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Abstract

n-ary hypergroups are a generalization of Dérnte n-ary groups
and a generalization of hypergroups in the sense of Marty. In this pa-
per, we investigate some properties of n-ary hypergroups and (com-
mutative) fundamantal relations. We determine two families P(H)
and P, (H) of subsets of an n-ary hypergroup H such that two geo-
metric spaces (H, P(H)) and (H, P,(H)) are strongly transitive. We
prove that in every n-ary hypergroup the fundamental relation 8
and the commutative fundamental relation <y are strongly compati-
ble equivalence relations.
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1 Introduction

In 1934, at the 8th congress of Scandinavian Mathematicians, Marty [20]
has introduced, for the first time, the notion of hypergroups, using in differ-
ent context: algebraic function, rational function, non-commutative group.
This moment was the first step in the history of the developments of the
algebraic hyperstructure theory all over the world, especially in Europe
(France, Italy, Greece, Romania), Australia, and later also in Iran, China,
Japan, Korea.
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This theory has been studied in the following decades and nowadays
by many mathematicians, for example see [2, 5, 6, 8]. A recent book [4]
contains a wealth of applications. The fundamental relation 8* was intro-
duced on hypergroups by Koskas [17] and was studied mainly by Corsini (3],
Freni [13] and Vougiouklis [23]. Also, the commutative fundamental equiv-
alence relation 4* was studied on hypergroups by Freni [11, 12], Davvaz
and Karimian [6, 8, 15].

The notion of an n-ary group was studied by Dérnte in 1928, which is
a natural generalization of the notion of a group. Since then many papers
concerning various n-ary algebra have appeared in the literature, for ex-
ample see 1, 16, 21, 22]. The notion of n-ary hypergroups are defined and
considered by Davvaz and Vougiouklis in |7}, Leoreanu-Fotea and Davvaz
(19, 18] which are a generalization of hypergroups in the sense of Marty
and a generalization of n-ary groups too.

Strongly compatible equivalence relations play in n-ary semihypergroup
theory a role analogous to congruences in n-ary semigroup theory. Indeed,
it is known (see {7]) that if p is a strongly compatible equivalence relation
on an n-ary semihypergroup (H, f), then we can define an n-ary operation
f/p on the quotient set H/p such that (H/p, f/p) is an n-ary semigroup. If
p is a relation on a set H, we denote p* as the transitive closure of p. Davvaz
and Vougiouklis [7] and Leoreanu and Davvaz [19] were introduced the rela-
tion B on an n-ary semihypergroup H such that 8* is the smallest strongly
compatible equivalence relation such that the quotient (H/B*, f/B8*) is a
fundamental n-ary semigroup. Mirvakili et al. [9] defined the relation v on
an n-ary semihypergroup and proved that 4* is the smallest strongly com-
patible equivalence relation such that the quotient (H/~*, f/v*) is a com-
mutative fundamental n-ary semigroup. In this paper, we investigate some
properties of n-ary hypergroups. Analogously to the work of Freni [12],
we determine two geometric spaces (H, P(H)) and (H, P,(H)) on n-ary
semihypergroups. We prove that in every n-ary hypergroup two geometric
spaces (H, P(H)) and (H, P,(H)) are strongly transitive and so 8 = 8* and
v = ~*. Also, several examples are presentd. We study the fundamental
relation on n-ary semihypergroups(hypergroups) derived(b-derived) from
semihypergroups(hypergroups).

2 Basic definitions and results

Let H be a non-empty set and f be a mapping f : H x H — P*(H),
where P*(H) denotes the set of all non-empty subsets of H. Then, f is
called a binary (algebraic) hyperoperation on H. In general, a mapping
f:Hx...x H— P*(H), where H appears n times, is called an n-ary
(algebraic) hyperoperation and n is called the arity of this hyperoperation.
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An algebraic system (H, f), where f is an n-ary hyperoperation defined
on H, is called an n-ary hypergroupoid or an n-ary hypersystem. Since we
identify the set {z} with the element z, then any n-ary (binary) groupoid

is an n-ary (binary) hypergroupoid.

As it is well-known we say that a binary (n = 2) hyperoperation f
defined on H is:

e associative, if

f(f(x) y): Z) = f(l‘, f(y,z)),
e weak associative, if
f(f(z,9),2) N fz, f(y,2)) # 0

for all z,y,z € H.

A binary hypergroupoid with the (weak) associative hyperoperation is
called a hypersemigroup (H,-semigroup, respectively).

A hypergroupoid (H, f) satisfying the reproducibility ariom:

fa,H)=f(Ha)=H foralacH,

is called a hyperquasigroup. A hyperquasigroup which is a semihypergroup
(H,-semigroup) is called a hypergroup (H,-group).

We use the following abbreviated notation: the sequence z;, Ziy1,- - ,z;
is denoted by :c{ . For j < 1, x{ is the empty symbol. In this convention

F(@1y T Yig 1y 2 Yjr Zit1a- - e s Zn)
is written as f(:c‘i,y;ﬁi+l,z;‘+1). In the case when ;1) = ... = y; = y the

;. (=)
last expression will be write in the form f(z3, yz yZ1)-
Similarly, for non-empty subsets A;,..., A, of H, we define

F(AD) = f(A1,...,Ax) =U{f(=]) |zi € A;, i=1,...n}.
An n-ary hyperoperation f is called weakly (%, j)-associative if
f(xi—lif(m?“—l)a x;ﬁ:l) n f(-""{_la f(x;'&j—l)’xrz;:-;l) # 0,
and (%, j)-associative if
Fah F@E ), 2003 = £ £, 2050,

holds for fixed 1 < i < j < n and all z1,29,...,29,—1 € H. If the
above condition is satisfied for all ¢,j € {1,2,...,n}, then we say that f
is weakly associative (associative, respectively). An n-ary hypergroupoid
with the (weakly) associative operation is called an n-ary semihypergroup
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(H,-semigroup, respectively). An n-ary semihypergroup (H, f) is weakly
i-cancellative, if there exist elements as,...,a, € H such that

f(a;’x’ a’?—l-l) = f(ag; Y, a?+1) imPlies z= y

for all z,y € H. If this implication is valid for all ¢ = 1,2,...,n, then
we say that (H, f) is weakly cancellative and elements ay, ..., a, are called
cancellable. An n-ary hypergroupoid in which this implication holds for
all as,...,a, € H is called i-cancellative. An n-ary hypergroupoid i-
cancellative for every i = 1,2,...,n is called cancellative.

An n-ary hypergroupoid (H, f) is commutative if for all o € S, and for
every (al) € H™ we have

f(ay, ... an) = f@oq):-- -1 8o(m))-

If a7 € H™ we denote a;g')) as the (@,(1),..-,@o(n)). An n-ary hyper-
groupoid (H, f) is said weak commutative, we write COW, if for every
at € H

(n)
anﬂ f(a:(’;)) # 0.

We say that an n-ary hypergroupoid (H, f) has a right (left) neutral polyad
[scalar right (left) neutral polyad] ef € H if for all z € H

z€ f(z,e3) (z€ f(ez,2)), [z =f(z,€3) (z=flez,2))]-

A polyad e; € H, 1 i< n,j & {1,i,n} called j-neutral polyad (scalar
j-neutral polyad) if for every x € H we have

z e flel™h,z,elyy), (z=f(e™ z.e01)).

A right neutral polyad called a 1-neutral polyad and a left neutral polyad
called an n-neutral polyad.

If e is j-neutral polyad for every j € {1,2,...,n} we say that e} is
neutral polyad, i.e. for every x € H we have

T € f(xaeg)1 T € f(e2:xv eg)v -, ZTE f(eg_l’mren)’ T € f(e’z‘,a:)

If F is scalar j-neutral polyad for every j € {1,2,...,n} we say that
e? is scalar neutral polyad, i.e., for every x € H we have
2

z = f(z,e3), z = f(es,z,€3),..., T =f(eg‘l,x,en), z = f(e3,x).

An n-ary hypergroupoid (H, f) has a right (left) neutral element [scalar
right (left) neutral element] if there exists e € H, such that for all z € H

sef@,"e") @ef("e ), b=F"e") @=f"e", ).
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An element e e H called j-neutral element (scalar j-neutral element) if

Ef( e ,:c, e’ )( f((J l), ,(ne ), for every = € H. If e € H there

exist such that e is a i-neutral(scalar i-neutral) for every i = 1,2,...,n then
e is called a neutral element(scalar neutral element). It is clear that polyad
€2 =...= e, = e, where e is (scalar)neutral element, is (scalar)neutral.

EXAMPLE 1. An n-ary hypergroupoid (H, f) with the operation f(z}) = z;
is a simple example of an n-ary semihypergroup in which each element
is a scalar right neutral element. In this semihypergroup no left neutral
elements.

EXAMPLE 2. Give an example of hypergroupoids with two or more neu-
tral elements. Suggestion Z,—; with an n-ary hyperoperation f(z}) =
{z1,(z1+...zn)(modn)} is an example of an n-ary hypergroupoid in which
each element is neutral and has only one scalar neutral element.

If for all 7 € H the set f(z7) is singleton, then f is called an n-ary
operation and (H, f) is called an n-ary semigroup. If m = k(n — 1) + 1,
then m-ary hyperoperation £ given by

n— - k(n—
Ry ™M) = £ (FUED 22T, ) T 1y 42)
k

will be denoted by f(x). In certain situations, when the arity of m does
not play a crucial role, or when it will differ depending on additional as-
sumptions, we write f) to mean fi) for some k =1,2,.... If k =0, then
m =1 and we denote f(o)(2[*) = 2.

An n-ary semihypergroup (H, f) in which the equation

b€ f(ai™tz;,alyy) (*)

has the solution z; € H for every a}™! @541, € H and 1 < i < n, is called
an n-ary hypergroup. This condition can be formulated f (a -1 H, al,) =
H. When (H, f) is an n-ary semigroup, (H, f) is called an n-ary hypergroup,
and besides if f is an n-ary operation, then the equation (x) is as follows:

b= flai™!,zi,034),
and in this case (H, f) is an n-ary group.
Let (H, f) be an n-ary hypergroup and B be a non-empty subset of H.
Then, B is an n-ary subhypergroup of H if the following conditions hold:

i) B is closed under the n-ary hyperoperation f, i.e, for every (z7) € B®
implies that f(z}) C B.
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ii) Equation b € f(bi™',z:,b%,,) has the solution z; € B for every i €
{1,...,n} and b],...,b;'_l,b,'.;.l,.. ., bn,b € B.

Let (H, f) and (G, g) be two n-ary hypergroups. A homomorphism from
H to G is a mapping ¢ : H — G such that ¢(f(al)) = g(¢(a1),...,9(an))
holds for all a,,...,a, € H.

If ¢ is injective, then is called embedding. The map ¢ is an isomorphism
if ¢ is injective and onto. We say that H is isomorphic to G, denote
H & G, if there is an isomorphism from H to G. Let ¢ : H — G be
a homomorphism, K be an n-ary subhypergroup of H and L be an n-
ary subhypergroup of G. Then, ¢(K) is an n-ary subhypergroup of G. If
¢~1(L) is non-empty, then ¢~!(L) is an n-ary subhypergroup of H([7]).
Let ¢ : H — G be a homomorphism. Then, the kernel ¢, written ker ¢,

is defined by
ker ¢ = {(a,d) € H? | ¢(a) = ¢(b)}.

The next theorem proved by Usan [22] in 1999 for n-ary groups. We prove
that with weak conditions for n-ary hypergroups.

Theorem 2.1. Let n > 3 and let (H, f) be an n-ary hypergroupoid. Then,
the following statements are equivalent:

(1) (H, f) is an n-ary hypergroup.
(2) For arbitraryi € {2,...,n — 1} the following conditions hold:
(i) (H, f) is weak i-cancellative;
(%) the (i — 1,%)-associative law hold in (H, f);
(iii) the (i, + 1)-associative law hold in (H, f);

(iv) for every al € H there is z € H such that the following equality
holds

n—1

an € f(ai_lax: a; )

Proof. (1) = (2) it is straightforward.
(2) = (1) Let (2) holds. We prove that the following propositions hold:

(2) (H, f) is an n-ary semihypergroup.

(b) For every a} € H there is z € H such that for every j € {1,...,n},
the following equality hold:

an € f(a]7,2,2,a77Y).

Proof of (a):
Let i € {2,...,n—1} and k& € N, satisfying

i<k<n-1. (1)
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In addition, suppose that (k, k+1)-associative law holds in (H, f) [for k = i
it holds by (ii7)]. We prove that (H, f) is (k + 1,k + 2)-associative. Let
b3~! € H be weak cancellable elements, by (i) and (ii), we conclude for
every a2"~! € H the following sequence of implications holds:

(a5, f(@fED), afnnhn b)) = fla5™, flafisth),alnl b) =

f(bi_la ay, f(alzcr f(azi?)’ 0'12:.:.;:.17 bi)) b?-;ll) =

f(bi_ly a, f(a12c+1’f(az12+l ) ai:.;:.z) bi)) b?;ll) =

f(bi_l’ f(a,f: f(a'éi'f)a ai:-;-lf-l)’ b?_l) =

CEN (CAN (Cerap NPy N e

flaf, FakiD) adinin) = Flai ™, F(afds ) afinha)-

Whence we conclude that: if the (k, k + 1)-associative law holds in (H, f)
and k € N satisfies (1), then also (k + 1,k + 2)-associative law holds in

(H, f).
Now, let 2 € {2,...,n — 1} and j € N, satisfying

2<j<i (2)

Suppose (H, f) is (j — 1, j)-associative [for j = i it holds by (iz)]. Let
b7~! € H be weak cancellable elements, for every a?"~! € H, by (i) and
() we have

fbim1, 775 £(@5370),0505%) = flbir,0] 7%, £@3H ), 60152 )) =

FOI?, f(bi-1,017%, f(a52377), 6733%), 0201, 577 Y) =

f(bi_z) f(bi—l)a{_zp f(a;}ji’_z)’a?:.}.;il yA2n—1, b?_l) =

O £ £33, 02351, 6071 =

FOT F@] ™2 (03472, aligh ) 007 =

f(a{—a’ f(a‘;‘-l-g—l)’ a'zzr’;.;l) = f(a.{-2, f(a;lfii_z)’ai:-;-l-l)-
Therefore, (j — 2,j — 1)-associative law holds in (H, f) for every j € N
satisfies (2). Therefore, (H, f) is an n-ary semihypergroup.
Proof of (b):

Now, Let i € {2,...,n — 1} and for every a} € H there is z € H such
that the following equality holds

an € f(ai!,z,a?7Y).
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If j < i, then for every a7 and b in H there exists y € H such that

~1y (@G
be flar™w £( 1051), aRy)-

Since (H, f) is an n-ary semihypergroup thus we obtain

(n—(i-j+1))
a

be f(ai—lx f(a';'_l»y: )s aj+1)-

Therefore, there exists = € f(aj -1, (n—(' J+ ))) such that

be f(a]™},z,a7y).

If 5 > 4, then in the similar way, for every al and b in H there existsy € H
such that the )

be fai™,y,a74).
So, (H, f) is an n-ary hypergroup. O

Corollary 2.2. Letn >3 andi € {2,...,n—1}, and let (H, f) be an n-ary
hypergroupoid such that (i,i+1)-associative law holds in (H, f). If (H, f) is
i-cancellative and i +1-cancellative then (H, f) is an n-ary semihypergroup.

Proof. Since (H, f) is i-cancellative and (3, ¢ 4 1)-associative thus the proof
of (a) of previous Theorem shows that for every integer i < k < n—1, (k,k+
1)-associative law holds in (H, f). Also, since (H, f) is i+ 1-cancellative and
(3,1 + 1)-associative thus by similar way (H, f) is (j — 1, j)-associative for
every integer 2 < j < ¢ + 1. Therefore, (H, f) is an n-ary semihypergroup
and the proof of part (b) of previous Theorem shows that (H, f) is an n-ary
quasihypergroup. So (H, f) is an n-ary hypergroup. O

Corollary 2.3. Letn >3 andi € {2,...,n — 1}, and (H, f) be a weakly
cancellative (cancellative) n-ary hypergroupoid.
If (H, f) is (i, i+1)-associative, then (H, f) is an n-ary semihypergroup.

Theorem 2.4. If e; and e; are scalar neutral elements of ternary (3-ary)
hypergroup (H, f), then ({ey, e2}, f) is a ternary subgroup of (H, f).
Proof. Indeed, by the assumption

ej = fei, e e5) = flei €, €5) = f(ei, €, €5)
for all 7, j = 1,2. Moreover, if e;,e;, ex € {e1, ez}, then the following equa-
tions

ex = f(z,ei,€5) = flei,y,e5) = f(ei, €5,2)
are solvable where z = y = 2z = f(ej, ek, &;) € {e1,e2}. Since f(e;,ex,€:) is

singleton for every i, j,k € {1,2}, hence ({ei, e2}, f) is a ternary subgroup
of (H, f). O
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3 Fundamental relation and commutative fun-
damental relation

Let p be an equivalence relation on the n-ary semihypergroup (H, f). We
denote by 7 the relation defined on P*(H) as follows. If A, B € P*(H),

then
APB+>aphb forallac A,be B.

It follows immediately that 7 is symmetric and transitive. In general, 7 is
not reflexive. Indeed, let us take, for example, the equality relation on A,

denoted here by J4. The relation 84 is reflexive if and only if |A| =1.

Definition 3.1. Let (H, f) be an n-ary semihypergroup and p an equiva-
lence relation on H. Then, p is a strongly compatible relation if

a; pb; forall1 <i<mnthen, f(a1,...,an) P f(b1,-..,bn).

Theorem 3.2. Let (H, f) be an n-ary semihypergroup and let p be an
equivalence relation on H. The following conditions are equivalent.

(1) The relation p is strongly compatible.
2) If £T,a,b€ H and a p b, then for every i € {1,...,n} we have
1
f(xi_llavx?+l) ? f(xi_l,b’ x?+l)'

(8) The quotient (H/p, f/p) is an n-ary semigroup.

Proof. We show that (3) & (1) & (2).
(1) = (2) It is straightforward.
(2) = (1) Let a; p b; wherei = 1,...,n. By (2) we have

f(a'h-'-aan) f(a'lv"ta'n—l’bn)
f(a'l, ey Qn_3, bn—l,bn)

il

f(a'lab21 o ~ybn)
f(b1,...,byn).

Since p is transitive thus f(ay,...,an) 7 f(b1,...,bs). Therefore, p is
strongly compatible.

(1) = (3) Davvaz and Vougiouklis in [7] show that (1) = (3).

(3) = (1) Now, let (H/p, f/p) be an n-ary semigroup. Suppose that a; p b;,
where i = 1,...,n. Since (H/p, f/p) is an n-ary semigroup,

fle(p(ar),...,p(an)) = {p(¥) | ¥ € f(a1,...,az)},
fle(p(b1),. .., p(bn)) = {p(2) | z € f(b1,-..,aq)},

il e
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are singleton. Thus, for every y € f(a1,-..,a,) and 2 € f(b1,...,by) we

have f/p(p(a1),...,p(an)) = p(y) and f/p(p(b1), ..., p(bn)) = p(2). But
pla;) = p(b;) and so we obtain p(y) = p(z) for every y € f(a1,...,a,) and
z € f(b1,.-.,bn). Therefore, f(a1,...,an) P f(b1,-.-,bn).

0

By Theorem 3.2, if p is a strongly compatible relation on an n-ary semi-
hypergroup (H, f). Then, the quotient (H/p, f/p) is an n-ary semigroup
such that

flp(p(ar), ..., p(an)) = p(z) for all z € f(ay,...,an),

where ay,...an, € H. If (H, f) is an n-ary hypergroup and p is a strongly
compatible relation. Then, the quotient (H/p, f/p) is an n-ary group.

ExXAMPLE 3. Let H = {a,b,c} be a set with a 3-ary hyperoperation f as
follows:

f(z,z,z) =z forallz € H,

f(z1,z2,23) = {a,c}, if exactly two elements of z;, z2, 3 are equal
with b,

f(z1, %2, 23) = =, if exactly two elements of x,, 2,23 are equal and
are not equal with z; and b,

f(z1,x2,23) = b, if (21,2, z3) is a permutation of (a,b,c).
It is easy to see that (H, f) is a 3-ary semihypergroup and
p = {(a,a), (5,b), (¢, ¢), (a,¢), (¢, 0)}
is a strongly compatible relation. We have H/p = {p(a), p(b)} and
flolp(z1), p(z2), plxs)) = p(x1) if p(z1) = p(z2) = p(3),

f/p(p(z1), p(z2), p(x3)) = p(z:) if exactly two elements of p(x1),
p(z2), p(z3) are equal and are not equal with p(x;).

Then, (H/p, f/p) is a 3-ary semigroup.
Davvaz and Vougiouklis in [7] show that the relation 8* on an n-ary

hypergroup (H, f) is the transitive closure of the relation 8 = |J Bk, where
k>1

B1 is the diagonal relation and, for every integer k > 1, Bx is the relation
defined as follows:

2By & 3o €H:{z,u} € fu(af), where m =k(n—1)+1.
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It is known that B* is the smallest strongly compatible equivalence relation
on an n-ary semihypergroup (H, f). Also, Leoreanu-Fotea and Davvaz [19]
show that the relation § is transitive. Moreover, the canonical projection
¢: H — H/B* is a homomorphism.

The relation 5* on an n-ary semihypergroup (hypergroup) is called fun-
damental relation and (H/B*, f/B*) is called fundamental n-ary semigroup
(group). If (H, f) is an n-ary semihypergroup, Mirvakili and Davvaz [9)
prove that the equivalence relation % denotes the transitive closure of the
relation v = |J -k, where v; is the diagonal relation, i.e.,

k31

7 ={(z,z)| z € H}
and for every integer k > 1, 7 is the relation defined as follows:
zy ifand only if T €uyyandy e u‘(’k).

If m = k(n—1) +1 there exist 2]* € H™ and there exists o € Sy, such that
Uy = f(k) (Zin) and ui’k) = f(k)(z:g';)). zny (ie., £ = y) then we write
T €y and y € uz’o) = u(q).

Let (H, f) is an n-ary semihypergroup, we define 7v* as the smallest
equivalence relation such that the quotient (H/v*, f/v*) is a commuta-
tive n-ary semigroup, where H/~* is the set of all equivalence classes.
The equivalence relation v* is called commutative fundamental relation and
(H/v*, f/7*) is called commutative fundamental n-ary semigroup. If (H, f)
be an n-ary semihypergroup, then the canonical projection ¢ : H — H/~*
with ¢(z) = v*(z) is a homomorphism.

The relation + (resp. v*) was introduced on hypergroups (2-ary hyper-
groups) by Freni [11, 12] and was studied mainly by Davvaz and Karimian
6, 8, 15].

Theorem 3.3. [9] Let (H, f) be an n-ary hypergroup. Then, we have

1) The fundamental relation v* is the transitive closure of the relation
v, i.e, (v =9).

2) Relation -y is a strongly compatible relation on (H, f).

Lemma 3.4. If (H, f) is an n-ary hypergroup, then for every k € NU {0}
we have

(1) Br C Brt1s
(2) M C Yes1-
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Proof. We prove that (2). The proof of (1) is similar. Let = v y, thus 2 €
H and o € S, exist, where m = k(n — 1) + 1, such that x € fiy)(2T") and
Y€ f(k)(z:((;")). Since (H, f) is an n-ary hypergroup and z,, € H thus there
exist z} € H such that z,,;, € f(z7). If 0(j) = m,set m’ = (k+1)(n—1)+1
and give elements 2’7" € H and a permutation 7 € Sy, as follow:

{z;=zi, ifie{l,...,m—1}

z:n+i—1 =Ty, if?: € {1,...,7&}

@) =0()+i—3j, ifie{j....i+n—-1}
(@) =0o(i—-n+1), ifi€j+nm.

{ () = o(3), ifie{l,...,j—1}

Therefore, z € f(k+1)(z"1"') and y € f(k.,.l)(z':g')")). Hence, = 41 ¥ and
so we obtain vx C Yi41- O

ExaMPLE 4. This example shows that Lemma 3.4 for n-ary semihyper-
groups is not true. Let H = {1,...,6} and 2-ary hyperoperation o on H
defined as follows:

1 2 3 4 5 6
{1,2,3} {12} {13} {12} {1,3} {1,3}

L2} {123 {23 {28} {12} {1,2}
1,3} {23} {123} {1,3} {23} {23}
(1,2} {23} {L3} {123} {1,2,3} {1,2,3}
{1,3} {1,2} {2,3} {1,2,3} {1,2,3} {1,2,3}
{1,3} {1,2} {2,3} {1,2,3} {1,2,3} {4,5}

For every z,y,2 € H we have o (yoz2) = (xoy)oz = {1,2,3}. Thus,
(H,o0) is a 2-ary semihypergroup. It easy to see that v = 8 and 4 2 5 but
4 f3 5.

Let (A, f) and (B, g) be two n-ary semihypergroups. We define (f,g) :
(Ax B)» — P*(A x B) by

(f’g)((a'lr bl)’ ce (a'n’b")) = {(a" b) I a€ f(a'h - .,a,.), be g(bls see )bﬂ)}'

Clearly (A x B,(f,9)) is an n-ary semihypergroup and we call this n-ary
semihypergroup the direct hyperproduct of A and B.

D R s W N {0
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Theorem 3.5. Let (A, f) and (B, g) be two n-ary hypergroups and let v%,
vp and ¥, p be commutative fundamental equivalence relations on A, B
and A x B respectively. Then,

AXB/vyxp = A/va % B/vp.
Proof. First, we define the relation 5 on A x B as follows:
(@1,b1) ¥ (a2, b2) <= a1 7, a2 and by 75 ba.
7 is an equivalence relation. We define 1 on A x B/7 as follows:
¥(F(a1,b1), .. .,7(@n, bn)) =F(a,b)

for all @ € f(v4(@1), .., 7a(an)) and b € g(v5(b1), .., 7(bn)). Since f,g
are associative, we see that v is associative and consequently A x B/7 is
a commutative n-ary semigroup. Now, let § be an equivalence relation on
A x B such that A x B/8 is a commutative n-ary group. we prove that

(a1,b1) 7 (a2,b2) => (a1,b1) 6 (az,b2).

Suppose a; v4 a2 and b; yp b, thus there exist k,h € NU {0} such that
a1 Yan @2 and by g, by. Set ¢ = max{k,h}, thus by Lemma 3.4 we
obtain a; 74, a2 and b, YBy b2. Hence, there exist z7*,y* € H where
m=k(n—1)+1, and 0,7 € S, such that

(a'l: bl) € (f(q) (m'in)’g(q)(yin)) = (f‘l g)(q)((zl’ yl)a veey (zm) ym))
(a2,6) € (fig)(zo1)): 960y (Uy))
= (f, g)(q) (xa(l)m y'r(l))) ceey (xa(m)a y'r(m)))-

Since @ is a compatible relation on A x B and A x B/@ is an n-ary com-
mutative group we have

8(a1,b1) = [(f,9)/6)g)(8(z1,81);- -+, 0(Tm,s ym))
= [(f,9)/0)(q)(8(o1)s ¥r(1)))s - - -, O((Zar(my), Yr(m))))
= 6(az,bs).
This means
if @1 va a2 and b; g bz then (ai1,b;) @ (az,b2). 3)
Finally, let a; v} a3 and b, v} bs, thus there exist u}{, v} € H such that

Q] = U] YA U2 YA -..7Y4 U =as and by = v; ’)’B'UZ'YB---'Yva=b2-
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Letp > I, foreveryi € {1,...,1}, set w; = u; and forevery i € {l+1,...,p}
set w; = u;. Then,
Q) =W YA W2 YA-..YA Wp =az and by = vy 7B V2 VB ...YB Vp = ba.
Therefore, by (3) we have
(@1,b1) = (wy, v1) 0 (wz,v3) 8...0 (wp,vp) = (az,b2).

Since 8 is an equivalence relation, (a1, b) @ (ag, b2). Hence, (ai, b1) ¥ (a2, b2)
implies (a1,b1) 8 (a2, b2). Therefore, the relation 7 is the smallest equiva-
lence relation on A x B such that A x B/ is an n-ary commutative semi-
group, i.e., ¥ = 74, g- Now we consider the map ¢ : A/y}; x B/yg —
A X B/vixp by

e(va(a),78(8)) =Yaxs(a,b).
It is easy to see that ¢ is an isomorphism. O

By the similar way we have

Theorem 3.6. Let (4, f) and (B, g) be two n-ary hypergroups and let 53,
Bp and B}, g be fundamental equivalence relations on A, B and A x B
respectively. Then,

Ax B/Baxp = A/B4 x B/Bp.

ExaMPLE 5. If (4, f) and (B, g) are two n-ary semihypergroups the The-
orem 3.5 and 3.6 is not true. Let H = {a;,...,a,} where n > 4. we define
n-ary hyperoperation f on H as follows:

flar,...,an) = H — {a1,a2},
f(@1y. .. 20) = H - {a1,a3},¥(z1,...,25) # (a1,...,a1),

(H, f) is an n-ary semihypergroup, since for every z,...,2, € H, we have
a1 ¢ £(27) and so

@ f@Y, a2 = H = {00}
= f(:c’l’l,f(x;-""’_l),x?;'_;l), vzi*~l e H.

(H, f) is not an n-ary hypergroup since for every z,...,z, € H, we
have a1 & f(zT). We obtain v}; = B} and B (a1) = 7§(a)) = {a1} and
Bi(a2) = 7i(az) = H — {a1} = v*(a;) = B*(a;) for every j > 2, and
so |H/B*| = 2 = |H/v*|. In the direct product H x H we have the n-ary
hyperoperation:

(frf)((xlayl))""(xn1yn)) = {(a!b) Iae f(wli"'!"l"n)’bef(yla“-)yn)}‘

Therefore, we obtain
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(£, (a1,a1),... y(a1,a1)) = (H — {a1,a2}) x (H — {a1,a2}),

(f, ))(a1,31),- .., (a1,4n)) = (H—{a1,02}) x (H~{a1,a3}), V(3}) #
(@),

({")f)((xhal)v' v 1(xmal)) = (H—{al,a3})x(H—{a1,a2}), V(z?) 7é
(a1),

(£i ) (z1,01),- .+ (Zn, ¥n)) = (H — {a1,a3}) x (H - {a1,a3}),
V(7). (a7) # (@),

Since (H, f) is an n-ary semihypergroup thus (H x H, (f, f)) is an n-ary
semihypergroup. It easy to see that B}, g = Vi1 y and

g;-le(ai’a'J') = 7;{)(1{(0'1’0']) = (H - {a'l}) X (H - {a'l})1 if 'l,] =
yorey T

B u(ai,a5) = Yixu(ai,a;) = {(ai,a5)}ifi=1orj=1.

Hence, we have |H x H/B§ gl =2n= |H x H/v}, 4| But |[H/By| =2 =
|H/v%| and so |H/By x H/By| = 4 = |H/v§ x H/v%|. Since n > 4 thus
2n # 4 and therefore

Hx HfByyy # H/By x H/By and H x H/vjy ¥ H/vg x H/ Vg

Theorem 3.7. Let (H, f) be a commutative n-ary semihypergroup. Then,
v=8.
Proof. It is straightforward. O

Theorem 3.8. Let (H, f) be a COW n-ary semihypergroup. Then, v* =
B*.

Proof. By definition 8* is the smallest equivalence relation such that H/8*
is an n-ary semihypergroup. Since H is a COW n-ary semihypergroup, so

N f(:rzg'l'))) #0 foral z7 € H.
€S,
Therefore, there exists a € [\ f (x:g‘)) ) which yield that
o€ES,

B*(a) = f/B°(B*(Zo@))s-- -+ B (Ta(n))) for every o € S,

that is H/B* is a commutative n-ary semigroup. Since 8 C v, we get
B* C 7*. Since B* C v* and 4* is the smallest equivalence relation such
that H/y* is a commutative n-ary semihypergroup, then 7* = §8*. a
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Theorem 3.9. Let (H, f) be an n-ary semihypergroup, B = By sy and
Y=yurn- fp= ’Y&;/ﬂ-'j/p-), then (H/B*)/p = H/v".

Proof. We consider the map ¢ : H/B* — H/v* by ¢¥(8*(x)) = v*(z).
Obviously, 9 is well defined, since 8* C y*. We have

$(f/B(B*(a1),...,B"(an)) =9(B"(f(a1,...,0n)))
7*(f(a1,...,axa))
fr(r(a),..., 7" (an))

= fIr (B8 (a1)), .- ., (8" (an)))-

Therefore, 1 is a homomorphism. Also, ¥ is onto. Set 8 = kery and
consider the isomorphism € : (H/B8*)/6 — H/~* by £(0(8*(z)) = v*(z),
for every x € H. It is easy to see that § = ker is a compatible relation.
Since (H/B*)/6 = H/v*, so (H/B*)/6 is a commutative n-ary semigroup
and since p = Yy g. ¢/p-) 18 the smallest compatible relation such that
(H/B*)/p is a commutative n-ary semigroup, thus p C 8. If ay*b. it is easy
to see that 8*(a) Vuyge,1/8) B*(b), therefore

0 =kery
= {(8"(a), B°(b)) € (H/B*)*|¥(B*(a)) = ¥(B*(b))}
= {(B*(a), B*(v)) € (H/B*)*|n*(a) = v*(b)}
C {(B*(a), B*(b)) € (H/B*)*|B* (@) Y{rype,1/8) B* ()}
=p.

Thus, 8 = p and the proof is completed. O

4 Strongly transitive geometric space

In this Section we recall some basic definitions and propositions from [12].
A geometric space is a pair (5, B) such that S is a non-empty set, whose
elements we call points, and B is a non-empty family of subsets of S, whose
elements we call blocks. B is a covering of S if for every point y € S, there
exists a block B € B such that y € B. If C is a subset of S, we say that C
is a B-part or B-subset of S if for every B € B,

BNnC#0=BcCC.

The family Fp(S) of all B-parts of S is non-empty, since § and S are
elements of Fg(S5). Moreover, the intersection of elements of F5(S) is an
element of Fp(S), hence F(S) is a closure system of S. For a subset X
of S, we denote by I'(X), the smallest B-part of S containing X, and it is
called the closure of X.

The following properties are true
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(1) X c I(X).
2) X CY = I(X) cI(Y).

(3) D(T(X)) = I(X).

(4) T(X) = U,x [(=), where I'(z) = T({z}).

For all subsets X of S, we can associate an ascending chain of subsets
(Ta(X))nen, called cone of X, defined by the following conditions:

To(X) = X;
and for every integer n > 0
Fap1(X) =Ta(X) U [U{B € B|BNTa(X) # 0}].-

Freni {12] used the notion of cone of X and obtained the closure of X, as
it is shown in the next proposition.

Proposition 4.1. Let (S, B) be a geometric space. For everyn € N and
for every pair (X,Y) of subsets of S we have

(1) X CY = Th(X) cTu((Y).
(2) Tn(X) = Ux Ta(z), where I'yn(z) = La({z}).
E 43

(3) Pn(rm(X)) = Pn+m(X)'
(4) T(X) = nLEJN La(z).

(5) If the family B is covering of S, then
Fat1(X) =U{B € BIBNT'n(X) # 0}.
(6) If B an element of B, we have I'(B) =I'(z), for all z € B.

(7) If m € N exists such that I'nyy C T'i(X), then we have Ti(X) =
Lm(X), for every integer k > m. Moreover I'(X) = I'n(X).

If By, Bs,..., B, are n blocks of geometric space (.S, B) such that B; N
Biy1 # 0, for any i € {1,2,...,n— 1}, then the n-tuple (B,, Bs,...,B,) is
called polygonal of (S, B). The concept of polygonal allows us to define on
S the following relation

T = y © = = y or a polygonal (By,B,,...,By,) exists such that
z € By and y € B,,.
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The relation = is an equivalence relation and it is easy to see that it coin-
cides with the transitive closure of the following relation:

z ~y & = =y or there exists B € B such that {z,y} C B.
So = is equal to |J ~", where ~"=~ o0~ o0...0~ n times.

n>1
If B is a covering of S, the relation =~ and ~ is defined in the following

way:

z = y & a polygonal (B, By, ...,By,) exists such that £ € By and
y € By.

x ~ y & there exists B € B such that {z,y} C B.

Freni [12] proved that the ~-class of = in S, that is, the equivalence class
of element £ modulo =, coincides with the closure I'(z) of z. We denote
[z], the =-class of  in S.

Proposition 4.2. For every integer n > 1 and for every pair (z,y) of
elements of S, we have

(1) y~" z & yely(z).

(2) [z] =T(z)-

(3) ~" is transitive & I'(z) = Tp(z), for allz € S.
(4) ~ is transitive & I'(z) =T1(z), for allz € S.

Our next proposition generalizes to arbitrary geometric spaces the con-
tent of Lemma 2.1 in [11].

Proposition 4.3. Let (S, B) be a geometric space. Let M be a non-empty
subset of S. Then, the following conditions are equivalent:

(1) M is a B-part of H.
(2) Ifx € M and x ~ y, then we have y € M.
(3) If z € M and z = y, then we have y € M.

Proof. (1) = (2) : Let (z,y) € H? be a pair such that z € M and z ~ y,
thus z = y or there exists block B € B such that {z,y} C B.If z =y,
the proof is completed, so let £ # y. Since M is B-part and z € M N B so
MnB#0, therefore BC M andso y € BC M.

(2) = (3) : Let (z,y) € H2 suchthat t€e M and s =y, thusz =y
or a polygonal (By,Bs,...,B,) exists such that z € B; and y € B,. If
x = y proof is complete, so let = # y. Since (By, Bz, ..., Br) is a polygonal
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thus there exist wo,...,wn € H such that wy = =z € B; and for every
i=12,...,n—1letw; € B;NB;;; and w, =y € B,,. Thus, x = wp ~
wy ~ ...~ wy, =y. Since wo = £ € M, applying (2) n times, we obtain
y=w, € M.

(3) = (1) : Let B be a block of geometric space (.S, B) such that BNM #
§ and z € BN M. For every y € B we have {z,y} C B and so = ~ y. Thus,
z =y and = € M. Finally, by (3), we obtain y € M, therefore B ¢ M and
M is a B-part of H. O

Also, Freni [12] proved the next Theorem:

Theorem 4.4. For every pair (A, B) of blocks of a geometric space (S, B)
and for any integer n € N, the following conditions are equivalent:

(1) ANB#0,ze€ B=>3CeB:(Au{z})CC.
(2) ANB#0,zeT(B)=3CeB:(Au{z})cC.
(3) ANT(B)#£0,ze(B)=>3C e B: (Au{z}) Cc C.

A geometric space (S, B) is strongly transitive if the family B is a covering
of S and moreover one of the three equivalence conditions of Theorem 4.4
is satisfied. With this definition we have (see [12]):

Theorem 4.5. If (S,B) is a strongly transitive geometric space, then the
relation ~ on S is transitive, and so ==~ .

REMARK 1. The converse of Theorem 4.5 is not true. Indeed, the following
counterexample can also be found in [12]: If (A™(V), p) is a geometric space
such that A™(V) is an affine space of dimension n > 2 and p is the family
of affine subspaces of dimension n = 1, that is the lines of A®(V), then the
relation ~ is transitive but the geometric space {A™(V), p) is not strongly
transitive.

Let (S, B) is a geometric space. For every element = € S, set
B(z) = |J{B € B|z € B}.

It is clear that B(x) = {y € S|z ~ y}. If the family B is a covering of S
then for every z € S we have B # (. From the preceding notion, it follow
at once the following:

Theorem 4.6. Let (S, B) be a geometric space and the family B be a cov-
ering of S. The following conditions are equivalent:

1) ~ is transitive i.e, ~== .

2) For every x € S, [z] = B(z) where [z] is =-class of z.
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3) For every x € S, B(z) is a B-part of a geometric space (S, B).
Proof. (1) = (2) : Since ~== and B(z) = {y € S|z ~ y}, we have
[z] = {y € Slz =y} = {y € S|z ~ y} = B(x)

(2) = (3) : By Proposition 4.3, if M is a non-empty subset of S, then
M is a B-part of H if and only if it is union of equivalence class modulo
= . Particularly, every equivalence class modulo = is a B-part of .S.

(3)= (1) : If z ~ y and y ~ z, then there exist two blocks B and C of B
such that {z,y} C B and {y, z} C C. Since B(z) is a B-part of a geometric
space (5, B), we have

z€B(z)NB = B C B(z)
=2>yeBE)NC
= C C B(x)
= z € B(z).

But B(z) = {y € S|z ~ y}, thus £ ~ z. Therefore, ~ is transitive. 0O

5 Strongly transitive geometric spaces asso-
ciated to n-ary hypergroups

If (H, f) is an n-ary hypergroup, we can consider the geometric space
(H,P(H)) whose points are the elements of H and whose blocks are the
n-ary hyperproducts of elements of H. Thus, if B € P(H), then there exist
k € NU {0} and an m-tuple (2[*) € H™ where m = k(n — 1) + 1, such that
B = f(x)(27*)- In this section, we suppose N* = NU {0}.
If n = 2, then (H,f) is a hypergroup (or 2-ary hypergroup). Gutan
(1997)[14] shows that the geometric space (H, P(H)) is strongly transitive,
when (H, f) is a 2-ary hypergroup. In this case, the relation ~ coincides
with the fundamental relation 8, therefore 8 is transitive. We notice that
the transitivity of 8 in hypergroup has been shown by Freni in [13].

Let (H, f) be an n-ary semihypergroup and P(H) be the family of H
defined as follows: for every integer £ > 1 and for every m-tuple (2*) €
H™, where m = k(n — 1) + 1, We set

(i) B(z1) = {z1}.
(i) B(2T") = fy(21"), if m 2 2.

Lemma 5.1. Let (H, f) be an n-ary semihypergroup. Then,
(1) For every yT € H and 1 <! < n, we have
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f(yi_ll B(zin)! yl’fl-l) = B(yi_l)zina yr+1)'

(2) If there exist an z'nteger k' € N*, an m'-tuple (z*') € H™ and
an element | € {1,2,...,m'}, where m' = ¥'(n — 1) + 1, such that
2z € f(k')(xl ) then

B(z7*) C B(zi™, 2 s 2y1)-

(3) Let k € N* and (27*) € H™ be an m-tuple of elements of an n-ary
semihypergroup (H i)B whene m=k(n—1)+1. If an integer k' € N*,
an m -tuple (') € H™ and an element € {1,2,...,m'} ezist,
where m’ = k'(n — 1) + 1, such that z; € B(z?), then

B(z* )CB(zl_ T ,zH_l)

Proof. Tt is straightforward. O
Lemma 5.2. Let (k') € N*" and for every1 < i < n set m; = ki(n—1)+1.
Then, for every (my+ma+...+my)-tuple (z7", 47", ..., 27"") of elements

of an n-ary semihypergroup (H, f), we have
f(B(=1"), B(y1), ..., B(z]")) = Bz, 972, ..., 20"").
Proof. Since (H, f) is an n-ary semihypergroup, we have
FBET), BG™),..- BET™)
= f(fky) (2] ) Sy @), - fika) (2177))

— ma
= f(1+1'511+kz';|;...+k'.)("';;‘1 LY a2 )
= Bz, y1"%,..., 27"

O

Lemma 5.3. Let (ki) € N*! and for every 1 < i < I, where | = g(n —
1) + 1, set m; = ki(n — 1) + 1, then for every (my + ma + ... + my)-tuple
(=™ ,y{"’, .oy 21") of elements of an n-ary semihypergroup (H , f), we have
B(B(«1"), B("?),..-, B(2")) = B(=]", 41 - . h A1)
Proof. Since (H, f) is an n-ary semihypergroup, we have
B(B(z1),B(y1), ..., B(z1™)) o
= fig(Fien) (=1M), f(kg)(yl )» -1 Fgen) (217))

f('l+k1+kz+ +k1)(x?}' ’yl y. ,zll)
_B(xl 1y1 3 )21 l)
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Theorem 5.4. If (H, f) is an n-ary hypergroup, then the geometric space
(H, P(H)) is strongly transitive.

Proof. Let B(2]*), B(z{*') be two blocks of P(H) such that
B(z"NBE)#0 and z € BEY).

There exist k,k’ € N* such that m =k(n—1) +1and m' =k'(n —1) + 1.
Let b € B(27*) N B(z}). Since (H, f) is n-ary hypergroup thus there exist
¢,y € H such that

(n 2)

z € f(b, c, b ) and zp € f(' T ,y,2).

Since z € B(zT*), by Lemma 5.1, we have

(n-2) my L (0=2) y (2=2)

ze flbe, b ) Cf(BEP)e (b ))=f(f(k)(z1 )Ec’ )b )
n—2 n—-2
C fi+1y(zle, b ))=B(2"c, b )

n-2 (n—2)

c BG4 1" w6, b )
B(z m-1 (=2 (n2)
= ( ) z 7y:m1cs b )
m’ (n—2)

c B, "5 v,57 e, b )

Moreover, since b € B(zT*), we obtain

- (n—2) _1 (n—-2)
B(z;n) CB( 1 a.f( z ’y’x))—B(zl ’ x ay’x) ( 2
c B(zr, 22y, f6,e, b ) = BGPL,  v e, b )

_q (n=2) ; (n=2)
CB(zl 11 z ,y,-’ET’,C, b )«

’ (n—2)
Therefore, B(z[*)U{z} C B(z”"'l,( z ),y, zP,c, b ) and the geometric

space (H, P(H)) is strongly transitive. ]

REMARK 2. If (H, f) is an n-ary hypergroup, the relation ~ defined on
the geometric space (H, P(H)) is transitive (Theorem 5.4 and 4.5) and
coincides with the relation 8 on the n-ary hypergroup used in the paper
(Davvaz an Vougiouklis [7]). Also, the relation =~ defined on the geometric
space (H, P(H)) coincides with the fundamental relation 8* on the n-ary
hypergroup used in the paper Davvaz and Vougiouklis [7). Therefore, we
obtain the next result:

Theorem 5.5. Let (H, f) be an n-ary hypergroup. Then, the relation B
is an strongly compatible equivalence relation and B8 = B*, where 8* is the
fundamental relation on H.
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The following example shows that Theorems 5.4 and 5.5 are not valid for
n-ary semihypergroups.

EXAMPLE 6. Let |H| > 4 and f: H® — P*(H) is defined as follow:
(n)

(@) =H - {a,b},
£@?) = H - {a,c},¥(zp) £ (D),
wherea #b#c#a € H.

(H, f) is an n-ary semihypergroup, since for every z,...,z, € H, we
have a € f(2}) and so

F@ F @), 2200 = H - {a,¢} = f(ai™), f(z3H71), a2,

for all z2"~! € H. Also, (H, f) is not an n-ary hypergroup, since for every
21,...,2n € H, we have a ¢ f(27). Let d € H — {a,b,c}. Then, we have
bBdandd B csobfB*c butnot b fec.

Theorem 5.6. Let (H, f) be an n-ary hypergroup and ¢ : H — H/B* be the
canonical projection. Then, ¢~1(8) is a P(H)-part of H, where § € H/B*.

Proof. Let = € ¢~'(6) and z 8 y. Then, ¢(z) = 6 and ¢(z) = ¢(y). Thus,
#(y) = & and therefore y € $—1(5). Now, Proposition 4.3 shows that ¢=1(4)
is a P(H)-part of H. O

In [12], Freni shows that there exists a family P,(H) of subsets of hyper-

group H such that v =~ and ¥* == on geometric space (H, P,(H)). Freni
show that the geometric space (H, P, (H)) is strongly transitive, therefore
7 is transitive. Also the transitivity of y in hypergroups has been shown in
[11]).
Now, we see a family P, (H) of subsets of an n-ary hypergroup H such that
the geometric space (H, P,(H)) is strongly transitive. Let (H, f) be an
n-ary semihypergroup and P,(H) be the family of subsets of H defined as
follows: for every integer k£ > 1 and for every m-tuple (z[*) € H™, where
m=k(n—1)+ 1, we set:

(i) Bo(z1) = {=z1}.
(i) Bo(z") = U S (255 o € Sm}, ifn > 2.
Where S,, is the symmetric group of all permutations on set {1,2,...,m}

Lemma 5.7. If (2*) is an m-tuple of elements of an n-ary semihypergroup
(H, f), where m = k(n — 1)+ 1, then

(1) For every 6 € S,, we have
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B, (") = Ba(230}))-
(2) For every yt € H and 1 < j < n, we have
f(y{—l,B,(zi"), y?+1) c Ba('y{_lizinv y;‘ﬂ)

(3) If there exist an integer k' € N*, an m/-tuple (z7*') € H™ and an
element‘l € {1,2,...,m'}, where m' = k'(n — 1) + 1, such that z; €
f(k’) (:L”in ), then

Ba(zin) C Ba(zi—lizTI1z?+l)‘
Proof. (1) For every permutation é € Sy,, we have
T E Bo.(zggr)')) &3dreSp:z€ f(k)(z:gg)‘;))
©3IreESp:z€ f(k)(zliﬁ(‘i’)")
ST E Ba(zin)'

@ Ifwe f(yi—l,Ba(z{"),y;‘_H), then an element y € By (2*) and
a permutation § € S,, exist such that w € f(y{'l,y, y;‘+1) and y €

f( k) (zgg')') ) . Set:

i = Yi, ifi=1,2,...,j—1
ZTj—14i = 24y ifi=1,2,...,m

Tm+i = Vit if‘i=j,j+1,...,n,
and let 7 be the permutation of Sy, +5—1 such that:

(i) =1, ifi=1,2,...,5—-1

(@) =0(GE~-j5+1), ifi=4j+1,....7+m—-1

T(@)=i-m+1, ifi=j+mji+m+1,...,n4+m-1
We have

j— 8(5 - - m4n—

w € f(7, fuy(zen ™ D), 24m ) = fuan (@),

therefore
{1 Bo(2"),¥741) C fi™, Bﬂ(“’;}m*l)""g}m-l)
C By (z*"1)

= B, (y] 7 21 y)-
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(3) If ¥’ = 0, then m’, = 1 and the proof is trivial. Thus, we suppose
K >1and z € fieny(z7" ). If w € By(2]"), a permutation § € S, exists

such that w € fy (251 )- Setting 5(h) = I, we have

(] S(h-1 )
wE f(k)(zég';)) = f(k)(zs((l) )v 2y, 25((;:‘.),1))

C fwy(Zaay s Foy (57 ) Zenany)
= <k+k')(f‘-'§ff)_ Y, ], z:((;:l-zn)
C B,(zi'l,x’l"', z{f,‘_l).
a

Corollary 5.8. Let k € N* and (27*) € H™ be an m-tuple of elements
of an n-ary semz‘hyperym;up (H, f), where m = k(n — 1) + 1. If an integer
k' € N*, an m'-tuple (7* ) € H™ and an element | € {1,2,...,m'} ezist,
where m' = k'(n ~ 1) + 1, such that z; € B,(z}'), then

B,(zT") C Ba(zi“l,mf",zﬂl).
Proof. If zy € B,(z"), a permutation § € S, exists such that z €
f(k,)(:cgg'; )). By Lemma 5.7, we have
-1, 8(m’ - '
Bo(2]") C Bo(f 1,250y s 21) = Bo( 4, 2T, 2%0).
O

Corollary 5.9. Let (k') € N*" and for every 1 < i < n set m; = ki(n —
1) 4+ 1. Then, for every (my+ma +...+my,)-tuple (z7™,97°%,...,21"") of
elements of an n-ary semihypergroup (H, f), we have

f(Ba(xinl): Bs(y1),- -+, Ba(z;nn)) C By (21,91 h 20 )

Proof. For every w € f(Bg(2]"), Bs(¥7?), ..., Bs(2]"")) there exist 3’ €
B,(y7"?),...,2' € Bs(21"") such that w € f(B,(z1"),v,...,z'). Thus, by
Lemma 5.7 and Corollary 5.8, we have

w € f(Bo(z[), ¥, #) C Bal@]h ¥, 2') C Bal@lh, 41, .., ).
|

Corollary 5.10. Letk € N* and (k) € N**, where h = k(n—1)+1 and for
everyl < i < h set m; = k;(n—1)+1. Then, for every (mi+ma+...4+my)-
tuple (7", y7"%,...,21"*) of elements of an n-ary semihypergroup (H, f),
we have
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BU(BU(le)’BU(yIm)!”'a ( ")) c B‘-"(xl ’yl L z;n,.).
Proof. It is similar to the proof of Corollary 5.9. O

Theorem 5.11. If (H, f) is an n-ary hypergroup, then the geometric space
(H, P,(H)) is strongly transitive.

Proof. Let k,k' € N* such that m=k(n—1)+1and m'=k'(n—1) + 1.
Let B, (z*) and B, (z') be two blocks of P,(H) such that

Bo(ZP)NBy(z™) #0 and z € By(z]).

Thus, there exists § € S,/ such that z € f(k:)(xg(;')" ). Let b € B,(27*) N
B,(z), so T € Sy, exists such that b € f(k)(z,r(l) ). Since (H, f) is an

n-ary hypergroup thus there exist ¢,y € H such that
(n-2) -2

z€fe, b ) ad zme ("2 ).

Since = € f(k:)(xgg';’)), by part (3) of Lemma 5.7, we have

(n—2)
z € f(b, C, b ) Cf(f(k)(zfa) he, b )
(n-2)
C By(zle, b )
(n— (n=2)
CBa(zl —lsf( :x:z,y,x),c, b )

(n-2)
CB,(z""“,(z VU T, C, nb )

-2 12 (n—z)
c Ba(zl -1,("2 )vy’x,in »Cy b )

Moreover, since b € B(z7*), we obtain

- n-2)
Bo(zin) CBo(zl laf( z ayaw))

-1 (n=2)
CBa(zl 11 z 1y,x)

n— (n-2)
c Bo(z1, "5y, f(bye, b))

-2 (n-2)
C Bﬂ(zl _lr(nx )ry) ,C, b )
- (n—2) i (n-2)
CB"(ZI 11 z L, y,I1,¢6 b ).
-1 (n—-2) m' (n—-2)
Therefore, B;(2*)U{z} C Bs(2*"", = ,y,27",c, b )and the geomet-
ric space (H, P,(H)) is strongly transitive. a
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Proposition 5.12. Let (H, f) be an n-ary hypergroup. Then, the relation
7 is a strongly compatible equivalence relation on H and so v = v*, where
¥* is the commutative fundamental relation on H.

Proof. Two relations ~ and = defined on the geometric space (H, P,(H))
are coincide with two relations 4 and v4*, i.e, ~= v and ~= v*. So by
Theorems 4.5 and 5.11 we obtain v = v*. O

ExaMmPLE 7. Let H = {a;,...,as} be a 2-ary semihypergroup with the
following table

O la a2 Gz a4 a5
ai A B B B as
as| B B B B asg
a3| B B B B a;
ag|B B B B as
as| B B B B as

where A = {a2,a3} and B = {a3,a4}. This example show that 8 # f* #
~* # v, and Theorem 5.11 and Proposition 5.12 are not valid for n-ary
semihypergroups.

ExAMPLE 8. Suppose (H, o) is a 2-ary hypergroup with the following table:

o a b c d e f g
a[{af] @b} ¢ & € T 3
b|{a,b} {a,b} ¢ d e f g
c c c {a, b} I g d e
d| d d g {ad} f e c
e e e f g {a,b} c d
f f f € c € g {a) b}
gl g g d e ¢  {ad} f

We have 8* = f and v* = v but § # B # a # p, where § is diagonal
relation and p = H x H. We have (a) = {a,b} and for every x € R, a #
z, B(z) = {z}. And v(a) = {a,d,9, f} and v(c) = {c,d,e}. In fact the
fundamental 2-ary group H/f3* is isomorphic to permutation group S3 and
the commutative fundamental 2-ary group H/~v* is isomorphic to Zj.

Theorem 5.13. Let (H, f) be an n-ary hypergroup and ¢ : H — H/y*
be the canonical projection. Then, ¢~1(8) is a P,(H)-part of H, where
€ Hiv*.

Proof. Let = € ¢™1(8) and = v y. Then, p(z) = § and p(x) = ¢(y), Thus,
@(y) = & and therefore y € ¢~!(6). Now Proposition 4.3 show that ¢~1(4)
is a Py(H)-part of H. (m]

219



Lemma 5.14. Let (27*) be an m-tuple of elements of an n-ary semihy-
pergroup (H, f). If ey, ez,...,en € H are neutral elements of (H, f) and
E ={ej,ez,...,en}, then for every i € {1,...,n} we have

' (i=1) (n—i)
(1) B(zl")C f( E ,B(z*), E ),

(i-1) (n—i)
(2) Bo(2") C f( E ,Bo(]"), E ).
Proof. 1t is straightforward. (]

Lemma 5.15. If e} is a right neutral polyed of a fundamental n-ary group
(H/B*, f/B*), then there erists a right neutral polyad for the commutative

fundamental n-ary group (H/v*, f/7*).

Proof. Leti=2,...,n, since e; € H/B*, thus there exists z; € H such that
e;i = B*(z). Set g; = v*(z;), we prove that € € H/v* is a right neutral
polyad of H/v*. Suppose 7v*(z) € H/v* thus we have

z € B*(2) = f/B7(B*(2),€3) = f/B*(B7(2), B°(23)) = B* (f (2, 22)). (4)
But, 8*(f(2,25)) C 7*(f(z,23)) and since v*(f(2,28)) = F/v"(v"(2),€3)
is singleton in the commutative fundamental n-ary group (H/v*, f/v*), by
(4) we obtain

7' (2) = f/7* (7 (2),€3).

This means €3 is a right neutral polyad for the commutative fundamental
n-ary group (H/v*, f/7*). o
By the similar way the next Lemma is true:

Lemma 5.16. If j € {1,...,n} and e} is a j-neutral polyad (neutral

polyad) of the fundamental n-ary group (H/B*, f/B*), then there exists
a j-neutral polyed (neutrel polyad) for the commutative fundamental n-ary

group (H/v*, f/7*)-

Lemma 5.17. If an n-ary semihypergroup have a neutral element e, then
B(e) and y(e) are neutral elements of H/B* and H/v*.

Proof. It is straightforward. O

Lemma 5.18. Let (H, f) be an n-ary semihypergroup. If eg is a neu-
tral element of the fundemental n-ary group (H/B*, f/B*), then there ex-
ists a neutral element e, of the commutative fundamental n-ary group
(H/~*,f/~*) such that eg C e,.
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Proof. Let eg € H/B*. Thus, there exists z € H such that 8*(z) = eg.
Set e, = 7*(2), then it is easy to see that e, is a neutral element of the
commutative fundamental n-ary group (H/~*, f/v*) and since 8 C +y thus
eg C eq. O

Our next theorem generalizes Proposition 3.6 in [12].

Theorem 5.19. Let (H, f) be an n-ary hypergroup and the fundamental n-
ary group (H/B*, f/B*) has a neutral element eg. If e, is a neuiral element
of the commutative fundamental n-ary group (H/v*, f/+*) in Lemma 5.18
and z € w.(H) = ¢~ Y(eg) and D.(H) = ¢~ (e,), then

D.(H) ={J{B, € P;(H)|z € B} =T1(2) = [2].

Proof. Since the geometric space (H, P;(H)) is strongly transitive, the re-
lation ~= 1 is transitive and by Proposition 4.2 we have I'; [2] = [z] = ¥(2).
Since eg € H/B so there exists € H such that eg = 8*(z) and e, = v*(z),
thus if a € we(H) and b € D.(H), then a 8 z and b v z. Moreover,
z € we(H) = ¢~ !(ep) thus
Y€ D(H)=¢p"Ye,) ©y72
© 3B, € P,(H) : {y,2} € B,

e yeU{Bs € P,(H)|z € B,},

whence D.(H) = J{B, € P,(H)|z € B} =T'1(2) = [2]. (]

REMARK 3. If n = 2, then the fundamental group H/B* has one iden-
tity(neutral element) 14,4. and the commutative fundamental group H/~*
has one identity(neutral element) 15/,-. The wy = ¢~1(1 Hyp-) is called
heart of H, and D(H) = ¢~1(15/p.) is called derived hypergroup of H.
Freni in [11, 12] shows that for every hypergroup H,

If G is a group, then
G' = D(G)
n n
={ze€GPneN3(z,...,z) e H,30 €S, : 1, =[] i, =[] zos) }»
i=1 i=1
where G’ is derived subgroup of G.

Lemma 5.20. In an n-ary semihypergroup (H, f), if e € H is a scalar
right neutral and o 2-neutral element, then e € H is a neutral element.
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Proof. We know e is 1-neutral and 2-neutral element. We show that e is
3-neutral element. Indeed,

n—2 - -
z€ flez, ") C fleflez "e), ")
(n—1), (n-3) (n—3)
=fle,e,f(z, €’), e )=fle,e,x, €).
Iterating this procedure we can see that e is i-neutral element for every
i=2,...,n. So, e is a neutral element of (H, f). O

Lemma 5.21. In an n-ary semihypergroup (H, f), ife € H is a (n - 1)-
neutral element and scalar left neutral, then it is a neutral element.

We say that an n-ary hypergroupoid (H, f) is b-derived from a binary
hypergroupoid (H,o) and denote this fact by (H, f) = dery(H, o) if the
hyperoperation f has the form

f(a})=z10z20...0z50b.

We say that (H, f) is derived from (H, o) and denote this fact by (H, f) =
der(H, o), if the hyperoperation f has the form

f(z}) =z10x00...0%).

It is clear that if b belongs to the center of a semihypergroup (hypergroup)
(H, o), then the n-ary hypergroupoid b-derived from (H, o) is an n-ary semi-
hypergroup ( hypergroup). If (H,o) is a semihypergroup (hypergroup),
then the n-ary hypergroupoid derived from (H, o) is an n-ary semihyper-
group (hypergroup).

Lemma 5.22. If (H,f) is an n-ary semihypergroup derived(b-derived),
where b belongs to the center of H, from a semihypergroup (H,o), then we
have

1) Bia, gy C B,y

2) V.5 C WHo):
Proof. Let (H, f) be an n-ary semihypergroup b-derived from a hypergroup
(H, o), we prove that (2). The proof of (1) is similar. Suppose = v(,5) ¥,
thus there exist k € NU {0}, elements 2* € H and permutation ¢ € S,
such that -
om
T € fy(el") and y € fin(z,q))
where m = k(n — 1) 4 1. Hence, we obtain

€ fuy(zl*)=2z10...0z,0b0z,+10...029p_10bo...020b
and

ve fuy(d)
=z,(1)o...oz,(n)oboza(n“)0...020(2,,_1)ObO...oz,(m)ob.
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Now, it is easy to see that = y(#,0) y. If (H, f) is an n-ary semihypergroup
derived from a hypergroup (H, o), the proof is similar. a

Theorem 5.23. If (H, f) is an n-ary hypergroup derived from a hypergroup
(H,0), then we have

1) B,y = B gy

2) Y(H,0) = VH.f)-

Proof. Since (H, f) is an n-ary semihypergroup, then Lemma 5.22 shows
that

V') Bu,s) C B o)

2') v, C VH,0)-

Conversely, let z v(g,0) y We prove that = v s y. Since = y(g,0) y thus
there exist [ € N, z{ € H and permutation o € S; such that

i i
z€ [[z and ye [] 2.

There exists ¥ € NU {0} such that k(n — 1) +1<I< (k+1)(n—-1)+1.
Set m = (k +1)(n — 1) + 1, Since (H, o) is a hypergroup thus there exist

2{,..., 2}, € H such that z € zj0...02,. Suppose ¢(j) = and set z{ = z;
for every i € {1,...,l — 1} and give permutation 7 € S,, as follows:

7(%) = o(d), ifie{1,...,5}

)=o) +i—-j, ifie{j+1,....5+m=-1}

(@) =o(i-m+!), fie{i+m-1+1,...,m}.

Therefore, we obtain
m m
z€[[2 and ye€ Hz;(i),
i=1 i=1
and so we have

z € fiean)(ZT) and ¥ € frean(Zrgy)-

Hence, z (#,1) y- Therefore, y(#1,0) C ¥(#1, ), @nd by (2) we obtain y(#,0) =
Y(H,5)- Similarly, using (1°) we have Bx, 1) = Ba,o)- O
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REMARK 4. If (H, o) is a semihypergroup, the preceding result is not valid
in general as it is proved from the structure whose table is given below.

o|l a b c d
[ B] Bd B 5.4
b|{bd} {b,d} {b,d} {bd}
o|bd) (bd} b} {ba)
| Bd) bd} {4 (b

If n > 3 consider an n-ary hypergroup (H, f) derived from (H,o) with
hyperoperation f(zy,...,z,) = {b,d} for every z,...,z, € H. Evidently
b B(#,0) ¢ but not b By, 5y c. Also, b /3('”,0) ¢, but not b B(*H’ ne

EXAMPLE 9. Let H = {a,b,c} and o be a hyperoperation defined on H as
follows:

ol a b ¢
al|{bc} c c
b c ¢ ¢
c|l ¢ ¢ ¢

H is a semihypergroup, since zo(yoz) = (zoy)oz =c for every z,y,z €
H. If n > 3, then n-ary semihypergroup (H, f) derived (b-derived) from
(H,o) is an n-ary semigroup and f(z}) = c for every 7 € H. We have
B(H,0) = Y(H,0) and b Y(ar,0) ¢ but b Ay, gy ¢ Thus, v 5y # Y(a,0) and
Bw,5) # Bs,0)-

Theorem 5.24. Let b be an element in the center of a hypergroup (H, o).
If (H, f) is an n-ary hypergroup b-derived from the hypergroup (H, o), then
we have

1) Bi,oy = Ba,g)s
2) YH,0) = UH.9-
Proof. It is similar to the proof of Theorem 5.23. O

Theorem 5.25. If (H,o) is a semihypergroup with right(left) neutral el-
ement e, i.e, z € Toe(z € eox) for every x € H. If (H, f) is an n-ary
semihypergroup derived from (H,o), then we have

1) Ba,oy = Ba, gy

2) V(H,0) = V(H.5)-

Proof. Let (H, f) be an n-ary semihypergroup derived from semihyper-
group (H,o) and (H,o) has a right neutral element e. We prove (2). The
proof of (1) is similar. Since (H, f) is an n-ary semihypergroup, hence
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Lemma 5.22 shows that vy, 5y C 7(#,0). Conversely, let = Y(H,0) ¥ We prove
that z vy, 1) y. Since = y(y,0) y thus there exist | € N, 2} € H and permu-
tation o € §; such that

i 1
z€ [z and y€ ][] 2z
i=1 i=1

There exists k € NU {0} such that k(n —1)+1<I< (k+1)(n—1)+1.
Set m = (k+1)(n — 1) + 1, since (H, o) has a right neutral element e, thus

z1€z10eCz10e0eC...C2z0 go0...0¢€ .
(m~l)—times
Suppose o(j) = ! and set z{ and permutation T € S,,, as follow:

{ zj=2;, ifie{l,...,l}

zi=e, ifie{l+1,...,m}

and

@) =0(j)+i—j, fie{j+1,...,j+m—1}
@) =o(i-m+l), fie{j+m-1+1,...,m}.

Therefore, we obtain

{ 7(i) = o(4), ifie{1,...,5}

m m
z€ ][]z and ye ][]z,
i=1
and so we have
z € fe41) (2'7) and yef (k+1) (z':'g';))'

Hence, = 1,5y y. Therefore, v(z1,0) = Ya,5). If (H, ) has a left neutral,
then the proof is similar to the above. By the similar way, we have Bu,p =
0O

B(H,0)-
In the similar way the next Theorem is true.

Theorem 5.26. If (H,o) is a semihypergroup with right(left) neutral ele-
ment e and b. If (H, f) is an n-ary semihypergroup b-derived from a semi-
hypergroup (H, o) where b is in the center of H, then we have

-l) /B(H,o) = .B(H,f),

2) Y(H,0) = V(H.1)-
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