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Abstract

Computing the crossing number of a given graph is in general
an elusive problem and only the crossing numbers of few families of
graphs are known. Most of them are the Cartesian product of special
graphs. This paper determines the crossing number of the Cartesian
product of a 6-vertex graph with star S,.

1 Introduction

For definitions not explained here, readers are referred to [1). Let G be
a simple graph with vertex set V and edge set E. The crossing number
cr(G) of a graph G is the minimum number of pairwise intersections of
edges in a drawing of G in the plane. It is well known that the crossing
number of graph is attained only in good drawings of the graph, which are
those drawings where no edges cross itself, no adjacent edges cross each
other, no two edges intersect more than once, and no three edges intersect
in a common point. Let D be a good drawing of the graph G, we denote
by crp(G) the number of crossings in D. A drawing D of G is said to be
optimal if crp(G) = cr(G).

Let P, and C, be the path and cycle of length n, respectively, and the
star S, be the complete bipartite graph K} .

Given two vertex disjoint graphs Gi and G2, the Cartesian product
G x G5 of G1 and Gy is defined by

V(G1x Ga) = V(G1) x V(Ga)

E(Gl X Gz) = {(ul, 'u.z) (’01,712)|u1 =v; and ugvy € E(Gg),
or uz =wy and wyv; € E(G1)}
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Let G be a graph homeomorphic to Gz, then cr(G;) = er(G2). And if
G is a subgraph of Gy, it is easy to see that cr(G;) < cr(Gs).

Computing the crossing number of a given graph is in general an elusive
problem [2] and the crossing numbers of few families of graphs are known.
Most of them are Cartesian products of special graphs, partly because of
the richness of their repetitive patterns. The already known results on the
crossing number of G x H fit into three categories:

(i) G end H are two small graphs. Harary, et al. obtained the crossing
number of C3 x C3 in 1973 [3]; Dean and Richter [4] investigated the crossing
number of Cy x Cjy; Kle3¢ (5] studied the crossing number of K33 x Cs.
These results are usually used as the induction basis for establishing the
results of type (ii):

(ii) G is a small graph and H is a graph from some infinite family. In [6],
the crossing numbers of G x C,, for any graph G of order four except S3 were
studied by Beineke and Ringeisen, this gap was bridged by Jendrol’ et al.
in [7). The crossing numbers of Cartesian products of 4-vertex graphs with
P, and S, are determined by Kle3? in [8], he also determined the crossing
numbers of G x P, for any graph G of order five [9, 10, 11]. For several
special graphs of order five, the crossing numbers of their products with
C, or S, are also known, most of which are due to Kles$é [12, 13, 14, 15).
For special graphs G of order six, Peng et al. determined the crossing
number of the Cartesian product of the Petersen graph P(3,1) with P, in
[16], Zheng et al. gave the bound for the crossing number of K, x P, for
m > 3,n > 1, and they determined the exact value for cr(Kg x P,), see
[17], and the authors [18] established the crossing number of the Cartesian
product of P, with the complete bipartite graph Kj 4.

(iii) Both G and H belong to some infinite family. One very long
attention-getting problem of this type is to determine the crossing number
of the Cartesian product of two cycles, Cy,, and Cy,, which was put forward
by Harary et al. [3], and they conjectured that cr(Cpm x Cp) = (m — 2)n
for n > m. In the next three decades, many authors were devoted to this
problem and the conjecture has been proved true for m = 3,4,5,6,7, see
(19, 6, 20, 21, 22]. In 2004, the problem was progressed by Glebsky and
Salazar, who proved that the crossing number of Cy, x C,, equals its long-
conjectured value for n > m(m + 1) [23]. Besides the Cartesian product
of two cycles, there are several other results. D.Bokal [24] determined the
crossing number of the Cartesian product Sy, X P, foranym >3andn > 1
used a quite newly introduced operation: the zip product. Tang, et al. [25]
and Zheng, et al. [26] independently proved that the crossing number of
Kom x P, is 2n| 3 || =51 | for arbitrary m > 2 and n > 1.

Inspired by these results, we begin to investigate the crossing number of
the Cartesian product of star S,, with a 6-vertex graph G; shown in Figure
1, and prove that ¢r(Gy x Sp) = Z(6,n) + 2| 3] forn > 1.
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Figure 1: The graph G) Figure 2: The graph H,

-2 Some Basic Lemmas and the Main Result

Let A and B be two disjoint subsets of E. In a drawing D, the number
of crossings made by an edge in A and another edge in B is denoted by
erp(A, B). The number of crossings made by two edges in A is denoted by
crp(A), then cr(D) = erp(E). By counting the number of crossings in D,
we have Lemma 2.1.

Lemma 2.1 Let A, B,C be mutually disjoint subsets of E. Then

crp(AUB,C) =erp(A,C) + erp(B,C); 1)
crp(AUB) = erp(A) + erp(B) + crp(4, B).

The crossing number of the complete bipartite graph K, » were de-
termined by Kleitman [27] for the case m < 6. More precisely, he proved
that

or(Emn) = 1125131125, ifm <6 @

For convenience, | ]| %52 ]| 2]|252] is often denoted by Z(m,n) in
our paper. Let us denoted by H,, the graph shown in Figure 2. It is easy to
verify that H, = G U Kg,n, where the six vertices of degree n in K¢ ,, and
the vertices of Gy are the same. For i = 1,2,- .- ,n, let T be the subgraph
of Kg,» which consists of the six edges incident with a vertex of degree six
in Kgn. Thus, we have

H,=G1UKsn=G1U(JT (3)

i=1

Theorem 2.2 cr(H,) = Z(6,n) +2|5].
Proof. The good drawing in Figure 2 shows that cr(H,) < Z(6,n) +2| Z].
Now we prove the reverse inequality by induction on n. The case n = 1
is trivial, and the inequality also holds when n = 2 since Hy contains a
subgraph isomorphic K3 4, whose crossing number is 2. Now suppose that
for n > 3,

er(Hn-2) > Z(6,n — 2) + 2| 22| (4)
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and for a certain good drawing D of H,, assume that
erp(Hn) < Z(6,m) + 2|3 ®)

The following two cases are discussed:

Case 1. Suppose that there are at least two different subgraphs T* and
TJ that don’t cross each other in D. Without loss of generality, assume
erp(T™1,T™) = 0. The induced drawing D|pa-1yp» of T*~1 UT™ divides
the plane into six regions that there are exactly two vertices of G; on the
boundary of each region. Note that there is a 4-degree vertex of Gy, so
one can observe that there are at least two crossings made by the edges
of G; and the edges of T~ UT™, that is crp(G1,T*"1UT™) > 2. As
cr(Kag) = 6, for all 4, i = 1,2,--- ,n =2, erp(T*, T*"1 UT™) > 6. Using
(1), (2), (3) and (4), we have

n—2
erp(Ha) = ap(Giu|JT'uT'uTr)
i=1
n—2 .
= ap(GrU | T)+erpT* ' UT™) +erp(Gr, TP UT™)
i=1
n—2
+Y erp(TLT*TUT™)

=1
> Z(e,n-2)+2[f;—2] +2+6(n—2)
= Z(6,m)+2[3] |

This contradicts (5). .
Case 2. Suppose that crp(7*%,T7) > 1 for any two different subgraphs
Tiand T7,1 < i # j <n. Using (1), (2) and (3), we have

erp(Hn) = erp(Gh) +erp(Uis TY) + erp(Gr, Uiy TY) ©
2 c"'D(Gl) + Z(G’ n) + Z?:l ch(GhTi)

This, together with (5) implies that

crp(Gy) + z": erp(G, TY) < 2[%]

i=1

So, there is at least one subgraph T* which doesn’t cross G;. Without loss
of generality, we may assume that crp(G1,T") = 0. Let us consider the
6-cycle Cs of the graph G;. Hence G, consists of Cg and two additional
edges. :
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Figure 3:

Subcase 2.1. Suppose that the edges of Cs do not cross each other in
D. Since erp(G1,T") =0, then the unique possibility is erp(G1UT™) = 0,
see Figure 3(1). If, in D, z; locates in the region labeled w, it is easy to
verify that the edges of T* cross the edges of G; at least two times. Using
erp(TH,T™) > 1, we have crp(T%, G UT™) > 3. If z; locates in the other
regions, it is easy to verify that there are at least 5 crossings between the
edges of T* and the edges of Gy UT™, that is crp(T%,G; UT™) > 5. Let

M = {T%|z; lies in the region labeled w}

Using (1), (2) and (3), we have

n-1

erp(Ha) = erp(GUT™u | TY)

i=1

n-1
= ap(GiuT) +erp(|JTY+ 3 erp(GLuT™, T
i=1 TieM
+ Z ch(Gl UTmsTi)

TigM
> Z(6,n—1)+3|M|+5(n—1~|M|)

Together with (5), we can get

2M| 2 50— 5~ 213] ~ 6|52 2 2( 2] (7
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Combined with (6) and (7), we can get
crp(Ha) = erp(Gr) +erp(|JTY) +erp(Gr, | T7)
i=1 i=1

erp(G1) +erp(JTY + Y. erp(Gr, T+ Y erp(G1,TY)
i=1 TieM TigM

Z(6,m) +2|M|
Z(6,n) + 2[% ]

v v

which contradicts (5).

Subcase 2.2. Suppose that the edges of Cg cross each other in D. We
can assert that in D there must exist a subgraph T*, i € {1,2,--- ,n -1},
such that crp(T%, Gy UT™) < 3. Otherwise, we have crp(T,G, UT™) > 4
foralli=1,2,---,n — 1, and using (1), (2) and (3), we obtain

n-1
ep(Ha) = ep(GiuT"u T
=1
n~-1 . n—1 )
erp(G1UT™) +erp(|J TP + ) erp(GL U T, TY)
i=1 i=1

1+ 2(6,n—1) +4(n—1)
> Z(e,n)+2[f‘2-1

v

a contradiction with (5).

The condition crp(Gy,T™) = 0 implies that crp(Cg,T™) = 0. In this
case the vertex x,, of T™ lies in the region with all six vertices of Cg on
its boundary, and the condition crp(T%,G; UT™) < 3 enforces that in the
subdrawing of T™ U Cg there is a region with at least four vertices of Cg
on its boundary. In this case Cs has only one internal crossing and the
unique possibility of T™ U Cg is as shown in Figure 3(2). In the subgraph
G UT™ there are two additional edges which do not cross the edges of T
in the considered subdrawing of G; UT™. The vertices of G are labeled by
a,b,c,d, e, f, respectively. At least one of the vertices b and ¢ is incident
in Gy UT™ with an edge of G, not belonging to Cs. The possible edge bd
separates the vertices a and c and the possible edge be crosses the edge df
and separates the vertices a and ¢ again. The possible edge ca separates the
vertices b and d and the possible edge c¢f crosses the edge ae and separates
the vertices b and d again. In all these cases erp(T%, Gy UT™) > 4, which
is a contradiction and completes the proof of Theorem 2.2. a

262



Let H be a graph isomorphic to G,. Consider a graph Gy obtained by
joining all vertices of H to six vertices of a connected graph G such that
every vertex of H will only be adjacent to exactly one vertex of G. Let G}
be the graph obtained from Gy by contracting the edges of H.
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Figure 4:
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Lemma 2.3 cr(GY) < er(Gy).
Proof. Let D be an optimal drawing of Gg. The subgraph H has eight
edges and let z;,z2, 23,24 denote the numbers of crossings on the four
edges of H, see Figure 4. The following two cases are discussed.

Case 1. Suppose that z; < z; + 73 + 4. Figure 5 shows that H can
be contracted to the vertex h without increasing the number of crossings.
That means cr(Gy) < erp(Gr) = er(Gh).
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Case 2. Suppose that z; > To+T3+x4, then we have 2y +14 > z2+x3,
Figure 6 shows that H can be contracted to the vertex h without increasing
the number of crossings. This completes the proof. O

Consider now the graph G; x Sy. For n 2> 1 it has 6(n + 1) vertices and
edges that are the edges in n + 1 copies G}, i = 0,1,--- ,n, and in the six
stars Sp, see Figure 7.

Theorem 2.4 cr(Gy x S,) = Z(6,n) +2|3), forn2>1.

Proof. The drawing in Figure 7 shows that cr(G, x S,) < Z(6,n) + 2 %].
Assume that there is an optimal drawing D of G; x S, with fewer than
Z(6,n) + 2| 3] crossings. Contracting the edges of each G} to a vertex z;
forall i =1,2,---,n in D results in a graph isomorphic to Hy,, and using
Lemma 2.3 repeatedly, we have cr(H,) < er(G1 X Sp) = erp(G1 x Sp) <
Z(6,n)+2| 3], a contradiction with Theorem 2.2. Therefore, cr(GyxSy) =
Z(6,n)+2|%]. O
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Figure 7:
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