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Abstract

Let u,v be two vertices of a connected graph G. The vertex v is
said to be a boundary vertez of u if no neighbor of v is further away
from u than v. The boundary of a graph is the set of all its boundary
vertices. In this work, we present a number of properties of the
boundary of a graph under different points of view: (1) a realization
theorem involving different types of boundary vertex sets: .extreme
set, periphery, contour, and the whole boundary; (2) the contour is a
monophonic set; and (3) the cardinality of the boundary is an upper
bound for both the metric dimension and the determining number
of a graph.

Keywords: Boundary; Contour; Extreme set; Graph convexity; Metric
dimension.

1 Introduction and basic definitions

Boundary vertex sets have been studied in different contexts: facility loca-
tion, to determine the appropriate location for certain kinds of facilities [10];
rebuilding in graphs, how to rebuild a graph from a certain subset of ver-
tices by using a convex hull operator [4, 5, 7}; and resolvability in graphs, a
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concept introduced by Slater [25, 26] using the term locating set instead of
resolving set. He also describes its usefulness in some practical problems.
See Chartrand et al. [11] for a recent survey on this subject, where they
show some applications to different topics in graph theory such as partition
of the vertex set, decomposition, domination, and coloring in graphs.

The main purpose of this work is to show that the so-called, boundary of
a graph introduced by Chartrand et al. [8] possesses a number of significant
properties that make it a very interesting vertex subset to be taken into
account when studying the structure of the whole graph, especially if we
want to know more about it as a metric space. See the references [5, 19, 24]
for the most recent works involving boundary vertices of a graph. Miiller et
al. [24] give the best possible lower bound, up to a constant factor, on the
number of boundary vertices of a graph in terms of its minimum degree (or
maximum degree). Concretely, it is an interesting question to characterize
those graphs with small boundary. This problem has been considered very
recently by Hasegawa and Saito [19]. Nevertheless, independently of the
relevance of that problem, we need the characterization of those graphs with
small number (2 or 3} of vertices in their boundaries in order to obtain a
realization theorem involving different types of boundary vertex sets. This
is one of the main results in this paper.

A second interesting question considered in this paper is to obtain prop-
erties of some boundary vertex sets of a graph under the point of view of two
convexity criteria: the geodetic convexity and the monophonic convexity.
These two criteria are close related. See the references (2, 3, 4, 5, 7, 13, 21]
for recent works about the convexity of some boundary vertex sets. Actu-
ally, there are some open questions on determining whether some boundary
vertex sets are geodetic or monophonic [2]. Concretely, it is still an open
question to know whether the contour of a graph is a geodetic set for bipar-
tite graphs [4]. Our second main contribution is to prove that the contour
of a graph is a monophonic set, which is not so strong as its geodeticity but
it directly implies some recently known result about the geodetic convexity
of the contour of some graph classes (7).

The third point of view we address is to study metric properties of the
boundary of a graph. It is known that determining the metric dimension
of a graph is a NP-complete problem [22]. Genetic algorithms have been
designed to compute the metric dimension of hypercubes and Hamming
graphs up to certain number of vertices [23]. In [6] the metric dimension of
Cartesian product of graphs is addressed and an exhaustive set of references
on the metric dimension of graphs can be found. A simple but interesting
result in this paper is that the cardinality of the boundary of a graph is an
upper bound for both the metric dimension and the determining number of
the graph [1, 14, 16]. Unfortunately, the boundary of a graph can be very
large, but knowing its cardinality can be helpful for bounding the metric
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dimension of some graphs.

All the graphs considered in this paper are finite, undirected, simple,
and connected graphs G = (V(G), E(G)). By d(u, v) we denote the distance
between two vertices u,v € V(G). For undefined basic concepts we refer
the reader to introductory graph theoretical literature, e.g., [28].

Given u,v € V(G), the vertex v is said to be a boundary vertez of u
if no neighbor of v is further away from u than ». By 8(u) we denote
the set of all boundary vertices of u. A vertex v is called a boundary
vertex of G if v € O(u) for some vertex u € V(G). The boundary of a
graph was introduced by Chartrand et al. [8, 9] and originally defined to
be the subgraph induced by the boundary vertices of G, not the vertices
themselves. Nevertheless and since we only consider boundary vertex sets
and not their induced subgraphs, we identify the boundary of G, 8(G), as
the set of all of its boundary vertices!:

8(c)= |J 8()={veV(G)|Iue V(G) such that
ueV(G)

Yw € N(v), d(u, w) < d(u,v)}.

For some basic graph classes, such as complete graphs, complete bi-
partite graphs, cycles and hypercubes, the boundary is simply the whole
vertex set. It is not difficult to see that this property holds for all vertex-
transitive graphs. However, this is far from being the general rule. In fact,
an interesting open question is: to characterize the graphs in which the
boundary is the whole vertez set. As an example, notice that the boundary
of a tree consists exactly of the set of its leaves. The boundary of a graph
is a natural generalization of other kinds of boundary vertices which we
define next.

The eccentricity of u € V(G), ecc(u), is defined as

ecc(u) = max{d(u,v) | v € V(G)}.

Given u,v € V(G), the vertex v is called an eccentric vertex of u if no
vertex in V(G) is further away from u than v, that is, if d(u,v) = ecc(u).
A vertex v is called an eccentric vertez of G if it is the eccentric vertex of
some vertex u € V(G). The set of vertices of the eccentric subgraph of G
or the eccentricity of G, Ecc(G), is the set of all its eccentric vertices:

Ecc(G) = {v € V(G) | 3u € V(G), ecc(u) = d(u, v)}.

A vertex v € V(G) is called a peripheral verter of G if no vertex in
V(G) has an eccentricity greater than ecc(v), i.e., if the eccentricity of v is

IThis is usual in several papers which only deal with boundary vertex sets. Thus, the
same rule applies for the set of all eccentric, peripheral, contour, and extreme vertices
of a graph G to be defined next.
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equal to the diameter of G. The periphery of G, Per(G), is the set of all
its peripheral vertices:

Per(G) = {v € V(G) | Yu € V(G), ecc(u) < ecc(v)}.

A vertex v € V(G) is called a contour vertez of G if no neighbor vertex
of v has an eccentricity greater than ecc(v) [7]. The contour of G, Ct(G),
is the set of all its contour vertices:

Ct(G) = {v € V(G) | Yu € N(v), ecc(u) < ecc(v)}.

Finally, a vertex u € V(G) is called eztreme vertez of G if the subgraph
induced by its neighborhood, G[N(v)], is a clique. The extreme set of G,
Ext(G), is the set of all its extreme vertices:

Ext(G) = {v € V(G) | GIN(v)] is a clique}.
Figure 1 shows a graph G and its boundary vertex sets.

7 8 9 10 11

1 ; 3 4 g 6
Figure 1: Per(G) = {6,7}, Ct(G) = Ext(G) = {1,6,7,11}, Ecc(G) =
{1,6,7}, and 8(G) = {1,6,7,10,11}.

Notice that every extreme vertex is a contour vertex, i.e., Ext(G) C
Ct(G). It is also clear that Per(G) C Ct(G)NEcc(G) and Ecc(G)UCH(G) C
9(G) (Figure 2).

Figure 2: Boundary vertex sets.
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This paper is organized as follows. In Section 2, we consider those
graphs with small numbers (2 or 3) of vertices in their boundaries in order
to show a realization theorem involving different sets of boundary vertices.
Both geodesic and monophonic convex properties of the boundary vertex
sets of a graph are considered in Section 3, in particular we show that the
contour is a monophonic set. Finally, in Section 4 we focus our attention
on a metric dimension property of the boundary of a graph.

2 Structural properties. A new realization
theorem

In this section we show a realization theorem involving different boundary
vertex sets. First we focus on their relationships and cardinalities.

Figure 3 illustrates three graphs showing that there is no general rela-
tionship between the peripheral and the extreme vertex sets. Concretely,
in Figure %2): Per(G) N Ext(G) = @; in Figure 3b): Per(G) N Ext(G) # 0,
Per(G) € Ext(G) and Ext(G) ¢ Per(G); and in Figure 3c): Per(G) =
Ext(G). %

a) b) c)

%
Figure 3: ZThe vertices inside a square (circle) are peripheral (extreme)

.
vertices. Y

=

Furthermore, Chartrand et al. [8] give a realization theorem involving
the periphery, the eccentricity, and the boundary of a graph. In [5], this
result was improved with the following realization theorem which also in-
volves the contour.

Theorem 1. [5] Let (b,c,e,d) € Z* be positive integers satisfying the
following constraints:

2<b<ec<d,
2<b<e<d,

(b,c,e,d) # (27 2,2,3),
(b.c,e.d) # (b.c,b+1,b+1).

Then there exists a graph G such that
|Per(G)| =b, |Ct(G)]=¢, |Ecc(G)=e, and |8(G) =d.
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In this section, we will present a similar result by considering Ext(G)
instead of Ecc(G). Firstly, we consider those graphs with small numbers
(2 or 3) of vertices in their boundaries.

Lemma 1. [5] If | Per(G)| = | Ct(G)| = 2, then |3(G)] =2 or |0(G)| > 4.

Hasegawa and Saito [19] characterize the graphs with boundary of or-
der at most three. The graphs with boundary of order two is as follows. A
connected graph with exactly two boundary vertices is a path. This charac-
terization was also considered by Hernando et al. {20].

For the characterization of the graphs with boundary of order three,
Hasegawa and Saito [19] introduce the following notation. They call a
subdivision of Ky 3 a claw-like tree. Let H be a complete graph of order
three. Take a subset X of V(H), and for each = € X, prepare a path P,
and join z and one of the endvertices of P;. The resulting graph is called
a tripod. The path P, is called its leg. By definition, a tripod has at most
three legs, and a tripod with no leg is K3. Then, the characterization is
as follows. A connected graph G has ezactly three boundary vertices if and
only if G is either a claw-like tree or a tripod.

The following corollary is an easy consequence from the characterization
of the graphs with boundary of order three.

Corollary 1. If |8(G)| = 3, then 8(G) = Ct(G) = Ext(G).

Notice that if the boundary of the graph has few vertices, the charac-
terization of the graphs with boundary of order two, and Corollary 1 give
some restrictions on the cardinalities of both the periphery and the contour.
Concretely, the restrictions are given in the following corollary.
Corollary 2. If|Ext(G)| = a, | Per(G)| = b, | Ct(G)| = ¢, and |0(G)| = d,
then

1.0<a<ce<d, and2<b<c<d,

2. (a,b,¢,d) # (a,2,2,3) for any value of a,
3. (a,b,¢,d) #(2,2,3,3),

4. (a,b,c,d) #(2,3,3,3).

At this point, we ask whether there are more restrictions concerning
the cardinalities of the sets Ext(G), Per(G), Ct(G), and 9(G). Next, we
present a realization theorem showing the answer to be negative. First we
give out a trivial lemma which proof is straightforward.

Lemma 2. Let z € V(G), [V(G)| > 2 and A > 1. Let G be the graph
obtained from G by replacing the verter = by a complete graph K, and
joining every vertex of K to every neighbor of = in G. Then,
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1. for every vertex y € V(K)), eccz(y) = ecca(z),

2. for every vertez y € G~ V(K>), eccg(y) = ecca(y).

Theorem 2. Let (a,b,c,d) € Z* be ordered 4-tuples of integers satisfying
the constraints of Corollary 2. Ifa > 2, then there exists a connected graph
G such that | Ext(G)| = a, | Per(G)| = b, | Ct(G)| = ¢, and |0(G)| = d.

Proof. Consider the list of all possible cases according to the constraints
given in Corollary 2 (see Table 1). For each one of these cases in Table

Table 1: List of possible cases in the proof of Theorem 2.

(1) 2<a=b=c=d (2) 2<a<b=c=d
(3) 2<a=b<ec=d 4) 2<a=b=c<d
(5) 2<a<b<e=d (6) 2<a=b<ec<d
7 2<a<b=c<d (8) 2<a<b<ec<d
(9) 2<b<a=c=d (10) 2<b<a<c=d
(11) 2<b<e=c<d (12) 2<b<ca<e<d

1 we give a fitting graph corresponding to the smallest possible values of
the parameters (a, b, ¢,d). Due to the constraints of these parameters, the
4-tuples (2, 3,3,3), (2,2,3,3), and (2,2,2,3) are impossible. Therefore, for
each of the cases (2), (3), and (4) we give two fitting graphs. In Figures 4
and 5 we illustrate the fitting graphs of all the possible cases. Table 2 shows
the corresponding vertices of the sets Ext(G), Per(G), Ct(G), and 9(G),
and the eccentricity sequence of each fitting graph. Notice that for all the
graphs in Figures 4 and 5 either Ext(G) C Per(G), or Per(G) C Ext(G)
(see Table 2).

The proof is based on an explosion procedure which uses Lemma 2. We
apply this procedure to all the cases above. In each case G will be the cor-
responding fitting graph in Figure 4 or 5, and G will be the graph obtained
from G by replacing some particular vertices by complete graphs according
to Lemma 2, in such a way that G satisfies the desired cardinalities for the
sets Ext(G), Per(G), Ct(G), and 8(G). We proceed as follows.

Case (1): Ext(G) = Per(G) = Ct(G) = 8(G) = {1,3}. Replace vertex
3 by K. Then |Ext(G)| = | Per(G)| = | Ct(G)| = |8(G)| = m + 1 = a.

Case (2): Ext(G) = {3,6} and Per(G) = Ct(G) = 9(G) = {1,3,4,6}.
Replace vertex 6 by K,, and replace vertex 4 by K,. Then |Ext(G)| =
m+1 = a, and | Per(G)| = |Ct(G)| = |18(G)| =m +n+2=b.

Case (2'): Ext(G) = {2, 3, 5} and Per(G) = Ct(G) = 8(G) = {1,2, 3,5}.
Replace vertex 2 by K,,, and replace vertex 1 by K,,. Then |Ext(a)| =
m+2=a, and | Per(G)| = |Ct(G)| = |8(G)| =m+n+2=b.
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0)] 2<a=b=c=d
r—G—
1T 2 3
(2,2,2,2)
(2) 2<a<b=c=d 29
4 5 6 3 4 5
1 2 3 12
(2444) (3,4,44)
3 2<a=b<c=d 3
5 6 7 7 8 9
3 4 ——e o
1 2 1 2 38 4 5 6
(2,24,9) (3349
@) 2<a=b=c<d 7
4 5 6 4 5 6
1 2 3 12 3
(2,2,29) (3,3,3.4)

Figure 4: Fitting graphs for the cases (1) to (4).

Case (3): Ext(G) = Per(G) = {4,5} and Ct(G) = 9(G) = {1,2,4,5}.
Replace vertex 5 by K,,, and replace vertex 2 by K,,. Then |Ext(@)| =
| Per(G)| =m +1=a, and | Ct(G)| = |0(G)| =m +n+2 = d.

Case (3'): Ext(G) = Per(G) = {1,6,7} and Ct(G) = 8(G) = {1,6,7,9}.
Replace vertex 7 by Ko, and replace vertex 9 by K,. Then |Ext(G)| =
| Per(G)| = |Ct(G)| =m +2 =@, and [0(G)| =m +n+2 =d.

Case (4): Ext(G) = Per(G) = Ct(G) = {1,6} and 9(G) = {1, 3,4, 6}.
Replace vertex 6 by K,,, and replace vertex 4 by K,. Then IExt(a)l =
| Per(G)| = | Ct(G)| =m+1=a, and [8(G)| =m+n+2=d.

Case (4’): Ext(G) = Per(G) = Ct(G) = {1,3,4} and 8(G) = {1, 3,4, 6}.
Replace vertex 4 by K,,, and replace vertex 6 by K,. Then |Ext(5)| =
| Per(G)| = |Ct(G)| =m +2 =@, and |8(G)| =m+n+2=b.

Case (5): Ext(G) = {1,6}, Per(G) = {1,6,7} and Ct(G) = 9(G) =
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(5) 2<a<b<c=d 9) 2<b<a=c=d
7 8 9 I 6
1 2 3 4 5 6 1 2 3 4 6
(2,3,4,4) (3,2,3,3)
() 2<a=bcec<d (10) 25b<a<c=d
[] 7 8 9 5 8 7
1 2 3 4 5 1 2 3 4
(2,2,34) (3.2.4,4)
(6] 2<a<d=c<d (11) 2<b<a=c<d
5 7 4 5 7
1 2 3 4 1 2 3
(23,34) (3.2,3.4)
(8) 2<a<bce<d (12) 2<b<a<exd
10 1
6 7 8 ——o
Tl e
1 2 3 4 -+
1 2 3 4 5 [
(2,3,4,5) (3,2,4,5)

Figure 5: Fitting graphs for the cases (5) to (12).

{1,6,7,9}. Replace vertex 6 by K,,, replace vertex 7 by K,,, and replace
vertex 9 by K,. Then |Ext(G)| =m+1=a, |Per(G)| =m+n+1=b,
and |Ct(G)| =18(G)| =m+n+p+1=d.

Case (6): Ext(G) = Per(G) = {5,9}, Ct(G) = {5,6,9} and 3(G) =
{1,5,6,9}. Replace vertex 9 by K,,, replace vertex 6 by K,,, and replace
vertex 1 by Kp. Then |Ext(G)| = |Per(G)] = m+1 = a, |Ct(G)| =
m4+n+l=c and |8(G)|=m+n+p+1=d.

Case (7): Ext(G) = {4,7}, Per(G) = Ct(G) = {4,5,7} and 8(G) =
{1,4,5,7}. Replace vertex 7 by K,,, replace vertex 5 by K,,, and replace
vertex 1 by Kp. Then |Ext(G)] = m+ 1 = a, |Per(G)] = |Ct(G)| =
m+4n+1=>, and [3(G)|=m+n+p+1=d.

Case (8): Ext(G) = {4,5}, Per(G) = {4,5,6}, Ct(G) = {4,5,6,8} and
0(G) = {1,4,5,6,8}. Replace vertex 5 by K,,, replace vertex 6 by K,
replace vertex 8 by K, and replace vertex 1 by K;. Then |Ext(@)| =
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Table 2: Boundary vertex sets of the fitting graphs.

Case | (a,b,¢,d) || Ext(G) | Per(G) Ct(G) G Eccentricity sequence
) | 2222 13} (1,3} {1,3} {13 212
[(2) | 2444 3,6} | {1,34,6} | {1,346 1,3,4,6] 323323 |
@) | G444 || 235) [ {1,235} ] {1235 1235 (2,2,2,1,2)

[ (3) | (2244 4,5} (45 {1245 1245 3334,432)

@) | 3344 || (16,7} | {167 | {1679 1,6,7.9) 5,4,3,3,4,554,4)
@ | 2224 {1,6} {18} 1,6} 1,3,4,6) 4,3,2,2,3,4)

@) 13334 || (1,34 | (1,34Y | (1,34) 134,6 3,2,33,2,2)

[ 6) | (2344 1,6} 16,7} | {1,6,7,9} 16,7,9 5,4,3,3,4,55,4,4)
[(6) | (2234 5,9} {5.9Y {5,6,9) 1,5,69 4,3,4,5,6,54,5,6)
™ [ 2334 47 | (457 [ (457} 14,57 (3.2344,34)
[®) | @345 [ {45 456) | {4568] | {14568 [ (32344433 |
[ ©) | 3233) ] {15 15 156) [ (156 [ (432343 |
[(10) | (3,2,4,4) || {145 4,5) {1,457} 14,57} (3,2,3,4,43.3)
(1) [ 3234 [ (34,7} 34 {34,7) 1,3,4,7} 2,3,4,4,3,2.3) '
12) | (3.245) || {1,611} ] {1,011} | {1,691} [ (1,6,7.9,11} [ (6,5,4,3,4,5,34,5,5,6)

m+1=a, |Per(G)=m+n+1=b,|Ct(G)|=m+n+p+1=c, and
0@ =m+n+p+g+1=d

Case (9): Per(G) = {1,5} and Ext(G) = Ct(G) = 9(G) = {1,5,6}.
Replace vertex 5 by K, and replace vertex 6 by K,. Then | Per(G)| =
m+1=b, |Ext(G)|=|Ct(G)| =10(@)|=m+n+1=a.

Case (10): Ext(G) = {1,4,5}, Per(G) = {4,5}, Ct(G) = 9(G) =
{1,4,5,7}. Replace vertex 5 by K, replace vertex 1 by Ky, and replace
vertex 7 by Kp. Then |Per(G)| =m+1=0b, |[Ext(G)|=m+n+1=a,
and |Ct(G)| = 10(G)| =m+n+p+1=d.

Case (11): Per(G) = {3,4}, Ext(G) = Ct(G) = {3,4,7} and 9(G) =
{1,3,4,7}. Replace vertex 4 by K, replace vertex 7 by K, and replace
vertex 1 by Kp. Then |Per(G)| = m+1 = b, |Ext(G)| = |Ct(G)| =
m+n+l=cand |9(G)|=m+n+p+1l=d.

Case (12): Ext(G) = {1, 6,11}, Per(G) = {1,11}, Ct(G) = {1,6,9,11}
and 9(G) = {1,6,7,9,11}. Replace vertex 11 by K,,, replace vertex 6 by
K, replace vertex 9 by K, and replace vertex 7 by K,. Then |Ext(@)| =
m+n+1=a,|Per(G) =m+1=b, |Ct(G)|=m+n+p+1=c, and
0@)| =m+n+p+g+i=d

Now, given (a, b,c,d) € Z* satisfying the constraints of Corollary 2, we
choose the adequate values of m, n, p and g for each of the cases and the
theorem follows. 0

Notice that Theorem 2 still has to be extended for 0 < Ext(G) < 1. As
a first step, we conjecture that if G has no extreme vertices and |3(G)| = 4,
then 8(G) = Per(G).

276



3 Convex properties

In this section we consider both geodesic and monophonic convex properties
of the boundary vertex sets of a graph. In particular we show that the
contour is a monophonic set.

A convezity on a finite set V is a family C of subsets of V, to be regarded
as convex sets, which is closed under intersection and contains both V
and the empty set. The pair (V,C) is called a convezity space. A finite
graph convezity space is a pair (G,C), formed by a finite, connected and
undirected graph G = (V(G), E(G)); and a convexity C on V(G) such that
(V(G),C) is a convexity space having the property that every member of
C induces a connected subgraph of G [12, 15].

In this section, we deal with two types of graph convexities, both of
them defined by a system P of paths in G: the geodesic converity [15, 18,
21, 27] which arises when we consider shortest paths, and the monophonic
convezity [12, 15] when we consider chordless paths. A chord of a path
(uouy - - - up) is an edge ujuj, with j > i + 2. Given u,v € V(G),au—v
path p is called monophonic if it is a chordless path; and p is called a
geodesic if it is a shortest u — v path.

Given u,v € V(G), the geodetic interval Ifu,v] is the set of vertices of
all u — v geodesics. Similarly, the monophonic interval Jfu,v] is the set of
vertices of all monophonic «—v paths. For W C V(QG), the geodetic closure
I[W) of W is defined as the union of all geodetic intervals I[u, v] over all
pairs u,v € W. The monophonic closure J[W] is the set formed by the
union of all monophonic intervals J[u, v].

A vertex set W C V(G) is called geodetically conver (or simply g-
conver) if I[W] = W, while it is said to be geodetic if I[W] = V(G). Like-
wise, W is called monophonically convez (or simply m-convez) if J[W] =
W, and is called monophonic if J[W] = V. The smallest g-convex set con-
taining W is denoted [W], and is called the g-convexr hull of W. Similarly,
the m-convez hull [W},,, of W is defined as the minimum m-convex set con-
taining W. Observe that J[W] C [W],,, I[W] C [W], and (W], C [W]m.

The edge-geodetic interval I, [u, v] is the set of edges of all u—v geodesics.
For W C V(G), the edge-geodetic closure I.[W)] of W is the union of all
edge intervals I[u, v] over all pairs u,v € W. A vertex set W C V(G) is
called an edge-geodetic set if I.[W] = E(G).

From the above definitions it is straightforward that: (1) every edge-
geodetic set is geodetic set, (2) every edge-monophonic set is monophonic
set, and (3) every edge-geodetic set is an edge-monophonic set. It is also
easy to find examples where the converses of these statements are not true.

Next results show that all the vertices and edges of a graph lies in some
shortest path between two vertices of the boundary of the graph.
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Theorem 3. For any u € V(G), W = {u} U 8(u) is a geodetic set.

Proof. Pick any vertex z € V(G) <\ W. Any u — = geodesic extends to a
maximal v — y geodesic. This means that y € 8(u) and, consequently, z is
in a geodesic with endpoints in W, ]

As a consequence we get that 8(G) is a geodetic set (see [5]).
Theorem 4. 3(G) is an edge-geodetic set.

Proof, Let e = zy € E(G). Consider P = (a---zy---b) a maximal
geodesic containing e. Clearly, b € 3(a) and a € 8(b). Thus e is in a
geodesic with endpoints in 8(G). O

Theorem 5. Let G = (V(G), E(G)) be a connected bipartite graph and
u € V(G). Then W = {u} U 8(u) is an edge-geodetic set.

Proof. Let u € V(G) and e = zy € E(G). Because G is a bipartite graph,
d(z,u) # d(y, u). Suppose that d(z,u) < d(y,u). Consider a u—z geodesic
P = (u---z). Then P’ = (u---zy) is a geodesic that can be extended
to a maximal u — z geodesic. Then z € 8(u) and e is in a geodesic with
endpoints in W. Thus W is an edge-geodetic set. ]

It is known that the contour of a graph is not a geodetic set {7, 5], i.e.,
not all the vertices of a graph lie necessarily in some shortest path between
two vertices of the contour of the graph. In the next theorem we show that
this statement is true if we consider chordless paths instead of shortest
paths.

The following lemma is straightforward.

Lemma 3. |ecc(v) —ecc(u)| < 1, Vuv € E(G).
Theorem 6. Ct(G) is a monophonic set.

Proof. Consider a vertex = of G. Suppose that = is not a contour vertex,
i.e., z is a vertex of V(G) \ Ct(G). Since the eccentricities of two adjacent
vertices differ by at most one unit, if = is not a contour vertex, then there
exists a vertex y € V(G), adjacent to z, such that its eccentricity satisfies
ece(y) = ecc(z)+1. This fact implies the existence of a shortest zo—x, path,
p(z) = (zoz1Z2 - - - T4 ), such that z = xo, z; ¢ Ct(G) for i € {0,...,r -1},
z, € Ct(G), and ecc(z;) = ecc(zi—1) +1 =1+ fori € {1,...,r}, where
l = ecc(z).

Let us now consider those vertices at distance ! from z. Suppose that
all of them are at a distance less than [ + r from z,. The vertices at a
distance less than ! from z are at a distance less than ! 4 r from z,, a
contradiction. Hence, the eccentricity of z, would be less than [ + 7. This
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implies the existence of a vertex z at a distance exactly ! from = and { +r
from z,, and z lies on a shortest path ¥ = (z---zz; -+ - x,) between z and

z, (Figure 6).
zZ =2
. I—o v-—} 2
v
o {7 ' P @
251 § ‘2,-_1
! I

Zs

Figure 6: ¥ is a z — z, shortest path.

Suppose that z is not a contour vertex, since otherwise we are done.
Let us construct a path p(z) = (2021 -- - 2s) such that z = 2p, z; ¢ Ct(G)
fori € {0,...,5 -1}, z, € Ct(G) and ecc(z;) = ecc(zi—1) + 1 = ecc(z) + i
for i€ {1,...,s} (Figure 6).

Let & be the z — z sub-path of ¥. Notice that the vertex z satisfies
ecc(z) > I+, the vertices of V' (p(2)) \{z} have eccentricity at least [+r+1
and the vertices of V(p(x)) have eccentricity at most [ + r. Therefore, the
sets V(p(z)) and V(p(z)) are disjoint. Moreover, taking into account the
eccentricities of all of these vertices and Lemma 3, if there is an edge joining
a vertex of V(p(z)) \ {z} with a vertex of V(p(z)), it must be z;z,. In
this case, d(z,2,) =2 = [+ r, implying that [ = r = 1 (Figure 7). Hence,
the eccentricity of z is 1, the diameter of the graph is 2 and z is a contour
vertex, which is a contradiction.

21

zs ¢

Figure 7: If d(zp,z,) =2,thenl=1and r =1.

Notice that the sets of vertices V(p(z)) \ {2} and V(§) are not neces-
sarily disjoint. Consider a z, — z path P contained in the walk p(z) Ud =
(2s---2z1z---z). If P has a chord e = ab, we can replace the a — b sub-path

279



of P with e obtaining a z, — z path P’. Since V(P’) ¢ V(P), the path P’
has strictly less chords than P. We proceed in an analogous way with P/,
until we obtain a chordless 2z, — = path P*. Recall that ¥ = (2--.z--.z,)
is a shortest path, which means that there are no edges joining vertices of
V(8)UV (p(z)). Therefore, P*Up(z) is a monophonic 2, —z, path through
z with z,, z, € Ct(G). O

As a consequence of Theorem 6, we obtain the following corollary, which
was directly proved by Céceres et al. [7].

Corollary 3. [7] The contour of a distance-hereditary graph is a geodetic
set.

4 Metric dimension property

In this section we focus our attention on a metric dimension property of
the boundary of a graph showing that the cardinality of the boundary is
an upper bound of the metric dimension of a graph.

We say that a vertex = € V(G) resolves a pair of vertices u,v € V(G) if
d(z,u) # d(z,v). A set of vertices W C V(G) is a resolving set of G, if for
all pair of vertices u,v € V(G) there exists a vertex in W which resolves
u,v. In other words, W resolves a graph G, if every vertex of G is uniquely
determined by its vector of distances to the vertices of W. The metric
dimension of G is the minimum cardinality of a resolving set of G.

Resolving sets in general graphs were defined by Slater [25] and Harary
and Melter [17], they have been widely investigated and arise in many di-
verse areas including network, discovery and verification, robot navigation,
connected joins in graphs and strategies for the Mastermind game [6]. The
next results give an upper bound of the metric dimension of a graph.

Theorem 7. 8(G) is a resolving set of G.

Proof. Pick any pair z,y of vertices of G. Any z — y geodesic extends
to a maximal z’ — 3 geodesic. Clearly, 2’ € 3(y’) C 9(G) and d(z’,z) #
d(z’,y). O

Corollary 4. The metric dimension of G is at most |8(G)|.

The metric dimension of a graph is closely related to the minimum
determining set of a graph. In fact, the definition of determining set of a
graph is from Harary [16] with the nomenclature of firing set, see also Erwin
and Harary [14], and later rediscover by Boutin [1] which use the word
determining set, but Boutin’s definition is completely equivalent to fixing
set. Thus, the minimum cardinality of a fixing set is the firing number,
which corresponds to the Boutin’s definition of determining number [1].
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Definition 1. [1, 16] A subset W C V(G) in a connected graph G =
(V(G), E(G)) is called a determining set for G if whenever g, h € Aut(G)
agree on the vertices of W, they agree on all the vertices of V(G). That is,
W is a determining set if whenever g and h are automorphisms with the
property that g(w) = h(w) for all w € W, then g = h. The determining
number of G is the minimum cardinality of a determining set of G.

Intuitively, a set W is a determining set of a graph if and only if every
vertex in the graph can be uniquely identified by its own graph properties
and its relationship to the vertices in W. Every graph has a determining
set.

Proposition 1. [1,16) If W is a resolving set of G, then it is a determining
set of G.

Corollary 5. The determining number of a connected graph G is at most
18(G)|.

Now we consider the graph G illustrated in Figure 8, where Ext(G) =
Per(G) = Ct(G) = Ecc(G) = {1,7} and &G) = {1,4,7,8}. The sets
Ext(G), Per(G), Ct(G) and Ecc(G) are neither resolving nor determining
sets for G. On the other hand, 8(G) is both resolving and determining
“set for G. Nevertheless it is easy to prove that W = {1,4} is a resolving
and a determining set of minimum cardinality for G. Thus, it is clear that
|0(G)| is not a tight upper bound for both the metric dimension and the
determining number of a graph.

Figure 8: The graph G.
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