors.

Example 2 When z = (0,0,0,1,0,0,0,1), we get the circular block C =
{(9,0,0,1,0,0,0,1), (0,0,1,0,0,0,1,0), (0,1,0,0,0,1,0,0), (1,0,0,0,1,0,0,0)}.
with |C] = 4.

A generator of a circular block C is the vector g € C which appears first
in lexicographic order. In other words, it is the smallest number when the
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vectors in C are interpreted as binary numbers. For the circular block in
Example 1 the generator is (0,0,0,0,0,0,1,1) while for that in Example 2
the generator is (0,0,0,1,0,0,0,1). Note that the Least Significant Bit
(LSB) of a generator is always 1. We will obtain circular block C by < n
circular shifts of it’s generator g. That is C = { ROT(g,d) : d < n}
The next algorithm constructs a matrix 7" with m rows of weight .

We can represent a point = by a set containing, the positions of the
1s in the point. For example, « = (0,0,1,0,0,0,1,0) is represented by the
set {2, 6}, which we denote by the ordered list £ = [2, 6].

Since the LSB of a generator is always 1, the number of generators is
< ;‘:11) and their ordered list representations will be a selection of r — 1
positions from the set {2,3,...,n} in addition to the LSB. However, all
such selections will not give a generator. Still, we can easily check if such
a selection gives a generator or not.

First, note that the ROT operation for the ordered list representation
is just addition modulo n to each of the list elements.

To check if a selection [p1,p2,...,pr—1] gives a generator, note that the
corresponding vector with the LSB is £ = [1,p1,p9,...,pr—1]. Now, if this
vector is not a generator then it must have a generator g in it’s circular
block. Then g < z in the lexicographic ordering. Also, g can be obtained
from z by circular shift. Since LSB in g is 1, when rotating z to get g, a
1 in z initially at position p;,1 < i < (r — 1) will come at the LSB. This
corresponds to a rotation by n — p; + 1 bit shifts.

So to check if a vector z given by the selection is a generator or not we
just have to rotate each of the (r —1) 1s at positions p;,1 <i < (r—1) by
n—p;+1 and check if the resulting vector y; < z in lexicographic ordering.
If no y; < = then z is a generator. Thus checking if x is a generator requires
O(r) operations.

Now to get a circular block, we get a selection [p1,p2,...,pr—1] from
{2,3,...,n} and check if the vector z corresponding to £ = [1,p1,p2, . . ., Pr-1]
is a generator. Then we construct a circular block using the generator.

The issue is, when constructing m rows of weight r, after using some
number of circular blocks, we may find that the number of rows required
is less than the number of rows in the next circular block. If we use only
some rows of the next circular block to complete m rows we may find that
the column weights differ by more than 1. To overcome this, we reserve
a generator g- and do not use it at first. Only when we find that the
remaining number of rows to be constructed is < n we use g,. g, is chosen
as follows:

1. If r divides n: g, = [1,2,...,r]. We generate points from this
generator as shown in the next example:

Example 3 For n = 8 with r = 2, g, = [1,2] = (0,0,0,0,0,0,1,1)
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and the points are generated in the following sequence:
(0!0) 0)0) 010’ l’ 1)’ (0) 0’0)0’ 1) 1’0, 0)! (0)0, 1’ 1’0’ 0’ 0) 0), (1) ll 0, 0’ o’l 0’ 0' 0)1
(0,0,0,0,0,1,1,0), (0,0,0,1,1,0,0,0), (0,1,1,0,0,0,0,0), (1,0,0,0,0,0,0,1).

The following pseudocode generates these n rows, {z[1],z[2],...,z[n]}

for i in {0,1, ..., r-1}:
for j in {0, 1, ..., n/r-1}:
x[i+j] = ROT(g, j*r + 1)

2. If » does not divide n: g, is chosen by distributing the n — r 0s
equally among the 1s. Points are generated by successive circular
shifts as shown below:

Example 4 For n = 8 with r = 3, g, = [1,3,6] and the points are
generated in the following sequence:

(0,0,1,0,0,1,0,1), (0,1,0,0,1,0,1,0), (1,0,0,1,0,1,0,0), (0,0,1,0,1,0,0, 1),
(0,1,0,1,0,0,1,0), (1,0,1,0,0,1,0,0), (0,1,0,0,1,0,0,1), (1,0,0,1,0,0,1,0).

Note that in each case, after every row, column weights do not differ by
more than 1.
Algorithm 2
Input: number of variables n, number of rows m, row weight r.
Output: m x n matrix T having ¢ columns of weight w + 1 and n — ¢ columns

of weight w, with w = | XL | and ¢ the remainder so that m x r=nx w+t.

1. Initialize T as the empty matrix. T = ().
. Compute the reserved generator g- accordingly as r divides n or not.

Initialize m’ = 0, the number of rows of T constructed so far.
If m — m’ < n, go to Step (8).
. Compute a new generator g, g # gr.

. Construct the circular block C by repeatedly circular shifting g (Let the
number of vectors in C be d).

7. T =(T,C)T, m' = m’ +d and go to Step (4).

8. Use the reserved generator g, to construct the partial block D with m —m/’
rows.

9. T=(T,D)".

o s W

Theorem 2 Algorithm 2 runs correctly in O(r - (::})) time.

Proof: Since we ensure that at the end of the algorithm, column weights do
not differ by more than 1, and we use rows of minimum possible weights,
we get the column weights as desired and the algorithm rums correctly.
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Further, the number of generators is < :,':11 , obtained by a selection of

r—1 positions from the set {2,3,...,n} in addition to the LSB. Checking if a
selection gives a generator or not requires O(r) operations. So Algorithm 2
requires O(r - (72})) time. n
Now, we construct So ®b(Sp) by first including all points of welght upto
ro and then using Algorithm 2 to find the remaining mo = § +2%-2 —

Yi2o () points of weight o + 1. Similarly for S; & b(Sl), include all
points of weight upto 71 and then use Algorithm 2 to find the remaining
my =% 23237 (7) points of weight ry + 1.

After constructing So @ b(So) and S; ® b(S:) in this manner, column
weights in the two matrices do not differ by more than 1. But the S @ 5(S)
matrix thus obtained may have column weights differing by more than 1.
To avoid this we permute the columns of S; @ b(S;) so that the columns of
higher weight are identified with the columns of lower weight of So @ b(So).
Then in the resulting S@®b(S) matrix, column weights do not differ by more
than 1.

Now to satisfy Conditions 1a, 1b & 1c we need only that the columns
weights are equal. To do this we need to add exactly one 1 in certain
columns, 2’ in number (note that 2z’ < n). This is not too difficult since we
have a large number of rows (> 2%-1).

Construction 1
. Input: number of variables n, number of points k, r¢ and 7, from Algo-

rithm 1.
Output: k x n matrix S satisfying Conditions 1a, 1b & lc.

1. Add all rows of weight v and r; to the matrices Sp & 5(Sp) and
S; @ b(S;) respectively.

2. Compute mo = £+2%-2-3"7° (7) and m; = £-2%-2_37! (7).

3. Use Algorithm 2 with inputs n, mo, 70 + 1 to get matrix Tp.
So @ b(So) = (So ® b(Se), To)”.

4. Use Algorithm 2 with inputs n, m1, r1 + 1 to get matrix T3.
S: ®b(S1) = (1 @ b(Sy), TL)T.

5. Permute columns of S; @ b(S;) suitably so that columns of higher
weight of the S;®b(S;) matrix are identified with that of lower weight
columns of So @ b(So).

6. Accommodate the remaining 2’ ones in the two matrices in a suitable
manner.

7.S0=8Sy&® b(So) and 81 =16 (Sl b b(Sl))
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8. S =(So,$)T.

Theorem 3 Construction 1 finds inputs whose output in the bent function
need to be modified to get 1-resilient function.

Proof: To show that Conditions 1a, 1b & 1c hold for the matrix S con-
structed as above, note that k is obtained from Algorithm 1, at the end of
which 2z < w - n. Algorithm 2 ensures that column weights of S @ b(S) do
not differ by more than 1, using rows of minimum possible weights. So in
Construction 1 after adding the remaining 2’ ones, each column has weight
exactly £ — 282,

Algorithm 2 constructs the matrices using distinct rows. We now only
need to show that the Boolean complement of any row of Sp @ b(Sg) is not
in S; ®b(S;). Weight of any row in So@®b(Sp) is < ro+1 so it’s complement
must have weight > n — 79 — 1. So if the rows in S; @ b(S;) are of weight
< n—r1g9 — 1 then we are through. Here we assume that r; < n —rg or
equivalently 7o + 73 < n. That this is a reasonable assumption can be
observed from the table giving values for ro and r; up to n = 26. We can
see that rg and r; grow very slowly as compared to n.

Since r; < 79, the next theorem holds.

Theorem 4 Construction 1 requires O(ro - (jo_})) time.

3 Construction of the 1l-resilient function

Now that we have the set S we need to construct the bent function b
satisfying Conditions 1 & 2.

The original Maiorana-McFarland class of bent function is as follows [4].
Consider n-variable Boolean functions on (X,Y), where X,Y € {0,1}% of
the form »(X,Y) = X - n(Y) + g(Y) where 7 is a permutation on {0,1}%
and g is any Boolean function on % variables. Then b is a bent function.
For a fixed value of Y, X - m(Y') can be seen as a linear function on X and
g(Y) is constant either 0 or 1 over all X. So that the function b can be seen
as a concatenation of 2% distinct (upto complementation) affine function
on % variables.

We require a bent function b(z) on n variables satisfying the condition
that b(z) = 0 for z € Sp and b(z) =1 for = € S;. We have to decide what
permutations 7 on {0,1}% and what kind of functions g on {0,1}% we can
take such that the conditions on b are satisfied. Let us fix the notation and
ordering of input variables as = (11,29, ...,25), X = (X1, Xa, ... ,X.v%) =
(z1,22,...,23), and Y = (11,Y>,...,Y3) = (T3+1,T3+2,. .-+ Zn)-

Now, we look at Condition 2. It is easy to see that for 0 < wt(w) <1a
bent function will have the restricted Walsh spectrum value
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We(w)| xy)xe13d = 0 for all values of Y except for one Y where it is
+2%. We want Wy(w) = +2% at that Y. This will happen only when
X 7(Y)®og(Y)®z-w=00r X-7(Y)®g(Y) = z-w at that Y. We ensure
this by conditions as below:

1. For wt{w) = 0 we want forone Y, X - 7(Y) ® g(Y) = x - w. That is
X -w(Y)®g(Y) = 0. Not that here, X is variable and takes all possible
values. Equating the constant parts, we get g(Y) = 0. Equating the
variable parts, we get X - 7(Y’) = 0 so that =(Y) = (0,0,...,0).

So we require for a particular Y, n(Y’) = (0,0,...,0) and g(Y) = 0.

2. For w having a 1 in the latter half, we want forone Y, X -7 (Y)®g(Y) =
z-w. But z-w = z;, with § < i <n, which is constant. So X - n(Y)
must be constant giving 7(Y) = (0,0,...,0). This must hold for each
such value of w so that g(Y) = 2341 =2342=... =2,

So we require either Y = (0,0,...0) with =(Y) = (0,0,...,0) and
9(Y)=00RY =(1,1,...1) with n(Y) = (0,0,...,0) and g(Y) = 1.

3. The last case is for w having a 1 in the former half, we want for one
Y, X-n(Y)®g(Y) =z -w. But z-w =z;, with 1 <i < 2. Equating
constant parts, g(Y') = 0, so that X -m(Y) = z;. We get wt(n(Y)) =1
with the 1 in the #’th position.

So our condition is: for 7(Y) € {(1,0,...,0),(0,1,...,0),(0,0,...,1))},
g(Y)=0.
We can combine the first two parts above to give the following two
conditions:
7(0,0,...,0) = (0,0,...,0) and g(0,0,...,0) = 0. (3)
For «(Y) € {(1,0,...,0),(0,1,...,0),(0,0,...,1))},9(Y) = 0. (4)

3.1 The 8-variable 1l-resilient Functions

Algorithm 1 gives us k = 10. We compute 7o = 1 and r; = 0 so that
mo =0 and m; = 0. Using all points of weight < 1 (as ro = 1) we get,

0 000O0O0TU OO
0 000O0UO0TO0°1
000 0O0GOCTI10
0000O0T1TQ0STO
So=So®bSo)=| 0 0 0 0 1 0 0 ©
00010000
001000GO00O
0100000 O
1 00000O0TO0STO
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Using the point of weight 0 as r; = 0 we get,
S1€)b(81)=(0 0 00 O 0O 0)
so that
S;=(1 111111 1).

There are no remaining ones so 2’ = 0. We define g and 7 below which
satisfies the conditions for construction of the required bent function.

_[1 ifY=(,1,1,)
1. g(Y)—{ 0 if(X,Y)eSandY #(1,1,1,1).

2. 7n(Y)=

If we take w and g as above then we get the value of b(z) = b(X,Y) =
X -7(Y)+g(Y) to be zero when z € Sy and one when z € S;. Alsow and g
satisfy Conditions 3 & 4. A 1-resilient function f(z) is obtained as follows.

f(z) 10b(z), fze S

b(z), otherwise.

We checked that the nonlinearity of f is 116, algebraic degreeis 6 and Ay =
24. A count on the number of bent functions satisfying Conditions 1 & 2
is given in [11).

3.2 The 10-variable l-resilient Functions

Algorithm 1 gives us k& = 22. We compute rp = 1 and r; = 0 so that
mg =8 and m; = 2.

Using all points of weight < 1 (as 7o = 1) and the reserved generator
[12] = (0000000011) (as mp — m’ = 8 < 10 and 2 divides n in Algorithm 2)
we get

/000000000 0)
00000O0O0O0GO0TO0 1
0 00000O0GO0UOT10
0 00000O0GO0TI1O0SW
0 00000O0TI1GO0TO 0O
00000O0T1@0TG00O0
000010000 O
0 0010000TO 0O
001000000 O
So=So®b(So)=| 0 1 0 0 0 0 0 0 0 0
1 00000O0GO0O00O
000000O0GO0T O 11
0 00000O0T1T1200
0000110000
0011000000
1100000000
0000000O0T1T10
0000011000
\o 0 0110000 0)/
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Using the point of weight zero and the reserved generator [1] = (6000000001)
(as my —m' =2 < 10 = n and 1 divides n) we get

0 00 OO O O 0 0 O
S198S1) = 0 00 0 0 0 0 0 0 1 .
0 01 0 0 0 0 0 OO
We find that 2’ = 2. We add these in the rows of S; @ b(Sy) to get
0 00 OO OO O OTPDO
S1®5(S1) = 1 00 0 000001 .
01100 0O0O0OOUO0UO

1111111111
S$1=168:10bS1)=[0 1 11111110 ].
1001111111

Taking g(Y) = 0 and #(Y') = Y. we get the value of b(z) = b(X,Y) =
X -w(Y')+g(Y) to be zero when z € Sp and one when z € S;. Alsom and g
satisfy Conditions 3 & 4. A 1-resilient function f(z) is obtained as before.
The nonlinearity of f is 488, algebraic degree is 8 and Ay = 48.

3.3 The 12-variable l-resilient Functions

Algorithm 1 gives us k = 44. We compute 79 = 1 and r; = 0 so that
mo = 25 and m; = 5.

Using all points of weight < 1, generators [1, 3], [1,4] and the reserved
generator [1,2] (2 divides n) for points of weight 2 we get So = So ® 5(So)
with 38 rows. Using the point of weight zero and the reserved generator
[1] = (000000000001) (1 divides n) we get after permutation

0 0000O0GO0O0OOT 0O
0 0000O0GO0OOT1T 00
00000O0OGOGO0OT1000
$19881)=1 5 4 00 0 0 0100 0 0
00000DO0T1000O0UO00D
0000010 000U OO

We find that 2’ = 5. We add these in the rows of S; & b(S;) to get
001110000000
00000O0O0O0OTILTO00
0 00000O0OTIO0T00
519581)={ 45 90 000001000 0
00000O0TI100T00O0O
110001000000
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110001111111
111111111011
111111110111
S;=1$S1®b(S1)= 1 11111101111
111111011111
0 01110111111

Teking g(Y) = 0 and n(Y) = Y. we get the value of b(z) = ¥(X,Y) =
X -7(Y)+9(Y) to be zero when = € Sp and one when z € S;. Also 7 and g
satisfy Conditions 3 & 4. A 1-resilient function f(z) is obtained as before.
The nonlinearity of f is 2000 and algebraic degree is 10. The function f
we constructed here has Ay = 104 and this is the best known value which
is achieved for the first time here.

3.4 The l4-variable 1-resilient Functions

Algorithm 1 gives us ¥ = 86. We compute ro = 1 and r; = 0 so that
mo = 60 and m; = 10.

Using all points of weight < 1, generators [1,3], [1,4], [1,5], [1,6] and
the reserved generator [1,2] (2 divides n) for points of weight 2 we get
So = So ® b(Se) with 75 rows.

Using the point of weight zero and the reserved generator [1] (1 divides
n) we get after permutation

(

S10 b(S1) =

COoOOoO~OOCOODOOO

COoO0O0OHOOO0OO0OCO
o000 OoOROoOOOOO
OCOO0O0CQOCO=OOOO
COoOO0OO0COoOO0CO~OOO
COO0OO0COCOOmROO
COoOCO0OO0CO0OQCOO0O-O
COO0OO0OO0CO0OO0OO00O00O0O0O
(== =N — I = I = > I = I = I =}
(== I o i o B o B o B o I o I o I o [ o)
OCOO0ODOCODOCOOO0O
HFOO0OO0ODOO0OO0OO0O0OO
oO=O0OOCOO0OOCOOOOC
COR OOO0OOOOO O
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We find that 2’ = 3. We add these in the rows of S; ® 5(S;) to get

( 0000000111000 0)
000O0O0OT100UO0O0OT DO OO
0 0001000O0O0OUOTO0OD
000 1000O0GO0GO0GOO0TO0O O
001 000O0UO0O0GO0O0G 0T OO
S19b(\81)=| 0 1 0 0 0 000 0O0O0O0O0O
1 000600O0O0O0O0GO0TO 0GOSO
0000O0OCOOOOOUO0TO 01
0000O0O0OO0OCOGOOOT10
0000O0OOOOOOT1TO0OUO0
\0 00 00O0O0O0OOT1U0TU 0O )
( 1111111000111 1)
1 1111011111111
1111011111111 1
1 1101111111111
1101111111111 1
$1=1808,®bS1)=|1 0 111111111111
0 1111111111111
1111111111111°0
1 1111111111101
1111111111101 1 J
\1 1111111110111

We define g and 7 below which satisfies the conditions for construction of
the required bent function.

1, ifYea
1. g(Y) _{ 0, otherwise.
where A =
{(0,0,0,1,1,1,1) (1,1,1,1,1,1,0), (1,1,1,1,1,0,1), (1
1,1,1,0,1,1,1), (1,1,0,1,1,1,1), (1,0,1,1,1,1,1), (0,
(1,1,1,1,1,1, 1)}

2. 2(Y) =Y.

If we take 7 and g as above then we get the value of b(z) = (X,Y) =
X m(Y)+g(Y) to be zero when z € Sp and one when z € S;. Also w and g
satisfy Conditions 3 & 4. A 1-resilient function f(z) is obtained as before.
The function f we constructed here has nonlinearity 8098 and this is the
best known nonlinearity value which is achieved for the first time here.
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4 Conclusions

In this paper we present a strategy to construct highly nonlinear 1-resilient
functions by modifying some output bits of a bent function. We present
a good lower bound on the minimum number of bits of a bent function
needed to be modified. We have shown that the bound is tight for func-
tions upto 14-input variables. One interesting problem is to study whether
Algorithm 1 provides the minimum distance between n-variable bent and
1-resilient functions for all even n. We present an algorithm to generate
the points whose output in the bent function require to be modified. For
n = 8,10, 12, 14 we identify Maiorana-McFarland type bent functions which
can be modified to get 1-resilient functions, using the points given by Con-
struction 1. This shows that the bound given by Algorithm 1 is tight and
is the minimum distance for these values of n. Further our construction
is superior to [11] in terms of the nonlinearity (we get better nonlinearity
for 14 variables) and autocorrelation absolute indicator (we get 1-resilient
functions with absolute indicator value that was not known earlier for 12
variable). Since the class of bent functions is very large, it may be con-
jectured that it is always possible to identify bent functions which can be
modified to get 1-resilient functions, using the points given by Construction
1.
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