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Abstract

Let G be a graph. The zeroth-order general Randié¢ index of a
graph is defined as R2(G) = 3, ev(c) @°(v), where a is an arbitrary
real number and d(v) is the degree of the vertex v in G. In this paper,
we give sharp lower and upper bounds for the zeroth-order general
Randi¢ index R3(G) among all unicycle graphs G with n vertices
and k pendant vertices.

Keywords: Zeroth-order general Randié index; Unicycle graph; Pen-
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1. Introduction

Half a century ago, in 1947, Harold Wiener introduced the first chemical
index, now called the Wiener index. He published papers (see for example
[21]) to show that there are excellent correlations between the Wiener index
of the molecular graph of an organic compound and a variety of physical
and chemical properties of the organic compound. In the past fifty years,
a large number of other chemical indices of molecular graphs, including
Merrifield-Simmons index, Hosoya indez, Randié index and Zagreb indices,
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have been proposed and widely used in chemistry. In fact, a chemical in-
dex is 2 map from the set of molecular graphs to the real numbers. It has
been showed that different indices can indicate different chemical informa-
tion and describe different properties of chemicals. The chemical indices
have been used in the theory of QSAR (Quantitative Structure-Activity
Relationship) and QSPR (Quantitative Structure-Property Relationship).

The inverse problem for chemical indices is that to find a graph which
have some given index value. This problem has been studied by many
scholars, for example by Goldman et al. [3] for Wiener index and by Li et
al. [13, 15] for Merrifield-Simmons, Zagreb and Zeroth-order general Randi¢
index. All these indices are popular in the study of molecular graphs. In
the paper, we are interested in the natural question of finding graphs with
minimal or maximal Zeroth-order general Randi¢ index value, given the
sizes of the graphs.

Let G = (V, E) be a graph. The Randié index of G defined in [20] is
RG)= Y (du)d(v)~*.

uweEE(G)

Randié showed that the index is well correlated with a variety of Physic-
Chemical properties of an alkane. The index R(G) has become one of
the most popular molecular descriptors, the interesting reader is referred
to [1]-[8], [16])- [20]. The zeroth-order Randi¢ index of G defined by Kier
and Hall [11] is R%(G) = L vev(G) d(v)~%. Pavlovi¢ [19] determined the
unique graph with largest value of R%(G). In [12], Li et al. investigated
the same problem for the topological index M;(G), also known as Zagreb
index, which is defined as M1(G) = ¥_,cv () 4°(v)- In 2005, Li et al. [15]
defined the zeroth-order general Randié index as R3(G) = 3¢y (g) 4*(v),
where a is a real number. Then Li and Zhao [14] characterized trees with
the first three smallest and largest zeroth-order general Randié index, with
the exponent a being equal to k, —k, 1/k and —1/k, where k > 2 is an
integer. In [10], Hua and Deng characterized the unicycle graphs with the
maximum and minimum zeroth-order general Randié index. In [9], Hu
et al. investigated the molecular graphs having the smallest and largest
zeroth-order general Randi¢ index.

Let G = (V, E) be a graph whose vertex set and edge set are V(G) and
E(G), respectively. For any v € V(G), we denote the neighbors of v as
N(v), and call d(v) = | N(v)| the degree of v. We call v € V(G) a pendent
vertex if d(v) = 1. The graph that arises from G by deleting the edge
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uv € E will be denoted by G — uv. Similarly, the graph G 4 uv arises from
G by adding an edge uv between two non-adjacent vertices  and v of G.

Denote, U(n, k) = {G |G is an n-order unicycle graph with k-pendent
vertices}. In this paper, we will give sharp lower and upper bounds on the
zeroth-order general Randié¢ index of U(n, k).

Let G € U(n,k). Then |[E(G)] = |V(G)]=n. fa=00ra =1,
then RY(G) = ¥,y (g @°(¥) = n and RY(G) = Svevic) @'(v) = 2n,
respectively. On the other hand, If £ = 0, G is just a cycle, and then
R%(G) = 2°n. So we always assume that o # 0, 1 and k # 0 throughout
this paper.

2. Lemmas

Let G € U(n, k). Denote the cycle in G as C, and Pen(G) = {v |v is
a pendent vertex in G}. Firstly, we will give some lemmas which will be
used in Section 3.

Lemma 2.1 Let G € U(n, k) and A = {v € V(C) | d(v) > 3}. IfR3(G)
is as small as possible for 0 < a < 1 or R%(G) is as large as possible for
a>lora<0, then |A|=1.

Proof. Since k # 0, |A| > 1. Suppose |A| > 1. Then there exist
uy,ug € V(C) such that d(u;) > d(uz) > 3. Assume N(uz) — V(C) =
{v1,v2,---,u}. Thent > 1. Obviously, v1v; € E(G) by v; € V(C) and
G € U(n,k). Let

G =G- VU2 + VU],
Then G’ € U(n, k) and

Ro(G") - Ry(G)

[(du1) + 1)% + (d(u2) - 1)°] — [d*(w1) + d*(u2)]
[(d(u1) +1)% — @%(w1)] — [d%(u2) — (d(u2) — 1)7]
= a(¢*! -7,
where d(u;) < ¢ < d(u1) + 1 and d(u2) — 1 < < d(ug). Since d(u;) >
d(uz), we have d(uz) — 1 < 7 < d(u2) < d(w1) < ¢ < d(u1) + 1. Thus, we
have R3(G’) < R%(G) for 0 < a < 1, and RY(G’) > RY(G) for @ > 1 or
a < 0, a contradiction. =
Lemma 2.2 Let G € U(n, k) and B = {v € V(G) | d(v) > 3}. If R3(G)
is as small as possible for 0 < a < 1 or R3(G) is as large as possible for
a>1ora<0,then |B]=1.

Proof. Choose G € U(n, k) such that R%(G) is as small as possible
for 0 < & < 1 or R%(G) is as large as possible for & > 1 or & < 0.
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By Lemma 2.1, we can assume that V(C) = {v1, vz, -,vs} withd(v) >
3 and d(ve) =+ =d(vs) =2.

Suppose |B| > 2. Then there exists v; € V(G)-V(C) such that d(v;) >
3. Assume that N(v;) = {u;,u2,---,u;}, then ¢t > 3. Since G € U(n, k)
and d(v2) = - -- = d(vs) = 2, there exists an unique path I(v;,v.) between
v; and v,. Assume, without loss of generality, that u; € {(v;,vz). Then
uy, Uz, U—1 € l(v1,vz). Since G € U(n,k), viuy,viug, -, n1u—1 &
E(G). Now we consider the following two cases.

Case 1. d(v1) > d(vz).

In the case, let G' = G — vzu; + v 4y, then G' € U(n, k), and

RY(G') - Ra(G)

[(d(v1) + 1) + (d(ve) — 1)°] = [@%(v1) + d*(vz)]
a(ca—l - na—l)'l

where d(vy) < ¢ < d(v1)+1 and d(v;)—1 < 1 < d(vz). Since d(v;) < d(v1),
we have d(v;) = 1 < < d(v;) £ d(v1) < { < d(v;) + 1. Thus we have

R%(G") < R(G) for 0 < @ < 1 and R%(G') > R%(G) fora>1lor a <0,
a contradiction.

Case 2. d(v1) < d(vg) = t.
Let G' = G—vzug—: - - —vzus—1+v1u2+- - -+v1us-1. Then G' € U(n, k)
and

Ry(G") - Ry(G)
= [(d(w) +t—2)" + (d(ve) — £ +2)°] — [d*(v1) + d*(vz)]
= [(d(w) +t-2)" - 7] = [d*(x) — 29
= a(d(v) - 2)(¢* =%,
where t = d(v;) < { < d(v1)+t—2and 2 < 7 < d(v1). Since d(v1) < d(vs),
we have 2 < 7 < d(v1) < d(vz) < { < d(vy) +t — 2. Thus we have

R%(G") < R%(G) for 0 < @ < 1, and R%(G') > RY(G) fora>1or a <0,
a contradiction. =

Let G € U(n, k). Set

Vl={veV(G)ld(v)= [2:——:]}’

Vo = {'u e V(G) | d(v) = [2:_‘:] + 1}.

232



Lemma 2.3 Let G € U(n,k). If RA(G) is as large as possible for
0 < a <1 or RY(G) is as small as possible for & > 1 or a < 0, then

[Vi| = (n — k) [2"-'°] —n and |Va] = 2n — k — (n - k) [Zg‘:k]
Proof. Let G € U(n, k) such that R%(G) is as large as possible for

0 < a < 1 or R%(G) is as small as possible for @ > 1 or & < 0. Now we
consider two cases.

Case 1. ":‘_‘,f is an integer.

In the case, we just need to show |V3| =n —k and |V3| =

Suppose there exists a vertex v; € V(G) — Pen(G) such that d(v;) #
It say 2 < d(v)) < 2k,

Since 3-,ev(G)-Pen(c) d(v) = 2n —k, there exists a vertex v, € V(G) —
Pen(G), such that d(vg) > 222k + 1 > 3. Set N(vz) = {u1,u2, -+, us}.
Then s > 4.

Subcase 1.1 v, € V(C).

Since G € U(n, k), there is an unique path I(vz, C) from v, to C. With-
out loss of generality, we can assume u, € l(vg,C), then uj,ug, -+, us—1 &
l(ve,C)UV(C).

If v; = ug, then let G’ = G — uyve + uyv;.

If v; € N(v2) — {us}, say v1 = u;, then let G’ = G — ugvy + ugv;.

Suppose v; € V(G) — N(vz). Since G € U(n, k) and vo ¢ V(C), G — vy
is disconnected. Assume, without loss of generality, that v; and u; are in
the different components in G — vo. Then let G’ = G — uyvy + ujv;.

Subcase 1.2 v € V(C).

In the case, we can assume that u;,u2 € V(C) N N(vz). Then ug ¢
V(o).

If v; € V(C), then let G' = G — ugve + ugv;.

If v; ¢ V(C), then we can assume v u; € E(G) and let G' = G —ujva+
uiv.

In all cases, we have G’ € U(n,k) by d(v2) = s > 4 and d(v;) > 2.
Thus

R(G") - R(G)

[(d(v1) + 1)* + (d(v2) — 1)°] = [d*(v1) + d*(v2)]
[(d(v1) + 1)* — d%(w1)] = [d*(v2) — (d(v2) — 1)°]
o¢* ™ =)

where d(v1) < ¢ < d(v1) +1 and d(vz) — 1 <7 < d(vs). Since d(v;) +1 <
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d(ve) — 1, we have d(v;) < { < d(v;) +1 < d(v2) =1 < 7 < d(v2). Thus
we have R%(G’) > R%(G) for 0 < a < 1, and R%(G') < R3(G) for o > 1
or a < 0, a contradiction.

Case 2. %":T" is not an integer.

In the case, we just need to show that for every v € V(G) — Pen(G),

[2:_':] <d@w) < [2" :] +1

Suppose, without loss of generality, that there exists a vertex v; €
V(G) — Pen(G) such that 2 < d(v;) < [2;_-,5] .

By 3 .cv(G)-Pen(c) 8(v) = 2n — k, there exists a vertex v; € V(G) -
Pen(G) such that d(ve) > [2"‘ ] +1 > 3. Set N(v2) = {ur,u2, -, us}.
Then s > 4.

By the same argument as that of proof in Case 1, we can derive a
contradiction.

From the proof above, we know that |V3| + |[V2| = n — k. On the other

nd,
|v1|[2" ’“]+|v2|([2"' —E]+1) =20

Solving the equation, we get

2n—k

on - k]

Vil = (n - k)[ ]—n and |Va| =2n—k—(n— k)[ o

Thus the conclusions of our theorem hold. m

3. Main results

In this section, we use U(n, k) to denote the set of unicycle graphs of or-
der n with k pendent vertices. Let G € U(n, k) and d(vp) = max{d(v)| v €
V(G)}. Denote

O = {G € U(n,k)| d(vo) = k+2, d(v) = 2for v € V(G)\(Pen(G)U{w})}

Then we have the following result.
Theorem 3.1 Let G € G(n,k). Then

RG> k+2)*+(n—k-1)2+k for O0<ax<l
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and
R(G)<(k+2)*+(n—k—1)2*+k for a>1 or a<0.

The equalities hold if and only if G € ©.

Proof. Choose G’ € U(n, k) such that R%(G’) is as small as possible
for 0 < @ < 1 or RY(G’) is as large as possible for @ > 1 or @ < 0. By
Lemma 2.2, there exists unique vertex v, € V(G’) such that d(v,) > 3.
Since G’ € U(n, k), we have G’ € ©. Note that RS(G') = (k +2)* + (n —
k —1)2% + k. Thus the conclusions of our theorem hold. ]

Let G € U(n, k) and v = [2:—_—,5] Set
Vi ={v € V(G) |dw) =7} and Vo ={ve V(G)|d)=7+1}.
Let ny = (n — k)y —n and ng = 2n — k — (n — k). Denote
Q={G e U(n,k)|[V =V, UVoU Pen(G) and |V1| = ny, |Va| = na}.
Theorem 3.2 Let G € U(n,k). Denote y= [2” "] Then
RUG) < ((n—k)y—n*+(@2n—k—(n—kW)(y+1)*+k,for0<a<1
and
RY(G) = ((n—k)yy=n)y*+(@2n—k—(n—k)y)(7+1)*+k, fora > 1 or a < 0.

The equalities hold if and only if G € Q.

Proof. Choose G’ € G(n, k) such that RS(G’) is as large as possible
for 0 < @ < 1 or R3(G') is as small as possible for & > 1 or & < 0. By
Lemma 2.3, we have

=(n—k)7_ni

@) ==k |2 -

2n—-k
-k

Since G’ € U(n,r), we have G' € . Note that

[Va(G')| =2n—k — (n— k)[ ]=2n—k—-(n—k)'y.

RY(G) =((n—kyy—n)y* + (2n—k — (n — k)y)(y +1)* + k.

Thus the conclusions of our theorem hold. .
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