ON BINARY MATROIDS NOT ISOMORPHIC TO THEIR BASE MATROIDS

F. Maffioli¹

Dip. di Elettronica ed Informazione Politecnico di Milano P.zza L. da Vinci, 32 20133 Milano, Italy maffioli@elet.polimi.it

N. Zagaglia Salvi¹
Dip. di Matematica
Politecnico di Milano
P.zza L. da Vinci 32
20133 Milano, Italy
norma.zagaglia@polimi.it

Abstract. Let $M = (E, \mathcal{F})$ be a matroid on a set E, B one of its bases and M_B the base matroid associated to B. In this paper we determine a characterization of simple binary matroids M which are not isomorphic to M_B , for every base B of M. We also extend to matroids some graph notions.

AMS Classification: 05B35, 90C27,

Keywords: graphic matroid, binary matroid, base, chord.

(1): Work partially supported by MIUR (Ministero dell'Istruzione, dell'Universitá e della Ricerca)

1 Introduction

Let $M = (E, \mathcal{I})$ be a matroid on a set E, having \mathcal{I} as its family of independent sets. Given a set $S \subseteq E$ let us denote by r(S) the rank of S, i.e. the cardinality of the largest independent set contained in S; moreover the closure of S, denoted by cl(S), is the set obtained by adding to S all elements $e \in E$ such that

$$r(S \cup e) = r(S).$$

A set $\theta \subseteq E$ is closed if $\theta = cl(\theta)$, i.e.

$$r(\theta \cup e) = r(\theta) + 1$$

for all $e \in E \setminus \theta$. In the following we denote by Ξ the set of all closed sets of M.

Recall also that

$$\mathcal{I} = \{ S \subseteq E : | S \cap \theta | \le r(\theta), \forall \theta \in \Xi \}.$$

In [?] the notion of a set saturated with respect to a base has been introduced.

Definition 1 A set $\theta \subseteq E$ is called saturated with respect to a base B of M, or B-saturated for short, if

$$\mid \theta \cap B \mid = r(\theta).$$

We simply denote θ as saturated when it is clear from the contest which base is involved.

If θ belongs to Ξ , we have a saturated closed set. The set of all the saturated closed sets of M, with respect to a base B, is denoted by Ξ_B . Note that a B-saturated closed set θ satisfies

$$cl(\theta \cap B) = \theta;$$

in other words θ coincides with the closure of its intersection with B. A circuit of M is a minimal dependent set, i.e. a set $S \notin \mathcal{I}$ such that for each $i \in S$, $S \setminus i \in \mathcal{I}$. Given a base B and an element $i \in E \setminus B$, the fundamental circuit of i, denoted F(i), is the minimal subset of $B \cup \{i\}$ which is not in \mathcal{I} . A circuit is fundamental with respect to B (or simply fundamental) when it is the fundamental circuit of an element $i \in E \setminus B$. We use the notation

$$\mathcal{I}_B = \{S \subseteq E : \mid S \cap \theta \mid \leq r(\theta), \forall \theta \in \Xi_B\}$$

and

$$M_B = (E, \mathcal{I}_B).$$

In [?] it is proved that $M_B=(E,\mathcal{I}_B)$ is a matroid , in particular a transversal matroid.

An application of these matroids, named base matroids, is in the field of inverse combinatorial optimization problems; indeed many different inverse problems have been addressed in the recent literature [?], [?].

One such problem is the inverse matroid problem: given a matroid $M=(E,\mathcal{I})$, a non-negative weighting function c on E and a target base B of M, find perturbation parameters δ_e to be added to the weight c_e of each element of E such that B becomes a base of maximum total weight with respect to $c'_e = c_e + \delta_e$, and $\sum_{e \in S} |\delta_e|$ is minimum. In [3] it is shown how to exploit the Linear Programming (LP) formulation of the classical matroid optimization problem

$$\max\{\sum_{e\in S}c_e:S\in\mathcal{I}\}$$

and LP duality in order to convert the inverse matroid problem defined above into a matroid optimization problem on a suitable base-matroid. Recall that a matroid M is simple when it does not contain loops or non-trivial parallel classes. Simple binary matroids M are characterized by the condition that the symmetric difference of any two different circuits is a union of disjoint circuits. Graphic and cographic matroids are examples of binary matroids. For other definitions and properties of matroids readers are referred to $\[? \]$.

It is easy to see that in relation to a base B of M, $M \simeq M_B$ if and only if every circuit of M is also a circuit of M_B .

In [?] we proved that a matroid is isomorphic to M_B for every basis B if and only if M is either uniform or is the direct sum of uniform matroids. In this paper we characterize simple binary matroids which are not isomorphic to M_B for every base B. To do this we extend some graph theory notions to matroids. In particular we introduce the concepts of p-intersecting circuits and crossing chords. The main result of this paper is given is the following theorem:

Theorem 3 A simple binary matroid M is not isomorphic to M_B for any base B if and only if M contains a pair of p-intersecting circuits or a covered circuit.

2 B - independent circuits

First recall the following definitions [?].

Definition 2 A circuit C of M is said independent with respect to B or B-independent if

$$| d(C) \cap B | < | C | -1;$$

C is dependent with respect to B or B-dependent if it is not independent with respect to B, that is

$$|cl(C) \cap B| = |C| -1.$$

It follows that in this case cl(C) is saturated with respect to B.

Notice that if a circuit C of M is B - dependent, then it is dependent also in M_B ; in particular it is a circuit of M_B .

On the contrary, if C is B - independent, then C is independent in M_B and consequently C is not a circuit of M_B and M is not isomorphic to M_B .

Definition 3 ([?])- Let M be an arbitrary matroid. A circuit C of M has a chord e if there are two circuits C_1 and C_2 such that $C_1 \cap C_2 = \{e\}$ and $C = C_1 \triangle C_2$. In this case we say that e splits the circuit C into the circuits C_1 and C_2 .

In other words an element $e \in E \setminus C$ is a chord of the circuit C if $C \cup \{e\}$ can be decomposed into two distinct circuits C_1 and C_2 , whose intersection coincides with e. Notice that in this case

$$|C| = |C_1| + |C_2| -2.$$

If e belongs to B, it is called a B-chord. The circuit C is also denoted as the sum of C_1 and C_2 , in analogy with the similar notion for graphs [?].

Lemma 1 Let B be a base of M, C a B-dependent circuit and e an edge of cl(C) which does not belong to B. Then the fundamental circuit of e with respect to B is contained in cl(C).

Proof. As C is B-dependent, it follows that $|cl(C) \cap B| = m-1$, where m = |C|. Then $(cl(C) \cap B) \cup e$ is a dependent set of M. This implies the result.

Lemma 2 Let B be a base of a matroid M and C a B-independent circuit, sum of two circuits C_1 and C_2 . Then at least one of the circuits C_1 , C_2 is B-independent.

Proof. Let e be a chord of C and C_1 , C_2 the circuits such that $C_1 \cap C_2 = \{e\}$ and $C_1 \triangle C_2 = C$.

Assume that C_1 and C_2 are B-dependent, so that $|cl(C_i) \cap B| = |C_i| - 1$, i = 1, 2.

Then

$$cl(C) \cap B \supseteq (cl(C_1) \cup cl(C_2)) \cap B = (cl(C_1) \cap B) \cup (cl(C_2) \cap B);$$

Thus

$$|cl(C) \cap B| \ge |cl(C_1) \cap B| + |cl(C_2) \cap B| - |(cl(C_1) \cap B) \cap (cl(C_2) \cap B)|.$$
(1)
If $e \in B$, then

$$|cl(C) \cap B| \ge |C_1| -1 + |C_2| -1 -1 = |C| -1.$$

Because $|cl(C) \cap B| < |C| - 1$, then we obtain an impossible relation. If $e \notin B$, then we obtain that $(cl(C_1) \cap B) \cap (cl(C_2) \cap B) = \emptyset$ and then the inequality

$$| cl(C) \cap B | \ge | C_1 | -1 + | C_2 | -1 = | C |,$$

which is clearly impossible.

In any case we obtain a contradiction to the assumption; then at least one of the circuits C_1 and C_2 is B - independent.

Aa a consequence we have the following corollary.

Corollary 1 Let B be a base of a matroid M and let M have a B-independent circuit, with a chord. Then M contains at least a B-independent circuit without chords.

Proof. Let e be a chord of a B - independent circuit C and C_1 , C_2 the circuits in which $C \cup \{e\}$ is splitted. By Lemma 2 al least one, say C_1 , is B - independent. Clearly the number of chords of C_1 is less than the number of C. By iterating, if necessary, the procedure we obtain the result. \Box

Definition 4 A circuit C of M is said to be covered if every element e of C belongs to a circuit C(e), such that $cl(C) \cap C(e) = \{e\}$.

Lemma 3 Let C be a covered circuit of M, such that C has one chord. Then M contains a covered circuit H such that H and every circuit H(f), where $f \in H$ and $H \cap H(f) = \{f\}$, are without chords.

Proof. Let f be a chord of the circuit C, and C_1 and C_2 the circuits in which $C \cup f$ is splitted. Because a chord of C_1 or C_2 is also a chord of C, then the number of chords of every circuit C_i , for i = 1, 2, is less than the same number of C. Moreover every circuit C_i is covered. Indeed the elements of C_i , but $\{f\}$, are elements of C. But f, as element of C_1 , belongs to C_2 and coincides with $cl(C_1) \cap cl(C_2)$. Thus we replace C by one of these circuits, say C_1 . Iterating the procedure the result follows. \Box

Theorem 1 Let M be a matroid containing a covered circuit. Then, for every base B of M, M contains a B-independent circuit and M is not isomorphic to M_B .

Proof. Let C be a covered circuit which we assume B - dependent. Moreover let h be an element of C which does not belong to B; denote $C(h) = \{h\} \cup C'$ the circuit such that $cl(C) \cap C(h) = \{h\}$. By Lemma 3 we may assume that C and C(h) are without chords.

If C' contains another element which does not belong to B, then C(h) is B - independent because

$$| cl(C(h)) \cap B | < | C(h) | -1.$$

If $C' \subseteq B$, then there is another element of C, say j, which does not belong to B, because on the contrary $C \triangle C(h)$ turns out to be a circuit contained in B. If also the elements of $C(j) \setminus \{j\}$ belong to B, we may continue until we find an element q of C which does not belong to B and such that C(q) contains an element q', distinct from q, which does not belong to B. Because C(q) is without chords, it implies

$$\mid cl(C(q)) \cap B \mid < \mid C(q) \mid -1.$$

In other words C(q) is independent with respect to B.

3 P-intersecting circuits

In this section we study particular conditions on the circuits of a matroid M in order that, for every base B of M, M is not isomorphic to M_B . Recall that a chordal path of a cycle in a graph G is a path that is edge-disjoint from the cycle and that joins two non-neighbor vertices of the cycle. Moreover two cycles C and H of G are intersecting in a path when they have in common a path which connects two not consecutive vertices; this path turns out to be a chordal path of $C \triangle H$. Now we want to extend the notion of cycles intersecting in a path to matroids by introducing p-intersecting circuits.

Definition 5 Two circuits C and H of M are said p-intersecting when:

- 1. $cl(C) \cap cl(H)$ is an independent set of cardinality greater than 1;
- 2. $C \triangle H$ is a circuit.

A motivation for introducing this definition is given by the following result.

Theorem 2 If a matroid M contains two p-intersecting circuits, then, for every base B of M, it contains a B-independent circuit.

Proof. Let C and H be two p-intersecting circuits of M and B a base of M. If at least one of them is B-independent, the result follows. Thus assume that both are B-dependent, i.e. $|cl(C) \cap B| = |C| - 1$ and $|cl(H) \cap B| = |H| - 1$.

Denote $cl(C) \cap cl(H) = P$, where |P| = t > 1 and P is independent.

1. First assume that $P \subseteq B$. This condition implies that B cannot contain all the elements of $C \setminus P$ and all the elements of $H \setminus P$. In other words there is at least one element, say e, of $C \setminus P$ and at least one element, say f, of $H \setminus P$ which do not belong to B. Then the circuit $D = C \triangle H$ contains at least two elements which do not belong to B.

If D does not contain B-chords, then the following inequality holds

$$|cl(D) \cap B| = |D \cap B| < |D| - 1$$

and D is B - independent.

Assume that D contains a B-chord.

Recall that if X and Y are flats of M, then

$$r(X) + r(Y) \ge r(X \cup Y) + r(X \cap Y) = r(cl(X \cup Y)) + r(X \cap Y). \tag{2}$$

Let X = cl(C) and Y = cl(H). Then r(X) = |C| -1, r(Y) = |H| -1, $r(X \cap Y) = t$ and by the assumption that $P \subseteq B$:

$$r(cl(X \cup Y)) \ge |cl(X \cup Y) \cap B| \ge |X \cap B| + |Y \cap B| - |X \cap Y| + 1.$$

$$(3)$$

Because $r(X \cup Y) = r(cl(X \cup Y))$, from (1) and (2) we obtain the impossible relation

$$|C|-1+|H|-1 \ge |C|-1+|H|-1-t+t+1.$$

2. Now suppose that at least one element of P, say g, does not belong to B. Let $B_C = B \cap cl(C)$ and $B_H = B \cap cl(H)$. If g is added to B_C , we obtain a dependent set; then the fundamental circuit $F(g) \subseteq cl(C)$. In a similar way if we add g to B_H , we obtain a dependent set and the fundamental circuit $F(g) \subseteq cl(H)$. This implies the impossible condition that cl(C) and cl(H) have in common a dependent set.

Lemma 4 Let C and H be circuits of a binary matroid M. If $C \triangle H$ is a set of disjoint circuits and D is one of them, then $C \triangle D$ and $H \triangle D$ contain only one circuit.

Proof. The circuit D can be represented as $C' \cup H'$, where $C' \subset C$ and $H' \subset H$ and $C' \cap H' = \emptyset$. Thus $C \triangle D = (C \setminus C') \cup H'$ is the union of disjoint circuits because the matroid is binary; in particular it is a single circuit since otherwise the possible circuits would have been contained into $C \triangle H$ and not disjoint from D.

4 Characterization

In this section we determine a characterization of the binary matroids M not isomorphic to M_B for every base B in terms of the previous notions of p-intersecting circuits and covered circuits.

Theorem 3 A simple binary matroid M is not isomorphic to M_B for any base B if and only if M contains a pair of p-intersecting circuits or a covered circuit.

Proof.

By Theorems 1 and 2 we have only to prove the necessary condition. Thus assume that M is not isomorphic to M_B , where B is a base of M. It follows that M contains a circuit C which is B-independent, that is it satisfies the inequality

$$|cl(C) \cap B| < |C| -1.$$

By Corollary 1 we may assume that C has no chords; this implies

$$|cl(C) \cap B| = |C \cap B|$$
.

Then there are at least two elements of C, say e and f, which do not belong to B. Let H be the B-fundamental circuit of one of them, say f. Thus $H = \{f\} \cup H'$, where $H' \subseteq B$. We have to distinguish the following two cases.

- 1. $H' \cap C = \emptyset$. Then either H is a covered cycle or there exists an element g of H' which does not belong to a circuit D, distinct from H and not contained in cl(H). In this case we replace f by g in B; then we obtain a new base B' with respect to which H remains fundamental, while the number of elements of C which do not belong to the base B' is less than the same number with respect to B. If C remains B'-independent we may consider the same procedure in relation to another element which does not belong to B'; otherwise if C is B' dependent by the assumption there is another independent circuit Q and we may repeat the procedure in relation to Q. In this way we arrive to obtain a base with respect to which there are not B-independent circuits, a contradiction.
- 2. $H' \cap C \neq \emptyset$. Let D be one of the circuits in which $H \triangle C$ is decomposed. Thus $D = C' \cup H^*$ where $C' \subseteq C$, |C'| > 1, $H^* \subseteq H'$ and $C' \cap H^* = \emptyset$. Notice that $|H^*| > 1$ because C does not contain B-chords. If $cl(D) \cap cl(C)$ is dependent, then there exists an element $c \in cl(C) \setminus C$, which turns out to be a chord. By the assumption this condition is impossible.

Moreover by Lemma 4 $C \triangle D$ contains only one circuit. So C and D are p-intersecting.

References

- [1] M. Cai, Inverse problems of matroid intersection, J. Comb. Optim. 3(1999), n. 4, 465-474.
- [2] R. Cordovil, D. Forge, S. Klein, How is a chordal graph like a supersolvable binary matroid?, *Discrete Math.* 288 (2004), 167 172.
- [3] M. Dell'Amico, F. Maffioli, F. Malucelli, The base-matroid and inverse combinatorial optimization problems, *Discrete Appl. Math.*, 128 (2003), 337 353.
- [4] J.G. Oxley, Matroid Theory, Oxford University Press, New-York, 1992.
- [5] T. A. McKee, Requiring chords in cycles, *Discrete Math.*, 297 (2005), 182 - 189.
- [6] F. Maffioli, N. Zagaglia Salvi, On some properties of base-matroids, *Discrete Appl. Math.*, 154 (2006), 1401 1407.
- [7] F. Maffioli, N. Zagaglia Salvi, A characterization of the base-matroids of a graphic-matroid, *Contributions to Discrete Mathematics*, to appear.