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Abstract From differential operator and the generating functions of Bernoulli and
Euler polynomials, we derive some new theorems on Bernoulli and Euler numbers. By
using integral formulae of arithmetical properties relating to the Bernoulli and Euler
polynomials, we obtain new identities on Bernoulli and Euler numbers. Finally we give
some new properties on Bernoulli and Euler numbers arising from the p-adic integrals
onZ,

1. INTRODUCTION

The Bernoulli and Euler polynomials are defined by the generating functions as follows

text e Al 2e%t o0 n
ot ZOB"(Z)-J' oo Z‘)En(x);;!'- (1)
n= n=

In the special case, x = 0, B, (0) = B, and En(0) = E, are called the n-th Bernoulli
and Euler numbers (see[1,2,15]).

In [4,5], Carlitz gave the integral of the product of several Bernoulli polynomials as
follows:

A z T _ 1=m l-m, 1
Bml ("'—)"'an (—)dx—al "'an Bml (z)-uan(z)dm,
V] ay an (V]

where a1,a2--- ,a» are positive integers that are relatively prime in pairs and A =
ajaz---an. For n = 2, there is the formula

1 1q!
By(2)Bg(z)dz = (-1)PH-EL_B . (p+g>92).
[ Bo@Batats = (<194 BB, (p+a22)
It may be of interest in this connection to recall the formula for a product of two
Bernoulli polynomials:

Bn(@)Ba(e) = (1) + (5 my Pt (it I B,

where m 4+ n > 2, (see [5)).
For m,n,p > 1, Carlitz also obtained the following equation:

1
/o Bun(z) Bn(z) Bp(z)dz

= (PR () (2 )m}m—;z’_'z—g-:m,smﬁ,_gr (see[s]).

2010 Mathematics Subject Classification : 05A30, 11B65, 11B68, 11D88, 11S80.
Key words and phrases:Bernoulli numbers, Euler numbers, p-adic integrals.

ARS COMBINATORIA 109(2013), pp. 285-297



From (1), we note that

n

Bn(z) = 2 (?)x”"Bz, En(z) = Z (T:)x"—‘E(- (2
=0 =0
By (2), we get

Bo =1, Ba(1) = Bn =81,n, Eo=1, En(1) + En = 260,n, 3)

where 4, « is kronecker symbol.
From (2), we can derive the following equations:

2 Ba(@) = nBaci(e), En(z)=nBn-i(@)  (nE€Zy). @
Thus, by (3) and (4), we get
/ Bu(z )d:c~ —On_ / E,.(z)dz—-%"T‘. (5)

As is well known, the gamma a.nd beta functions are defined by the following definite
integrals (a > 0, 8 > 0):

(o) = / ® emtia-1gp, (see [8-12)), ®)
o
and
Bl = [ eta-gpa= [T &
By (6) and (7), we get he following equations:
Mla+1)=al(e), Blef) = Lo a). (®)

Let p be an odd prime number. Throughout this paper, Z,,Qp, and C, will, respec-
tively, the ring of p-adic rational integers, the field of p-adic rational numbers, and the
completion of algebraic closure of Q. Let vy, be the normalized exponential valuation
of Cp with [plp = p~=*»(P) = %. Let UD(Zp) be the space of uniformly differentiable
functions on Z,. For f € UD(Z,), the bosonic p-adic integral on Z,, is defined by

nn= [ J@duta) = lim go £(z), (see [8,10]). ()
and the fermionic p-adic integral on Z; is given by
pm=-1
L= [ f@duma(e) = lim 3 ST el (10
By (9) and (10), we get
n(h)-n(N=£©), and I-1(f1)+I-1(f) = 2£(0), (1)

where f1(z) = f(z + 1), (see [1-16]).
Let us take f(y) = et(®=+¥), Then, by (11), we get

xt

et +1°

tezt
/ =t dp(y) = - , / et dp_(y) =
Z, et—1 Z

P

(12)

By (1) and (12), we get
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/ (& +9)"du_1(y) = En(3), / (2 +4)"du(y) = Ba().
Zp Zp

In this paper, we derive some new theorems on Bernoulli and Euler numbers from
differential operator and the generating functions of Bernoulli and Euler polynomials.
By using integral formulae of arithmetical properties relating to the Bernoulli and Eu-
ler polynomials, we obtain some interesting identities on Bernoulli and Euler numbers.
Finally we give some new properties on Bernoulli and Euler numbers arising from the
p-adic integrals on Z.

2. THEOREMS ON BERNOULLI AND EULER NUMBERS

In this section we assume that a,b are integers. Let F; = F:(t) = ;‘;—z_‘—l Then, by(1),
we get

F,,=Fz(t)=f;‘1=%;f-ei‘;=% g%f—: (14)
Let D= 3";. Then we easily see that
D(e® f) = ae®* f + e** D(f) = e**(al + D)f, (15)
where [ is the identity 6perator with I'f = f. Thus, by(15), we get
D?(e® ) = e**(a®I + 2aDI + D?)f = e**(al + D)?f. (16)

Continuing this process, we get
DN(e*tf) =e**(al + D)Nf (neN). a7
From (1) and (14), we have

et -1
eF, - F: = p le’" =", (18)

Thus, by (18), we get
@t _ ooty = gletat, (19)

From (17) and (19), we can derive the following equation:
etV D 4 (o + 1)D*F, — (D + al)*Fy = (z + a)Fe(z+a)t, (20
(D +(@+))*F: ( ( ) )
Thus, by (20), we get
etttV D 4 (a + 1) )5 Fy — @YD 4 al)*Fy = (z + a)kel®tatd)t, (21)
From (17) and (21), we have
e@tHDYD 4 (a4 b+ 1))™(D + (a+ D))*Fr — (D + (a + b)1)™(D + al)* F;
=(z+ a.)k(:c +a+ b)me(°+b+‘°)°.
(22)
Dividing by e(+b)¢ on both sides in (22), we have
e (D+(a+b+1))™(D+(a+ 1))*F; — (D + (a + b)[)™(D + aI)*F,.

= (z + a)*(x + a + b)™e=t. (23)
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Thus, by expanding on ¢ in (23), we have

m k

m-— k-t k t il
by (7)) .
_iZ(a+b)"‘" e~ ‘( )([;)Dj'“F,=(:c+a)"(:c+a+b)"‘e".

7=01=0

Let G[0}( not G(0))be the constant term in a Laurent series of G(t). Then, by (24), we
get

fj i(a +b+1)™"i(a + 1)k (”‘) ( )(e‘D"""F:)[O]
3=01=0 (25)
=3 @t bk ‘(7 () @R = G + D+ a+ o)™

3=01=0

By (14), we get

Np _ (-1)VN = Bjt1(z) ti-N _(—l)NN! BJ+N+1(J-‘)t
D7F = tN+1 ng j+1 (G—-N)y  tN+1 Z i+ N+1 JI’ (26)
and
epNp, = ot CVYN | oS Bijenaa(@) ¥
e!DVF; =e TN .0j+N+1 7
(27)
(-)VN! Bjyn41(z)
tN+l )(E [l)+(§) [l)(z ]+N+1 Jl)
From (26) and (27), we note that
Bn41(z)
N = ZN+1\7)
(DVFo)jo) = A,
and
tpN _ (=)NN! | Bnia(2)
@DVE)0 = T N (28)
Therefore, by (25), (27) and (28), we obtain the following theorem.
Theorem 2.1. For m,k € Z,, we have
m k .
s _ ky (—=1)7+
+o+ )™ @+ (T)(7) 3
Jgol:ZO(a ) ( ) (J)(I)J+l+l
+f:i{(a+b+ 1)™=3(a + 1)6~1 — (a + b)™=Ia*~ '}( )G )B“'“(’)
j=0i=0 j+i+1
=(z+a)(z+a+b™
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Let us take m =k, a =0, and b = -2 (or m = k, a = =2, and b = 2). Then, from
Theorem 1, we have

m m m—i (T —1)i+t L m- (E)
bl el =
(29)
_ z( 2)m—_1 (m) BJ+m+l(:‘) =z™(z—2)™.
j=0

j+m+1

Let us take the definite integral from 0 to 1 on both sides in (29). Then, by (5) and (29),
we get
(—1)i+

ZZ( 1)m-f( ™ )J+l+1 /olx'"(x—z)"'dx. (30)

Let Jy = fol 2™(z — 2)™dz. Then we have

1 172
J,,,=/o ™z - 2) dz=2/o (2t - 2)™(2t)™dt
= (-1)™22m (2 / ™ (1 — tymay)
0

= (-1)™22m™ /o ' (1 - t)™dt = (-1)"2*™B(m +1,m +1)

I(m+ 1)I'(m + 1)
I'(2m +2)

_ ma2m rn!m!

= (-1)™2 Bt
(_1)m22m 1

T Tom+1 ()

- (_ l)m22m

(31)
Therefore, by (30) and (31), we obtain the following theorem.
Theorem 2.2. For m € Z; we have
(_1)m22m

Z Z( l)m_‘(m)(m),+l+ 1~ em+ D))

J=01=0

Let ustake m =k, a=—1,and b=2 (orm =k, a =1, and b = ~2) in Theorem 1.
Then we have

m — —~1\m+. gm~— Biim T
S () S () B

:'~o i=0 (32)
Sy (D) () I = e -
okt U/ j+i+1

Let us take the definite integral from 0 to 1 on both sides in (32). Then, by (5) and (32),
we get

™ g ( pm+i m
J.z=%2 J(_7 m+J+l_/(z "de. (33)
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Let I;m = J; (z? — 1)™dz. Then we see that
1
Im = / (& - 1)™dz
. 0
1
= / (@ = 1)(a? - 1)™de
0
1 1
=/ z3(z%2 —1)™ ldz —/ (2% ~ 1)™"ldz,
0 0

and

/ (e - e = [ (e - )l - / @ - mas= —im
0 2m 0 2m Jo

2m’

By (34) and (35), we get
Im = —=—Im — Im-1.
2m

Thus, from (36), we have
—-2m
= —In >1).
In=gm ¥ Tifn-1 (m21)

Continuing this process, we have

I = ()2 =y, -2l
=(-1)"'(22"J:1)(§: )3

=™ kl;[l(m—g = I
Therefore, by (33) and (38), we obtain the following theorem.
Theorem 2.3. For m € Z,., we have
oo (7) St = o
i=o m+j+ 1° 2! + 1”7
In particular,

SSgmes (M) SN _CUnEn
ryr) ji/m+i+l (2m+1)(3T)
Let us consider the generating function of Euler polynomials:
2 & "
Gz = Gz(t) = mez‘ = "Z_OE,;(:::)E.
From (39), we note that
elat i, 4 eot@, = 2e(=+a)t,
By (17) and (40), we get

VYD 4 (a + DGz + 24D + al)* Gz = 2(z + a)* e+,

From (41), we can derive the following equation:
ela+ot DY D 4 (o + 1))*C, + eV (D + al)*G,
= 2(z + a)ke(z+a+b)t‘
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Let us take the m-th derivative D™ on both sides in (42). Then, by (17), we get
eletb YD | (g + b+ 1D)I)™(D + (a + 1))*G,
(a+b)t m k k ( B}t (43)
+e (D + (e +5)I)™(D + al)*Cz = 2(z + a)*(z + a + b)™eF+e+b)t,
Dividing by e(+b) on both sides in (43), we have
(D + (a+b+1)I)™(D + (a+ 1))*Cz + (D + (a + b)I)™(D + al)*G»
= 2(z + a + b)™(z + a)*e*".

Thus, by binomial theorem, we get

3 3+ b pmsar 81 () (D)
i=01=0
(45)
+ Z Z(a +b)™Iak- ,(m) ( )(D-H"G,) = 2(z + a + b)™(z + a)*e*t.
j=01=0
From (45), we have

f; Y (@+b+1)mF (a4 1)+ ( )( )(e‘D""‘G )[0)
j=01=0
(46)
+ E Z(a + b)"""a""'( )(';) (DIHG)[0] = 2z + a + b)™(z + o).
3=01=0
By (39), we get

(49

(DVG2)0] = En(=),
and
(et DN G2)[0) = En(z). 47
Therefore, by (46) and (47), we obtain the following theorem.
Theorem 2.4. For m,k € Z,., we have
k

53 @+b+ ™ot () (5) Bywito)

§=01=0

£33 (@ m-dabet (7) () Bswit) = 2w +a+0)m + )

7=01=0

Let m =k, a =0, and b = —2(or m = k,a = —2, and b = 2) in Theorem 4. Then we
have

5 30 () (7)Esi@) + 3o (-0 () Byam(e) = 2a = 2", (48)
3j=01=0 i=0
Let us take the definite integral from 0 to 1 in (48). Then, by (5), we get
m— m m— Ej4m
23 S0 () (]) g 2o () e

j=01=0 (49)

=2 /0 (% — 2)™z™dz.
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From (31) and (49), we can derive the following equation:

_ —1ym-i my Bt o~ _ovm—j (M) Bitmi1
2;0‘2( pm=i( )(l)j+l+1 2:4:40( 2 J(j)j+m+1 0
_ 2(_ )m22m
T em+ 1))’
Therefore, by (50), we obtain the following theorem.
Theorem 2.5. For m € Z., we have

S 5o () + g (e

i=01=0
(_1)m—122m
em+1)(37)’
Let us take m =k, a = 1, b = —2(or m = k, a = —1, and b = 2) in Theorem 4. Then
we have

f: 2"'_1( l )Em+l(=) + Z Z( l)m-a( )( )Ej+!($) =2(=*-1™  (51)
=0

J=01=0
Taking integral from 0 to 1 in (51), we get
_ 22 om-—1 ( ) Em+l+1 2i f:( l)m-g( )( ) EJ+‘+'I
rprd m+l+1 Jor rer j+i+1 (52)
=2 / (&2 — 1)™ds.
0
From (38) and (52), we have
S0 amei (™) Bmtrn 3§58 () () _gymeg Bosiin
1=0 l/m+i+1 7=01=0 i l i+l+1 ( )
53
= (_1)m+l ﬁ(

Therefore, by (53), we obtam the following theorem.

2A4+17

Theorem 2.8. For m € Z,., we have
m
- Em+i41 m —i Ejqt+1
2™ _ymei etk m+1
;) ( )m+l+l+22( )(J)( ) J+l+1 -1 H(2l+l
From (31), (38), Theorem 5 and Theorem 6, we obtain the following corollary.
Corollary 2.7. Form € Z, we have

m\ o ym—tygm—t Etem1 _
£ (7)ot B

Indeed, let us take m be even, replacing m by 2m in Corollary 7. Then we have

—2j— Eami2i+2
2y 92m—2 AT =, 5
_1;0 (2_7+1)2m+2]+2 (54)

If we take m is odd, replacing m by 2m 4+ 1 in Corollary 7, then we have
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gl 2 1\ FE.
2 2m—2j+1(2m + 2m+2542 _ o
Z 2 ( 25 2m 425+ 2 (55)

Corollary 2.8. For m € Z;, we have

i (m) gm—t Litm+1 Eiym+1 f: (m) (- l)m—l2m-l Erem41
1=0 { l+m+1 1=o ! l+m+1’

where [] is Gauss’ symbol.
3. NOTE ON THE p-ADIC INTEGRAL OF BERNOULLI AND EULER POLYNOMIALS

In this section, we assume that a,b,c,d € Z. From (10), (11), (12), (46),and (47), we
can derive the following equation:

[ @+ 40+ @+ )™+ 1) + =+ ) duma ()
% (56)

+/; {(a+b) + (= +9)™(a+ (= +v))*}du-1(y) = 2z + 2 + )™ (z + a)*.
Thus, by (56), we get

2(z + a + b)™(z + a)*

=/; {(a+b—c+)+(z+c+y)™(e—c+ 1)+ (z+c+y))Hdu1(y)

+/ {(a+b—-d)+ (c+y+d)™((a—d) + (z +y +d))*}du_1(v)

(57
k
Z ( ) (llc)(“ +b—c+1)™ Fa-c+ l)k—l /zp(a: +e+yPHdu_1(y)

i > () (ie+s-amia=at=! [ e dr oy iunst)

By (13) d (57), we get
2z +a + b)™(z + a)*

-3 Z () (e+b-ct )™ ia—ct ' Byuata +)

i=0 =

+ 33 (7 (o= 0= gt Brute o

(58)

Therefore, by (58), we obtain the following proposition.
Proposition 3.1. For m,k € Z;, we have

EZ( )(,:)(a+b-c+1)"“j(a—c+l)k"Ej+,(g+c)
3=01=0
m k

+3 3 (a+b—d)y™ i(a — )t~ (’;‘) (I:)Ej...;(z +d) =2z +a+b)™(z +a).

J=01=0

293



By (56), we also get

> Z ( ™) () (a+ b+ =i (e + 1 /z,,(z +oY*dua @)

j=01=0

m
Z (m)( )@+ bym=tak=! / (@ + P Hdu-1(y) = 2z +a + b)™(z + ).
(59)
Thus, by (59), we obtain the following proposition.
Proposition 8.2, Form,k € Z,, we have
m k
- k -1 k-

393 (; ) () @b+t DB + 3 3 (7) () @+ 9l Brna(e)
§=01=0 3=01=0

=2(z + a + b)™(z +a)*.
Let m =k, a =0, and b= —2(or m = k,a = =2,b = 2) in (56). Then we have
/zp((z +y)? - 1)™dp1(v) + /zp(w +y - 2™z +y)"du-1(y) = 2(z — 2)"=™. (60)
From (60), we can derive the following equation:
2e-2)ma" = [ (@4 =) + [, E+v=amE+orde)

= g)(-l)"'—f () f (2 +p)Pdu_1(v) + ji:,; (;)eam /z @+ ™)

m
= > = () Base) + Z () D™ B (o).
j=0
(61)
Therefore, by (61), we obtain the following proposition.

Proposition 38.3. For m € Z,., we have

)3 () eom-iBasta) + Z(-z)"‘-J () Emss(e) = 2w D™

j=0
Let m=k,a=1,b=—2(0rm=k, a=—1, b=2) in (56). Then we have
A A e i

(62)
Thus, by (62), we get

2z -1)™ = / (z+y)"(2+z+y)"dp1(y) + / ((z+9)? — 1)™du-1(v)

O (MY g m m—
=,§o(j)2 J/ (@ +y)™Hdu_ 1(,,)4.2( ( 1) J/ =+ )P dp-1(v)
= (m) 273 Emyj(z) + Z (m) (=1)™"9 Byj(=).

j=o0 7 j=0 *J

(63)
Therefore, by (63), we obtain the following proposition.
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Proposition 8.4. Form € Z4, we have

> (7 )2 Bt + 3. (7)1 Bgte) = 262 ™.

By Proposition 11 and Proposition 12, we obtain the following corollary.
Corollary 8.8. Form € Z4+, we have

30 = ()™ 9)2773 () s a) = 20e? — )™ = 2z = )™z
=0 J

Let m be even, replacing m by 2m in Corollary 13. Then we have

m
2m—(2j+1) 2m . = 2 _ 1\2m _ — 9\2m_2m
2,-2:62 (2j+ ) Brmazian(@) =262 — 1) ~ 2z — )"z (64)
Therefore, by (64), we obtain the following corollary.
Corollary 3.8. For m € Z,, we have

22m—2_1 -1 E -1 2m _ —9)2m2m
g (3 1 1) Bamsria(e) = (@2 = 17°m — (2 = 2)

Let m be odd, replacing m by 2m — 1 in Corollary 13. Then we have

l2m =1
2 Z 22m—1 23(2111 1)E2m—l+25(x) 2(3_.2 l)Zm— 2(z 2)2m—1 2m—1 (65)
i=0 %

Therefore, by (65), we obtain the following corollary.
Corollary 3.7. For m € N, we have

[2m—l

L) 0 f2m — — - -
> (T ) Bamo1425(a) = (@ — 1)1 — (2 - 2)2m=1gtme,
i=0

Let us consider the bosonic p-adic integral on Zp in Proposition 11. By (9),(12),(13)
and Proposition 11, we get

ZE(m)(z])( ™9 By / 2ldp()

i=01=0
m m+3 . . _

+ 20 é (-2 )m—;( )(m +J)Em+j—‘/ ztdp(z) = 2;’ ( )(_2) '/z, =™ ().
From (66) and (13), we note that (66)

m 2j .

35 (1) () -vmis,-im

y=0 m m+tj m 67)

+ E z 2™~ (m) (m +]) Emyj-1Br1= 22 ( )(—2)"""Bm+t.

5=0 1=0 =
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By (9), (12), and Proposition 12, we get

2 Z ( )2"“j (m:-j)Em+j-! /z ztdp(zx)

320 1=0
+§)‘Z ( ) (2-7) (=1)™3 Ey;_ l'/zv zdu(z) = 2;:% (';‘) (-1)™—! /z, :Bmdp(z(), |
68

Thus, from (68), we have

Z Z ( )(m:.j)zm_jEvnH-tBt

3=0 =0

(69)
¥ gg ( ) ( )(-l)m_JEza—sz = 2,;, ( )( -1)™!By.
By (67) and (69), we get
i nij(l - (- 1)m—:)( ) (m +J)2m_,~Em+j-lBl
j=0 =0

= 22 (';‘) (-1)™=(Byt — 2™ B ).
1=0
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