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Abstract. Let H,G be two graphs (or digraphs), where G is a
subgraph of H. A G-decomposition of H, denoted by (H,G)-
GD, is a partition of all the edges (or arcs) of H into sub-
graphs (G-blocks), each of which is isomorphic to G. A large
set of (H,G)-GD, denoted by (H,G)-LGD, is a partition of all
subgraphs isomorphic to G of H into (H,G)-GDs. In this pa-
per, we obtain the existence spectrums of (A\DKp, n, P§)-LGD,
where Pj (i = 1,2, 3) are the three types of oriented P;.
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1 Introduction

Let G = (V(G), E(G)) be a graph, where each edge in E(G) is denoted
by an unordered pair {u,v}, u,v € V(G). The degree dg(v) of a vertex v
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in G is |{u: {u,v} € E(G)}|. A graph G is r-regular if dg(v) = r for all
v € V(G); aregular graph is r-regular for some r. A graph G is a subgraph
of H if V(G) C V(H) and E(G) C E(H). A spanning subgraph of H is
a subgraph G with V(G) = V(H). Let H = (V(H), A(H)) be a digraph,
where each arc in A(H) is denoted by an ordered pair (u,v), u,v € V(H).
A digraph G is a subgraph of H if V(G) C V(H) and A(G) C A(H).
The indegree dp(v) of a vertex v in D is |{z : (z,v) € A(D)}|, and the
outdegree df(v) of vis [{y : (v,y) € A(D)}|. Let G be a graph (or digraph),
A be a positive integer, we use AG to denote the multigraph obtained from
G by repeating each edge (arc) A times.

In this paper, K, is the complete graph on n vertices, where any two
distinct vertices z and y of K,, are joined by exactly one edge {z,y}, Kmn
is the complete bipartite graph with two parts X and Y of cardinalities
m and n respectively, where any vertex z in X and any vertex y in Y are
joined by exactly one edge {z,y}, Cx = (21,22, -, Zk) is a cycle of length
k, DK, is the complete symmetric directed graph of order n, where any
two distinct vertices £ and y of DK, are joined by exactly two arcs (z,y)
and (y,z), DK, p is the directed complete bipartite graph with two parts
X and Y of cardinalities m and n respectively, where any vertex = in X
and any vertex y in Y are joined by exactly two arcs (z,y) and (y,z).

Let H,G be two graphs (or digraphs), where G is a subgraph of H.
A G-decomposition of H, denoted by (H,G)-GD, is a partition of all the
edges (or arcs) of H into subgraphs (G-blocks), each of which is isomorphic
to G. A large set of (H,G)-GD, denoted by (H,G)-LGD, is a partition of
all subgraphs isomorphic to G of H into (H,G)-GDs.

For the undirected cycle Cy, if each edge is oriented, then we get the
oriented Cj. There are two types of oriented Cj:

ANIVAN

cyclic triangle C; transitive triangle T'T3

If each edge of the path P is oriented, then we get the oriented Pi. There
are three types of oriented Pj:

P} P P}

For the oriented pentagons and the cyclic cycle, the existence problems
of their graph designs have been researched (see [1],[9],(2]). The large set
(Kn,C3)-LGD (that is large set of Steiner triple system LST'S(n)) has been
completely solved (see [7], [8] [10]). For two types of oriented Cs, Cs and

TTs, the large set (DK, C3) LGD (that is large set of Mendelsohn triple
system LMTS(n)) and the large set (DK,,TT3)-LGD (that is large set of



transitive triple system LDTS(n)) have been completely solved(see [5] and
[4]). For path P; and three types of oriented P§ (i=1,2,3), the existence
spectrums of (AKy, P3)-LGD and (ADK,, P§)-LGD have been obtained in
(6] and [11]. Not a long time ago, the existence problem of (AKiy n, Ps)-
LGD (that is large set of Ps-decompositions of complete bipartite graph)
was solved (see [12]). It is easy to know that (ADKg, n,P})-GD (or
(ADK 0, P3)-LGD)is equivalent to (A\DKp n, P#)-GD (or (\DK, 5, P2)-
LGD), so we only discuss the existence of (ADK n, P3)-LGD and (ADK s n,
P3)-LGD. In this paper, we investigate the existence of (ADKp n, P})-
LGD and obtain their existence spectrums, where P§ (i = 1,2, 3) are the
three types of oriented P;.

2 (ADKmp, P)-LGD

An r-factor of K, is an r-regular spanning subgraph of K,. If all
the edges of K, can be partitioned into some r-factors, then we say that
K, has an r-factorization. If k = |V(G)|, then the cycle Cj is called a
Hamilton cycle of the graph G. Obviously, a Hamilton cycle of a graph
G must be a 2-factor of G.

Lemma 2.1 Bl For any positive integer n > 1,
(1) there exists a I-factorization of Koy, ;
(2) there ezists a Hamilton cycle decomposition of Kopy.-

Lemma 2.2 There ezists a (\DKpm n, P})-GD only if

Aodd, m andn are both even;
Aeven, m21, n>2land m+n>3.

Proof. First, the digraph P} has two arcs. And, d=(P}) =1, d*(P}) =
2, where d=(P}) (or d+(P})) is the greatest common divisor of all the
indegrees (or outdegrees) of vertices in P}. So it is easy to know that if
there exists a (ADKpn, P3)-GD, then

m+n>3

2Amn =0 (mod 2)

Am =0 (mod 1) and An =0 (mod 1)
Am =0 (mod 2) and An =0 (mod 2)

that is

Aeven, m>1l, n>2land m+n > 3. o

For convenience, in this section, the following P}-block is denoted
by [z,y,z]; :

{ X odd, m andn are both even;
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T Yy z

Obviously, the block [z, y, z]; contains two arcs (y,z) and (y, 2).
Let Zm, Z, be two partite sets of K, . Define two P)-block families
in DK, ,, as follows:
P(m,n) = {[la,y,bl1: a # b E Zpn,y € Z,}
Q(m,n) = {[e,z,d}1 :c#d € Zp,z € Zp}
It is easy to see that
[P(m,n)| = (F)n = Z23=D, |Q(m,n)| = ()m = Z2G=D.

2
And, |P(m,n)| + |Q(m,n)| = ﬂﬁ'—"—'-zl is just the number of distinct
P3 -blocks in DK, 5. Obviously, a ()\DK mn P3) GD consists of Amn P}-
blocks, a (ADKp n, P} )-LGD contains M—}‘— pairwise disjoint (ADKp, 5,
P})-GDs. Combining with Lemma 2.2, we have

Lemma 2.3 There ezists a (\DKp, n, P})-LGD only if
{ 2A|(m +n — 2);

A odd, m = n are both even,;
A even, m = n are both even, or m =n > 3 are both odd.

Proof. Firstly, a (ADKpmn,P$)-LGD contains ™+2=2 pairwise disjoint
(ADK s n, P})-GDs, so we have 2)|(m +n — 2).
Furthermore, let Z,,,Z, be two partite sets of K », for a fixed point
z in the set Z,,, because its outdegree 1n each (ADK,u n, P3)-GD (called
small set) is An, a small set contains 22 P3 -blocks of the type [a,z, b,
where a # band a,b € Z,, the total number of the type [a,z,b]; in DKy, 5
is (3), the number of the small set is Z4%=2, therefore we get

A_215 in—-2 (n) *
By *, we have m = n.
Finally, combining with the necessary conditions of a small set (i.e.
Lemma 2.2), we draw the conclusion of the Lemma. o
Therefore, in order to determine the existence spectrum of (ADK,, »,

P})-LGD, it is enough to construct (DKze,2¢, P1)-LGD and (2DKat 11,2641,
P})-LGD for any positive integer t.

Lemma 2.4 There exists a (DKay,2¢, P3)-LGD for any t > 0.

Proof. By Lemma 2.1, there exist a 1-factorization {f1, f2,-- -, fat—1} of
Ko on Zy, and a 1-factorization {fy, fa, - -, fae—1} of K2¢ on Zy;. Define
As = {[0,9,bl1 ¢ {0,0} € fioy € Za}, i=1,2,-,2 1,
B; ={le,z,d)1 : {c,d} € fi,x € Zar}, i= 1,2,~--,2t— 1.
It is easy to verify that each (Za:|J Za:, AilUB:) is a (DKo 2¢, P3)-GD
fori=1,2,---,2t - 1.



Furthermore, the family {4; : i =1,2,---,2t—1} just forms a partition
of all P}-blocks in P(2t, 2t), and the famxly {B i=1,2,...,2t — 1} just
forms a partition of all P}-blocks in Q(2¢,2t). Therefore, {.Al U By, A2 Ba,

N P UBzg_ } forms a (DKzt 2t P3) LGD on Zy UZ2¢ O

Example 25 A (DK2 2 )-LGD {(ZzUZg,C)}, where
Ay ={[0,0, 1]1,10 1,11}, B; = {[0,0,1]:,0,1,1):},
C=Al B

Lemma 2.6 There ezists a (2DKat11,2¢+1, P3)-LGD for any t > 0.

Proof. By Lemma 2.1, there exist a Hamilton cycle decomposition { f1, f2,
-y ft} of Kat11 on Zpey; and a Hamilton cycle decomposition {f, fa,: - -
ft} of K41 on Zgey1. Clockwise orient the edges of each Hamilton cycle
so that each vertex appears once as the head of an arc and once as the tail
of another arc in each Hamilton cycle. Define
= [a’y! b]l (a,b) € fhy € Z2t+1}a i=1,2,
={lez,dhi:(c,d) € foze Zar1}, i=1,2,-
It is easy to venfy that each (Zae41 U Zats1, A: UBi)isa (2DK2,+1,2H.1,
P}H)-GDfori=1,2,--,t
Furthermore, the family {4; : i = 1,2,..-,t} just forms a parti-
tion of all P}-blocks in P(2¢ + 1,2t + 1), and the family {B; : i =
1,2,---,t} just forms a partition of all P}-blocks in Q(2¢ + 1,2t + 1).
Therefore, {A1UB1, A2UBz,---,A:UB:} forms a (2DKj; 5, P})-LGD
on Zae41 | Zatar. 0

Example 2.7 A (2DKj33, P3)-LGD = {(Z3\) Z3,C)}, where
h= (0: 1,2)7 f = (ﬁ: Iyﬁ))_
Al: [0?_6’1]1.1 [1:0’2]1: [2:0)0]1) [0 1]l$ [1 2]11 [2 1 0]1’ [0 2 1]17
(1,2,2]s, 2,2,01,
81: [6,09 i]l’ [iaotill’ [—2-1 Oy(_)]l, [6: 17 i]l) [i: 1a§]1) [i’liﬁll) [6121 i]1:
[i1 2’ i]1! [Q) 236 1

C=AUB:.
Theorem 2.8 There ezists a (\DKp n, P})-LGD if and only if
2\|(m +n - 2);
A odd, m = n are both even,;
A even, m = n are both even, or m =n > 3 are both odd.

Proof. By Lemma 2.3, we only need to prove the sufficiency.

Ifm=n are both even. Let m =n = 2t. For any t > 0, there exists
a (DKai,2¢, P3)-LGD = {Z2¢|JZ2:,Ci : 1 <i < 2t —1} by Lemma 2.4.
Define
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(k+1)2
Di= U C,0<k<#l-g,
_ t=kA+1
then {ZZt Uth,Dk : 0 < k < % - 1} isa (/\DKzt,gg,Pg')-LGD.
Ifm=n>3 are both odd and A even. Let m = n = 2t + 1. There
exists a (2DK2:+1’23+1, P31)-LG.D = {Z2g+1 U22g+1,ci :1<i <L t} by
Lemma 2.6. Define

(k+1)3
Di= U C,0<k<3F-1,
i=k3+1

then {Z2t+1 U22t+lka : 0 < k < gxt - 1} isa (/\DK2g+1,2t+1,P31)-LGD.
O

3 (ADKpn, P3)-LGD

For convenience, in this section, the following P5-block is denoted by

[x) Y, Z]3 .
T K} 4

Obviously, the block [z,y, 2|3 contains two arcs (z,y) and (y, z).
Let Zn, Z, be two partite sets of Ky, . Define two P3-block families

in DKy, as follows:

P(m,n) = {[a,y,b3 : a # b € Zpm,y € Z,.}

Q(m,n) = {[c,z,djz : c # d € Zpn,x € Zrn}
It is easy to see that

[P(m,n)| =n x m(m — 1) = nm(m — 1),

|Q(m,n)| =m x n(n — 1) =mn(n —1).
And, |P(m,n)| + |Q(m,n)] = mn(m + n — 2) is just the number of dis-
tinct P§-blocks in DKy, n. Obviously, a (A\DKm n, P$)-GD consists of
Mmn Pj-blocks, a (\DKmn, P§)-LGD contains 242=2 pairwise disjoint
(ADK 1, P§)-GDs. So we have

Lemma 3.1 There ezists a (A\DKpp, 5, P3)-LGD only if A\|(m +n — 2).

Therefore, in order to determine the existence spectrum of (ADKy, ,
P§)-LGD, it is enough to construct (DKzp 20, P3)-LGD, (DKam2n+1,
P3)-LGD and (DKam1,3n+1, P3)-LGD.

Lemma 3.2 12 There exist a (Kam,2n, P3)-LGD for any m > 0 and n >
0.

Lemma 3.3 12 There ezist a (Kam,2n+1,Ps)-LGD for any m > 1 and
n > 0.

Lemma 3.4 There ezist a (DKam 2n, P3)-LGD for anym >0 andn >0
and a (DKam 2n+1, P3)-LGD for anym > 1 and n > 0.
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Proof. By Lemma 3.2, there exists a (Kam 2n, P3)-LGD for any m > 0
and n > 0, which consists of 2m + 2n — 2 (K2m,2n, P3)-GDs. In each
(K2m,2n, P3)-GD, for every Ps-block (a, b, c), we get two P3-blocks [a, b, |3
and [c, b, a]3 by assigning the orientation, so we can obtain a (Kam,2n, P$)-
GD. By this means, we will obtain 2m + 2n — 2 disjoint P§-GDs, which
form a (DKam 2n, P§)-LGD.

By Lemma 3.3, there exists a (Kom 2n+1, P3)-LGD for any m > 0 and
n 2 0. With the same reason, we can obtain (DKam 2n+1, P3)-LGD from
(K2m,2n+1, P3)-LGD. o

Lemma 3.5 There erists a (DKom+1,2n+1, P3)-LGD for anym >0, n >
0Oandm+n>0.

Proof. By Lemma 2.1, there exist a Hamilton cycle decomposition {fi, f2,
-+, fm} of Kam41 on Zspmy and a Hamilton cycle decomposition {fi, fa,
ey fn} of Kopt1 on Zony1. Clockwise orient the edges of each Hamilton
cycle f;, we get a directed Hamilton cycle f;*, Counter clockwise orient the
edges of each Hamilton cycle f;, we get a directed Hamilton cycle f;”. By
the same means, we can obtain two directed Hamilton cycle f and f;
from each Hamilton cycle f;. Define ~
A;‘- = {[aay:b]S : (aa b) € fi+7y € g2n+1}: i=1,2,--+,m,
A7 = {[a,y,b]3: (a,d) € fiye Zont1}, i=1,2,-.- m,
BJT" = {le,z,d]3: (c,d) € f¥,z € Zopm41}, F=1,2,-+,n.
‘ By = {lez,d]3: (c,d) € 7,z € Zompa}, §=1,2,---,n.
It is easy to verify that each of (Z2m41 U Zoni1, AY), (Zoma1U Zans1, A7),
(Zam+1U Z2n41, BY) and (Zoms1U Z2n+1, By ) is a (DKamy1,2n41, P3)-
GDfori=1,2,---,m,and §=1,2,---,n.

Furthermore, the family {Af :i=1,2,-.- , m}U{A; :i=1,2,---,m}
just forms a partition of all P3-blocks in P(2m+1,2n+1), and the family
{Bf :5=12,---,n}U{B; : j =1,2,---,n} just forms a partition of all
Pj-blocks in Q(2m +1,2n +1). Therefore, {A}, A7, -, A%, A, BY , B,
oo ,B,'t, B;} forms a (DK2m+1'2n+1, Pg‘?)-LG.D on ng.H U Z2n+1. ]

Theorem 3.6 There ezists a (ADKp n, P3)-LDGD if and only if A|(m +
n—2).

Proof. By Lemma 3.1, we only need to prove the sufficiency.
By Lemma 3.4 and Lemma 3.5, there exists a (DKm n, P5)-LGD =

(k+1)A
D= U C,0<k<smip=2_g,
i=kA4+1

then {Zm U Zn, Di : 0 < k < 242=2 _ 1} is a (ADKamt1,20+1, P§)-LGD.
(W]
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