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Abstract. Let M = (E, F) be a matroid on a set E, B one
of its bases and Mp the base matroid associated to B. In this
paper we determine a characterization of simple binary matroids
M which are not isomorphic to Mp, for every base B of M. We
also extend to matroids some graph notions.
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1 Introduction

Let M = (E,Z) be a matroid on a set E, having Z as its family of in-
dependent sets. Given a set S C E let us denote by r(S) the rank of S,
i.e. the cardinality of the largest independent set contained in .S; moreover
the closure of S, denoted by cl(S), is the set obtained by adding to S all
elements e € E such that

r(Sue) =r(S).
A set 8 C E is closed if 8 = cl(0), i.e.
r(fue)=7r(0)+1

for all e € E'\ 8. In the following we denote by = the set of all closed sets
of M.
Recall also that

I={SCE:Snd|<r(6),v6cE}

In [?] the notion of a set saturated with respect to a base has been
introduced.

Definition 1 A set 8 C FE is called saturated with respect to a base B of
M, or B-saturated for short, if

8N B |=r(8).

We simply denote 8 as saturated when it is clear from the contest which
base is involved.



Ifa belqngs to =, we have a saturated closed set. The set of all the
saturated closed sets of M, with respect to a base B, is denoted by Zp.
Note that a B-saturated closed set 6 satisfies

cl(fnB) =6;

in other words & coincides with the closure of its intersection with B.

A circuit of M is a minimal dependent set, i.e. a set S ¢ T such that for
each i € S, S\ i € Z. Given a base B and an element i € E \ B, the
Jundamental circuit of i, denoted F(i), is the minimal subset of B U {i}
which is not in Z. A circuit is fundamental with respect to B (or simply
Jundamental) when it is the fundamental circuit of an element i € E'\ B.
We use the notation

Ig={SCE:|SNOI<r(d),v8ec=p)}

and
MB = (E)IB')'

In [?] it is proved that Mg = (F,Zg) is a matroid , in particular a
transversal matroid.
An application of these matroids, named base matroids, is in the field of
inverse combinatorial optimization problems; indeed many different inverse
problems have been addressed in the recent literature [?], [?}.
One such problem is the inverse matroid problem: given a matroid M =
(E,I), a non-negative weighting function ¢ on E and a target base B of
M, find perturbation parameters §. to be added to the weight ¢, of each
element of E such that B becomes a base of maximum total weight with
respect to ¢, = ce + ¢, and ), .5 | O | is minimum. In [3] it is shown
how to exploit the Linear Programming (LP) formulation of the classical
matroid optimization problem

max{z ce:Sel}
e€S

and LP duality in order to convert the inverse matroid problem defined
above into a matroid optimization problem on a suitable base-matroid.
Recall that a matroid M is simple when it does not contain loops or non-
trivial parallel classes. Simple binary matroids M are characterized by the
condition that the symmetric difference of any two different circuits is a
union of disjoint circuits. Graphic and cographic matroids are examples of
binary matroids. For other definitions and properties of matroids readers
are referred to [?].

It is easy to see that in relation to a base B of M, M ~ Mp if and only if
every circuit of M is also a circuit of Mp.
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In [?] we proved that a matroid is isomorphic to Mp for every basis B if
and only if M is either uniform or is the direct sum of uniform matroids. In
this paper we characterize simple binary matroids which are not isomorphic
to Mp for every base B. To do this we extend some graph theory notions to
matroids. In particular we introduce the concepts of p-intersecting circuits
and crossing chords. The main result of this paper is given is the following
theorem:

Theorem 3 A simple binary matroid M is not isomorphic to Mg for
any base B if and only if M contains a pair of p-intersecting circuits or a
covered circuit.

2 B - independent circuits

First recall the following definitions {?].

Definition 2 A circuit C of M is said independent with respect to B or
B-independent if

|d(CYNB|<|C|-1;
C is dependent with respect to B or B-dependent if it is not independent
with respect to B, that is

jd(C)nB|=|C|-1.
1t follows that in this case cl(C) is saturated with respect to B.

Notice that if a circuit C of M is B - dependent, then it is dependent
also in Mp; in particular it is a circuit of Mpg.
On the contrary, if C is B - independent, then C is independent in Mg and
consequently C is not a circuit of Mp and M is not isomorphic to Mp.

Definition 3 ({?])- Let M be an arbitrary matroid. A circuit C of M has
a chord e if there are two circuits Cy and Ca such that Cy N Cy = {e} and
C = C, AC,. In this case we say that e splits the circuit C into the circuits
Cl and Cz.

In other words an element e € E\C is a chord of the circuit C if CU{e}
can be decomposed into two distinct circuits Cy and Cp, whose intersection
coincides with e. Notice that in this case

[C|=|01|+|02|-—2.

If e belongs to B, it is called a B-chord. The circuit C is also denoted as
the sum of C; and Cs, in analogy with the similar notion for graphs [?}.
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Lemma 1 Let B be a base of M, C a B-dependent circuit and e an edge
of cl(C) which does not belong to B. Then the fundamental circuit of e
with respect to B is contained in cl(C).

Proof. As C is B-dependent, it follows that | l(C)N B |= m - 1,
where m =| C |. Then (c/(C)NB)Ue is a dependent set of M. This implies
the result. D

Lemma 2 Let B be a base of a matroid M and C a B-independent circuit,
sum of two circuits C) and Cy. Then at least one of the circuits Cy , Cy
is B-independent.

Proof. Let e be a chord of C and C, C; the circuits such that CiNC, = {e}
and C; AC, =C.

Assume that C; and Cj are B-dependent, so that | ¢l(C;) N B |=| C; | -1,
i=1,2.

Then

c(C)N B 2 (c(C)ud(Cs)) N B = (cl(Cy) N BYU (cl(C3) N B);
Thus

|CINB 21 ACINB |+ | (CINB || C)NBNECINE) |
1
If e € B, then

|c(C)NB 2| C | -1+ | C | -1 -1=|C | -1.

Because | cl(C) N B |<| C | —1, then we obtain an impossible relation.
If e ¢ B, then we obtain that (c!(C1) N B) N (cl(Cz) N B) =P and then the
inequality

|(C)NB|2|C1 | -1+ Ca| -1 =] C],
which is clearly impossible.
In any case we obtain a contradiction to the assumption; then at least one
of the circuits Cy and C; is B - independent. a

Aa a consequence we have the following corollary.
Corollary 1 Let B be a base of a matroid M and let M have a B-

independent circuit, with a chord. Then M contains at least a B-independent
circuit without chords.
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Proof. Let e be a chord of a B - independent circuit C and C;, C; the
circuits in which CU {e} is splitted. By Lemma 2 al least one , say C,, is B
- independent. Clearly the number of chords of C) is less than the number
of C. By iterating, if necessary, the procedure we obtain the result. |

Definition 4 A circuit C of M is said to be covered if every element e of
C belongs to a circuit C(e), such that cl(C) N C(e) = {e}.

Lemma 3 Let C be a covered circuit of M, such that C has one chord.
Then M contains a covered circuit H such that H and every circuit H(f),
where f € H and HN H(f) = {f}, are without chords.

Proof. Let f be a chord of the circuit C, and C; and C the circuits
in which C U f is splitted. Because a chord of Cy or Cs is also a chord
of C, then the number of chords of every circuit Cj, for ¢ = 1,2, is less
than the same number of C. Moreover every circuit C; is covered. Indeed
the elements of C;, but {f}, are elements of C. But f, as element of C,
belongs to Cs and coincides with ¢l(Cy)Nel(Cz). Thus we replace C by one
of these circuits, say C;. Iterating the procedure the result follows. 0O

Theorem 1 Let M be a matroid containing a covered circuit. Then, for
every base B of M, M contains a B-independent circuit and M is not iso-
morphic to Mp.

Proof. Let C be a covered circuit which we assume B - dependent.
Moreover let A be an element of C which does not belong to B; denote
C(h) = {h} UC' the circuit such that cl(C) N C(h) = {h}. By Lemma 3
we may assume that C and C(h) are without chords.

If C’ contains another element which does not belong to B, then C(h) is
B - independent because

| l(C(R)) N B |<| C(h) | -1.

If C' C B, then there is another element of C, say j, which does not
belong to B, because on the contrary C A C(h) turns out to be a circuit
contained in B. If also the elements of C(j) \ {j} belong to B, we may
continue until we find an element g of C which does not belong to B and
such that C(g) contains an element ¢, distinct from ¢, which does not
belong to B. Because C(g) is without chords, it implies

| c(C(@)) N B|<| Clq) | -1.
In other words C(q) is independent with respect to B.
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3 P-intersecting circuits

In this section we study particular conditions on the circuits of a matroid
M in order that, for every base B of M, M is not isomorphic to Mg.
Recall that a chordal path of a cycle in a graph G is a path that is edge-
disjoint from the cycle and that joins two non-neighbor vertices of the cycle.
Moreover two cycles C and H of G are intersecting in a path when they
have in common a path which connects two not consecutive vertices; this
path turns out to be a chordal path of C A H. Now we want to extend
the notion of cycles intersecting in a path to matroids by introducing p-
intersecting circuits.

Definition 5 Two circuits C and H of M are said p-intersecting when:
1. d(C)Ncl(H) is an independent set of cardinality greater than I;
2. C A H is a circuit.

A motivation for introducing this definition is given by the following
result.

Theorem 2 If a matroid M contains two p-intersecting circuits, then, for
every base B of M, it contains a B-independent circuit.

Proof. Let C and H be two p-intersecting circuits of M and B a base of
M. If at least one of them is B-independent, the result follows.

Thus assume that both are B-dependent, i.e. | c(C)NB |=|C | -1 and
|cd(H)NnB|=| H| -1.

Denote cl(C)Ncl(H) = P, where | P|=t > 1 and P is independent.

1. First assume that P C B. This condition implies that B cannot
contain all the elements of C' \ P and all the elements of H \ P. In
other words there is at least one element, say e, of C \ P and at
least one element, say f, of H \ P which do not belong to B. Then
the circuit D = C A H contains at least two elements which do not

belong to B.
If D does not contain B-chords, then the following inequality holds

le(D)nB|=|DNB|<|D|~1

and D is B - independent.
Assume that D contains a B-chord.
Recall that if X and Y are flats of M, then

r(X)+r(Y) > r(XVY)+r(XNY) =r(d(XUY))+r(XNY). (2)
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Let X =cl(C) and Y = cl(H). Then r(X) =|C | -1, r(Y) =| H |
-1, 7(X NY) =t and by the assumption that P C B:

r(c(XUY)) 2| (XVUY)NB|2|XNB|+|YNB|-| XNnY | +1.

®3)
Because #(X UY) = r(cl(X UY)), from (1) and (2) we obtain the
impossible relation

|C| =14+ |H|-12|C | -1+ | H|-1—t+t+1.

2. Now suppose that at least one element of P, say g, does not belong to
B. Let Bc = Bnel(C) and By = BNcl(H). If g is added to B¢, we
obtain a dependent set; then the fundamental circuit F(g) C cl(C).
In a similar way if we add g to By, we obtain a dependent set and
the fundamental circuit F(g) C ¢l(H). This implies the impossible
condition that ¢l(C) and ¢l(H) have in common a dependent set.

]

Lemma 4 Let C and H be circuits of a binary matroid M. If C A H is
a set of disjoint circuits and D is one of them, then CAD and HA D
contain only one circuit.

Proof. The circuit D can be represented as C' U H', where C' C C and
H cHad C'NnH =0. Thus CAD = (C\C’')UH'is the union of
disjoint circuits because the matroid is binary; in particular it is a single
circuit since otherwise the possible circuits would have been contained into
C A H and not disjoint from D. m]

4 Characterization

In this section we determine a characterization of the binary matroids M
not isomorphic to Mg for every base B in terms of the previous notions of
p - intersecting circuits and covered circuits.

Theorem 3 A simple binary matroid M is not isomorphic to Mg for any

base B if and only if M contains a pair of p-intersecting circuits or a covered
circuit.
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Proof.

By Theorems 1 and 2 we have only to prove the necessary condition.
Thus assume that M is not isomorphic to Mg, where B is a base of M.
It follows that M contains a circuit C' which is B-independent, that is it
satisfies the inequality

le(C)NB|<|C|-1.

By Corollary 1 we may assume that C has no chords; this implies

|c(C)nB|=|CNB]|.

Then there are at least two elements of C, say e and f, which do not
belong to B. Let H be the B-fundamental circuit of one of them, say f.
Thus H = {f} U H’, where H’ C B. We have to distinguish the following
two cases.

1. HNC = . Then either H is a covered cycle or there exists an
element g of H’ which does not belong to a circuit D, distinct from
H and not contained in cI(H). In this case we replace f by g in B;
then we obtain a new base B’ with respect to which H remains fun-
damental, while the number of elements of C' which do not belong
to the base B’ is less than the same number with respect to B. If
C remains B’-independent we may consider the same procedure in
relation to another element which does not belong to B’; otherwise if
C is B’ - dependent by the assumption there is another independent
circuit @ and we may repeat the procedure in relation to Q. In this
way we arrive to obtain a base with respect to which there are not
B-independent circuits, a contradiction.

2. H'NC # 9. Let D be one of the circuits in which H A C is decom-
posed. Thus D = C'UH* where C' CC, | C' |[> 1, H* C H' and
C’'N H* = . Notice that | H* |> 1 because C does not contain B -
chords. If el(D) N cl(C) is dependent , then there exists an element
¢ € cl(C) \ C, which turns out to be a chord . By the assumption
this condition is impossible.

Moreover by Lemma 4 C A D contains only one circuit. So C and
D are p-intersecting.

a

255



References
(1] M. Cai, Inverse problems of matroid intersection, J. Comb. Optim.
3(1999), n. 4, 465-474.

[2] R. Cordovil, D. Forge, S. Klein, How is a chordal graph like a super-
solvable binary matroid?, Discrete Math. 288 (2004), 167 - 172.

(3] M. Dell’Amico, F. Maffioli, F. Malucelli, The base-matroid and in-
verse combinatorial optimization problems, Discrete Appl. Math., 128
(2003), 337 - 353.

[4] J.G. Oxley, Matroid Theory, Oxford University Press, New-York, 1992.

[5] T. A. McKee, Requiring chords in cycles, Discrete Math., 297 (2005),
182 - 189.

(6] F. Maffioli, N. Zagaglia Salvi, On some properties of base-matroids,
Discrete Appl. Math., 154 (2006), 1401 - 1407.

[7] F. Maffioli, N. Zagaglia Salvi, A characterization of the base-matroids
of a graphic- matroid, Contributions to Discrete Mathematics, to ap-
pear.

256



