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Abstract

Let G = (V,E) be a simple undirected graph. An independent set is a
subset S of V such that no two vertices in S are adjacent. A maximal
independent set is an independent set that is not a proper subset of any
other independent set. In this paper, we study the problem of determining
the fourth largest numbers of maximal independent sets among all trees
and forests. Extremal graphs achieving these values are also given.

1 Introduction

Let G = (V, E) be a simple undirected graph. A subset I C V is indepen-
dent if there is no edge of G between any two vertices of I. A mazimal
independent set is an independent set that is not a proper subset of any
other independent set. The set of all maximal independent sets of G is
denoted by MI(G) and its cardinality by mi(G). For a vertex z € V(G),
let MI,.(G) = {I e MI(G) : z € I} and MI_,(G) = {I e MI(G) : = ¢ I}.
The cardinalities of MIL;,(G) and MI_.(G) are denoted by mi,..(G) and
mi_.(G), respectively.

The problem of determining the largest value of mi(G) in a general
graph of order n and those graphs achieving the largest number was pro-
posed by Erdés and Moser, and solved by Moon and Moser [8]. It was
then studied for various families of graphs, including trees, forests, (con-
nected) graphs with at most one cycle, (connected) triangle-free graphs,
(k-)connected graphs, bipartite graphs; for a survey see [4]. Recently, Jou
and Lin [6] investigated the second largest numbers of mi(G) among all
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trees and forests of order n. Jin and Yan [2] solved the third largest num-
ber of mi(G) among all trees of order n.

The purpose of this paper is to determine the fourth largest numbers
of maximal independent sets among all trees and forests. Additionally,
extremal graphs achieving these values are also given.

2 Preliminary

In this section, we present some notations and preliminary results, which
will be helpful to the proof of our main result in next section. For a graph
G = (V, E), the cardinality of V(G) is called the order, and it is denoted
by |G|. If v € V(G) then the neighborhood and closed neighborhood of v are
N¢(v) = {u € V(G) |uv € E(G)} and Ng[v] = {v} U Ng(v), respectively.
Two distinct vertices u and v are called duplicated vertices if Ng(u) =
Ng(v). The degree of z is the cardinality of Ng(z), and it is denoted by
degg(z). A vertex z is called a leaf if degg(z) = 1. A vertex v of G is
a support vertex if it is adjacent to a leaf in G. For a set A C V(G), the
deletion of A from G is the graph G — A obtained from G by removing all
vertices in A and their incident edges. Two graphs G; and G, are disjoint
if V(G1) N V(G2) = 0. The union of two disjoint graphs G; and Gj is
the graph G; U G2 with vertex set V(G U G2) = V(G;) U V(G2) and
edge set E(G1UG;) = E(G1) U E(G2). A component of odd (respectively,
even) order is called an odd (respectively, even) component. If a graph G is
isomorphic to another graph H, we denote G = H. Denote by P, a path
with n vertices. Throughout this paper, for simplicity, let r = v/2. We
begin with some useful lemmas which are needed in this paper.

Lemma 2.1. ([1, 3])) If G is a graph in which z is adjacent to ezactly one
vertez y, then mi(G) = mi(G — Ng[z]) + mi(G — Ngly)).

Lemma 2.2. ([3]) If a graph G has duplicated leaves z; and x2, then
mi(G) = mi(G — x2).

Lemma 2.3. ([3]) If G is the union of two disjoint graphs G1 and Ga, then
mi(G) = mi(G1)mi(G2).

The results of the largest numbers of maximal independent sets among
all trees and forests are described in Theorems 2.4 and 2.5, respectively.

Theorem 2.4. ([3, 5]) If T is a tree with n > 1 vertices, then mi(T) <
t)(n), where

™~2 41, ifn is even;

ti(n) = { It s if n is odd.
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Furthermore, mi(T) = t,(n) if and only if T = T (n), where

_ [ B(2,253) or B(4,%5%), ifn is even;
Tm) = { B(1,251), if n is odd.

where B(i,7) is the set of batons, which are the graphs obtained from the
basic path P of i > 1 vertices by attaching j > 0 paths of length two to the
endpoints of P in all possible ways (see Figure 1).

i

Figure 1: The baton B(i, 7) with j = j; + 72

Theorem 2.5. ([3, 5]) If F is a forest with n > 1 vertices, then mi(F) <
fi(n), where

_y ™, if n is even;
filn) = { ™1 ifn is odd.
Furthermore, mi(F) = fy(n) if and only if F = Fy(n), where

7P, if n is even;
Fi(n) =< B(1,2=425)ysh,
for some s with0< s < 231 | ifn is odd.

The results of the second largest numbers of maximal independent sets
among all trees and forests are described in Theorems 2.6 and 2.7, respec-
tively.

Theorem 2.6. ([6]) If T is a tree with n > 4 vertices having T # Ti(n),
then mi(T) < ta(n), where

2, if n is even;
t2(n) = 3, ifn=35;
3Ir"=5 41, ifn is odd.

Furthermore, mi(T) = ta(n) if and only if T = T}(8), T4'(8), Pio, or To(n), -
where Tx(n) and T5(8), T/ (8) are shown in Figures 2 and 3, respectively.
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T2e(n), n >4 is even T2(5) Too(n),n=>7isodd
Figure 2: The trees T3(n)

73(8) 7 (®)
Figure 3: The trees T5(8) and T,'(8)

Theorem 2.7. ([6]) If F is a forest with n > 4 vertices having F # Fy(n),
then mi(F) < fa(n), where

3r"—4, if n is even;
fa(n) =4 3, ifn=35;
7r*=7, ifn is odd.

Furthermore, mi(F) = fa(n) if and only if F = F5(n), where

Piuzip,, if n > 4 is even;
Fy(n)={ Tp(5)or PL,UP, ifn=35;
Py "T_7P2, if n > 7 is odd.

The results of the third largest numbers of maximal independent sets
among all trees and forests are described in Theorems 2.8 and 2.9, respec-
tively.

Theorem 2.8. ([2]) If T is a tree with n > 7 vertices having T # T;(n),
1=1,2, then mi(T) < tz(n), where

3rn-5, ifn > 7 is odd;
) ifn=28;
ta(n) =9 15, ifn=10;

78 12, ifn > 12 is even.

Purthermore, mi(T) = t3(n) if and only if T = T3(8),T3(10), T3 (10), or
T3(n), where T3(n) and T3(8),T3(10),73'(10) are shown in Figures 4 and
5, respectively.
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T3e(n), n > 12 is even T30(n), n > 7 is odd

Figure 4: The trees T5(n)

s el oe

T3(8) T3(10) T3(10)
Figure 5: The trees T3(8), T3(10) and T%'(10)

Theorem 2.9. ([7]) If F is a forest with n > 8 vertices having F' # Fi(n),
i =1,2, then mi(F) < fa(n), where

5776, ifn > 8 is even;
fa(n) = { 13"~ ifn > 9 is odd.

Furthermore, mi(F) = f3(n) if and only if F = F3(n), where

_ [ Ti(6)u252P,;, ifn > 8 is even;
Fg(n) - { Tg(g) U "—T‘9P2, ifn > 9 is odd.

3 Main results

In this section, we determine the fourth largest values of mi(G) among all
trees and forests of order n > 10, respectively. Moreover, the extremal
graphs achieving these values are also determined.

Lemma 3.1. If F is a forest of even order n > 10 having F # Fi(n),
i = 1,2,83, then mi(F) < 978, PFurthermore, the equality holds if and
onlyif F=2P, U "—;—spz, or T1(8) U nT-sz.

Proof. It is straightforward to check that mi(2P; U 258 Py) = mi(T}(8) U
2-8Py) = 9r"~8. Let F be a forest of even order n > 10 having F # F;(n),
i = 1,2,3, such that mi(F) is as large as possible. Then mi(F) > 9r"~%,
Suppose that there exist two odd components H; and H, of F, where
|H;| = n; for i = 1,2. By Lemma 2.3, Theorems 2.4 and 2.5, we have
that 9r"~8 < mi(F) = mi(H)) - mi(Hy) - mi(F — (V(H,) U V(Hy)) <
rm~l.pna-l pnomi—ng o n=2 & grn-8 which is a contradiction. Hence F
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has no odd component. Since F' # F)(n), there exists an even component
H of order m > 4. We consider the following two cases.
Case 1. F - V(H) # Fy(n —m).

By Lemma 2.3, Theorems 2.4 and 2.7, we have that 97”8 < mi(F) =
mi(H)-mi(F-V(H)) < ti(m)- fa(n—m) = (r™~2+1).3r"~m-1 = 364
3rn~m—4 < 9r*=8  Furthermore, the equalities holding imply that m = 4,
H =P, and F—V(H) = PyU 252 P,. In conclusion, F = 2P, U 232 P,
Case 2. F —V(H) = Fi(n —m).

Since F # Fi(n) for i = 1,2,3, by Lemma 2.3, Theorems 2.4, 2.5, 2.7
and 2.9, we have that

9r"~8 < mi(F) = mi(H) - mi(F — V(H))

< (ti{m) —1) - fi{n —m) if m =4,86,
=1 ti(m)- fi(n —m) ifm > 8,
[ 2 if m=4,6,

Tl 24 rm™ ifm > 8,

S grn—S.

Furthermore, the equalities holding imply that m = 8, H = T1(8) and
F - V(H) = 238P,. In conclusion, F =Ty(8) U 258 P,. O

Lemma 3.2. If F is a forest of odd order n > 11 having F # Fi(n),
i=1,2,3, then mi(F) < 25r"~ 11, Purthermore, the equality holds if and
only if F = Tp(11) U 23511 p,.

Proof. 1t is straightforward to check that mi(T>(11) U 251 Pp) = 250711,
Let F be a forest of odd order n > 11 having F # F(n), i = 1,2,3, such
that mi(F) is as large as possible. Then mi(F) > 25r"~11. Suppose that F
has three odd components H;, H> and Hj, where |H;| = n; for i = 1,2,3.
By Lemma 2.3, Theorems 2.4 and 2.5, we have that 25r"~1! < mi(F) =
(1., mi(H:))-mi(F —U3, V(H;)) < rm—topne=lopna=l.pn=(mtnatn) -
=3 < 25r"~11 which is a contradiction. Thus we obtain that F' has
exactly one odd component H of order m > 3, there are two cases depending
on the structure of F' — V(H).

Case 1. F —V(H) # Fi(n — m).

By Lemma 2.3, Theorems 2.4 and 2.7, then we have that 25r"~11 <
mi(F) = mi(H) -mi(F — V(H)) < ti(m) - fa(n —m) =rm~1.3rn—m=4 =
3r"~5 < 257711 which is a contradiction.

Case 2. F - V(H) = Fi(n — m).
Then m > 5. Since F # Fi(n) for i = 1,2,3, by Lemma 2.3, Theo-
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rems '2.4, 2.5, 2.6, 2.7 and 2.9, we have that
257"~ 1 < mi(F) = mi(H) - mi(F - V(H))

t2(5) - fi(n—5) ifm =35,
(tZ(m) - 1) ' fl(n - m) ifm=17,9,
ta(m) - fi(n —m) if m > 11,

_f 3-8 ifm=35,7,9,

Tl IS4 ifm > 11,

< 2577711,

Furthermore, the equalities holding imply that m = 11, H = T5(11) and
F —V(H) = 231 P;. In conclusion, F = T5(11) U "—llp2 0O

For an odd integer n > 11, Tyo(n) is the tree obtained from B(2, 257
with j = 0 by adding a P5 a,nd a new edge joining the vertex with degree 1
in the basic path of B(2, * ) and the vertex of P; which is not a support
vertex or leaf. For an even mteger n > 12, Ty (n) is the tree obtained from
B(1, "'3) by adding a P; and a new edge joining the only vertex in the
basic path of B(1,252) and the vertex of P; which is not a support vertex
or leaf, see Figure 6.

75 (n) 72 (n)
Tyo(n), n > 11 is odd Tse(n), n > 12 is even

Figure 6: The trees Ty(n)

Let T be a tree and z a leaf lying on a longest path P of T, say P =
z,y,z,w,... and H the component of T — N[y} containing some vertices
of P. Since P is a longest path of T, it follows that every component
of T — (Nr[y] UV(H)) is P, or P,. Thus we have that T — Nr[y] =
aPyU (b—1)P, U H, see Figure 7.

Figure 7: The tree T'
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Lemma 3.3. For positive integers m, p, q, s and t, if f(z) = pr=+qr™ =
for s < x Lt, then f(z) has a mazimum value at z = s ort.

Proof. From simple calculation, we have that f'(z) = (In7)(pr* — gr™~%)
and f"(z) = (In7)?(pr*® +¢r™%). Note that f”(z) > 0. Hence f(z) yields
a maximum value when z = s or ¢. a

Lemma 3.4. If T is a tree of odd order n > 11 having T # Ti(n), i =
1,2,3, then mi(T) < 57"~ 7 +3. Furthermore, the equality holds if and only
if T = Tyo(n).

Proof. Tt is straightforward to check that mi(Tye(n)) = 5r"7 + 3. Let
T be a tree of odd order n > 11 having T # T;(n), i = 1,2,3, such
that mi(T) is as large as possible. Then mi(T) > 5r™~7 + 3. Suppose
that T has duplicated leaves z; and z2, by Lemma 2.2 and Theorem 2.4,
577 +3 < mi(T) = mi(T —x3) < t1(n—1) = 3+1 < 57"~7 4+ 3, which
is a contradiction. Thus T has no duplicated leaves. Let P = z,y, z,w,...
be a longest path of T, we obtain that a =0 or 1 in Figure 7.

Suppose that a = 1. Then H is a tree of odd order n — 2 — 2b > 3.
Since T # T3(n), this implies that T — N7[z] # T1(n —2). By Theorem 2.4,
mi(H) < ty(n—2—2b) = r"~3-25, Then, by Lemma 2.3, mi(T — Nrly]) <
r2b=2 . pn—3-2b _ pn=5 By Lemma 2.1 and Theorem 2.6, we have that
3r""7 41 = ta(n — 2) > mi(T — Nrlz]) = mi(T) — mi(T — Nr[y]) >
(57™~7 4 3) — ™5 = 3r"~7 4+ 3, which is a contradiction. Hence we obtain
that a =0 and H is a tree of even order n — 2b — 1.

Suppose that b = 1,then T — Np[z] and T — Nr[y] are trees, where
T — Nrlz] # Ti(n —2). By Theorems 2.4 and 2.6, we have that 5r"~7 +
3 < mi(T) = mi(T — Nr[z]) + mi(T — N7fy]) < t2(n —2) +t1(n - 3) =
(3™ "+1)+ (r"5+1) =57 +2 < 577 + 3, which is a contradiction.
Hence we obtain that b > 2.

Since T # T;(n) for i = 1,2, 3, this implies that |H| = n—2b—1 > 6 and
4<2b<n-17 Let we V(H) be a neighbor of z. By Theorems 2.4, 2.5
and Lemma 3.3, we have that 59" 7 + 3 < mi(T) = mi . (T) + mi_.(T) <
mi(H — w) + [(+% — 1) - mi(H) + 1 - mi(H — Ng[w])] < 723 4 (2 —
1)(1.n—26—3+1)+rn—26—3 = rn-Zb—-S +,,.n—3 _1+,,.26_1.n—2b—3 +,,.n—2b—3 —
(3 -1+ R+ 23 < (3 -1+ (0 +rT) = 57T 4+ 3.
Furthermore, the equalities holding imply that either b = 2, H = T} (n — 5)
or b= (n~7)/2, H=Ty(6). Note that H — Nyfw] = 2=2=3P,. In
conclusion, T’ = Tyo(n). a

Lemma 3.5. If T is a tree of even order n > 12 having T # Ti(n),
i=1,2,3, then mi(T) < 7r"~8 + 1. Furthermore, the equality holds if and
only if T = Tye(n).
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Proof. Tt is straightforward to check that mi(Ty.(n)) = 7r"8 + 1. Let T
be a tree of even order n > 12 having T # Ti(n), i = 1, 2,3 such that mi(T)
is as large as possible. By Theorem 2.8, 7r"8 + 1 < mi(T) < t3(n) —1 =
(7r"8+2) —1 = 7r"~8 4.1, hence mi(T) = 7r"~8 +1. Suppose that T has
duplicated leaves z; and z;, then T’ =T — z, is a tree of odd order n — 1.
Since T' # T3(n), this implies that T’ # T)(n—1). By Theorem 2.6, we have
that 778 + 1 = mi(T) = mi(T") < ta(n—1) = 3r*~¢ +1 < 7r*~8, which
is a contradiction. Thus T has no duplicated leaves. Let P = z,y, z,w, ...
be a longest path of T, we obtain that a = 0 or 1 in Figure 7.

Suppose that a = 1. Since T # Tj(n), this implies that H is a tree of
even order n —2b—2 > 4 and 2 < 2b < n — 6. By Theorems 2.4, 2.5 and
Lemma 3.3, we have that 7r"~8 + 1 = mi(T) = mi ,(T) + mi_,(T) <
mi(H-'w)+'r2b-mi(H) < pr—2b=4 2, (rn—26—4 +1) = pr—2b—4 4 n—4
T2 < =4 26 L 9 — 6778 4 9 < 7r"~8 4+ 1. This is a contradiction,
hence a = 0. It follows that |H| =n —2b —1 is odd. Since T # T1(n) and
T # T»(n) , these imply that H # Tj(n—2b—1) and H-w # Fy(n—2b—2).
Thus mi(H) < t2(n—2b—1) and mi(H —w) < fo(n—2b—2). We consider
two cases.

Case 1. b=1.

Then H = T—Nrly] and |H| = n—3. By Theorem 2.6, mi(T—Nr[z]) =
mi(T)—mi(T—Np[y]) > (7r*8+1)—t2(n—3) = (7r*~8+1)—(3r"~8+1) =
™4 = ty(n — 2). By Theorems 2.4 and 2.6, we obtain that T — Np[z] =
Ti(n — 2) or Ta(n — 2). For the case of T — Nr[z] = Ti(n — 2), then
mi(H) = mi(T — Npy]) = mi(T) = mi(T — Np[z]) = (7r" 8 +1) - (r"~4 +
1) = 3r"~8 = t3(n — 3). By Theorem 2.8, then T — Np[y] = T3(n — 3).
In conclusion, T = T‘Q(el)(n). For the case of T — Np[z] = Ta(n — 2), then
mi(H) = mi(T — Nr[y]) = mi(T) — mi(T - Np[z]) = (77" 8 +1) —r—4 =
3r"~8 4 1 = t5(n — 3). By Theorem 2.6, then T — Np[y] = To(n — 3). In
conclusion, T = T}f) (n).

Case 2. b> 2.

Note that |H| =n—2b—1 > 5 is odd. Suppose that |H| = 5. Since T #
Ti(n) and T # Ta(n), these imply that H # Ps. On the other hand, since
T has no duplicated leaves, this implies that H = T,(5) and z is adjacent to
one of the duplicated leaves of T5(5). Then mi(T) = 3r"~64+2 < 7r*—8 41,
which is a contradiction. Hence |[H|=n—-2b—-1>7and4<2b<n-—8.

We claim that 2b = n—8 and H = T5(7). Since b > 2 and T # T;(n) for
i=1,2, these imply that T — Np|z] is a tree having T — Nr[z] # Ti(n — 2)
for i = 1,2. By Theorem 2.8, we have that 778 4 1 = mi(T) = mi(T —
Nr[z]) + mi(T — Nply]) < ts(n—2) + %2 - mi(H) < 7"~ 10 4 2 4-r2-2.
(3rn=2=6 1 1) = 77710 L 9 4 3pn—8 4 p20=2 = 13,110 4 9 4 #26-2 Ty
we obtain that 7262 > ¢=10 _ ] and 2b > n — 8. Hence 2b = n - 8,
|H| = 7 and mi(H) < t3(7) = 7. Since 2b = n — 8 > 4, this implies
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that T — Np[z] # T3(n — 2) and mi(T — Ny[z]) < 7r"~1° + 1. Thus
™10 . mi(H) = mi(T — Nrly]) = mi(T) — mi(T — Nrfz]) > (7r"8 +
1) — (7710 4 1) = 77710 then mi(H) > 7. Hence mi(H) = 7, by
Theorem 2.6, H = P;. Since T # T3(n), this implies that w is not a leave
of H. If w is a support vertex of H, then mi(H) = 7r*~8 < ™8 4+ 1,
which is a contradiction. Hence w is neither a leaf nor a support vertex. In
conclusion, " = (l)(n) or T, (2)(11) ]
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