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Abstract

Let A be one of the dual polar spaces DQ(8,q), DQ(7,q), and
let e : A — X denote the spin-embedding of A. We show that
e(4A) is a two-intersection set of the projective space ¥. Moreover,
if A = DQ™(7,q), then e(A) is a (¢° + 1)-tight set of a nonsingular
hyperbolic quadric Q*(7,¢%) of £ = PG(7,¢%). This (¢° + 1)-tight
set gives rise to more examples of (g° + 1)-tight sets of hyperbolic
quadrics by a procedure called field-reduction. All the above ex-
amples of two-intersection sets and (¢* - 1)-tight sets give rise to
two-weight codes and strongly regular graphs.
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1 Introduction

1.1 Two-intersection sets, two-weight codes and strongly
regular graphs

A simple undirected graph G without loops is called a strongly regular graph
with parameters (v, K, A, p) if G is a connected graph of diameter 2 having
precisely v vertices, K vertices adjacent to any given vertex, A vertices
adjacent to any two given adjacent vertices and p vertices adjacent to any
two given nonadjacent vertices.

Let g be a prime power and k,n € N with » > k. An [, k];-code
is a k-dimensional subspace C of the n-dimensional vector space F7. The
elements of C are called codewords. We will denote the elements of Fy by
row vectors. The weight of an element of F7 is the number of nonzero
coordinates. C is called a two-weight code if there exist w;, w2 € {1,...,n}
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such that every nonzero codeword of C has weight either w; or wo. In this
case, the numbers w, and ws are called the weights of the two-weight code.

A two-weight [n, k];-code C is generated by k row vectors. We can use
these k row vectors to build a (k x n)-matrix. The column vectors of this
matrix define a set of n not necessarily distinct points in PG(k — 1,¢q). If
all these n points are distinct, then the two-weight code is called projective.
Two distinct generating sets of k row vectors of a projective two-weight
[n, k]g-code C will give rise to two sets of n points in PG(k — 1, q) which
are projectively equivalent. It makes therefore sense to denote any of these
sets by Xe.

A set X of points of PG(k — 1, q) is called a two-intersection set with
intersection numbers hy and h, if every hyperplane of PG(k—1, ¢) intersects
X in either h; or he points. We can embed PG(k — 1, g) as a hyperplane
in PG(k, ¢) and define the following graph Gx. The vertices of Gx are the
points of PG(k, q) \ PG(k — 1,¢) and two distinct vertices z, and z2 are
adjacent whenever the line z;z2 of PG(k,¢) contains a point of X.

Delsarte ([9], [10], [11], [12]) was the first to investigate the relationships
between projective two weight codes, two-intersection sets of projective
spaces and strongly regular graphs, see Calderbank and Kantor [3] for a
nice survey. We collect the basic relationships in the following proposition.
For a proof of this proposition, we refer to Calderbank and Kantor (3,
Theorem 3.2].

Proposition 1.1 Let X be a proper set of n points of PG(k —1,q) gener-
ating PG(k — 1,q). Then the following are equivalent:

(1) X is a two-intersection set;

(2) X is projectively equivalent to a set X¢ where C is some projective
two weight [n, k]q-code;

(3) Gx is a strongly regular graph.

There exist specific relationships between the parameters h; and hg of the
two-intersection set, the parameters w; and w, of the associated two-weight
code and the parameters v, K, A and p of the corresponding distance-
regular graph. These are as follows (up to transposition of w; and w,), see
e.g. Calderbank and Kantor [3, Corollary 3.7]:

'LU1=n—h1, 'U)2=n—h2,

v=¢" K =n(g-1), p=wung’",
A= K? 4+ 3K — g(w; + wa) — Kq(w1 + we) + ¢*wyw2.
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1.2 i-tight sets of polar spaces and two-intersection
sets

Let P be a finite polar space of rank 7 > 2 with ¢ + 1 > 3 points on each
line. Then by Tits [20], P is one of the following polar spaces:

(1) a generalized quadrangle GQ(g, t) of order (g,t), t > 1;

(2) the polar space W(2r —1, g) of the subspaces of PG(2r — 1, g) which
are totally isotropic with respect to a given symplectic polarity of PG(2r —
1,q9);

(3) the polar space Q(2r,q) of the subspaces of PG(2r,q) which lie on
a given nonsingular parabolic quadric of PG(2r, g);

(4) the polar space Q*(2r—1, q) of the subspaces of PG(2r — 1, g) which
lie on a given nonsingular hyperbolic quadric of PG(2r — 1, q);

(5) the polar space Q~(2r+1, g) of the subspaces of PG(2r+1, g) which
lie on a given nonsingular elliptic quadric of PG(2r + 1, g);

(6) the polar space H(2r — 1,q) (g square) of the subspaces of PG(2r —
1, q) which lie on a given nonsingular Hermitian variety of PG(2r — 1,q);

(7) the polar space H(2r,q) (g square) of the subspaces of PG(2r, g)
which lie on a given nonsingular Hermitian variety of PG(2r, q).

If X is a set of points of P, then by Drudge [13] the number of ordered
pairs of distinct collinear points of X is bounded above by

X
g -1

(¢ -1 1XI|- (=5 +1). ()
If equality holds, then X is called i-tight, where 7 := Kgﬁ%”. In case of
equality, ¢ € N. Moreover, every point z of X is collinear with precisely
r—1

(t+q- l)gq—_l'—l- points of X \ {z} and every point y outside X is collinear
with precisely i% points of X. We call a set of points of P tight if
it is -tight for some ¢ € N. Tight sets were introduced by Payne [15] for
generalized quadrangles and by Drudge [13] for arbitrary polar spaces. We
refer to these references for proofs of the above-mentioned facts. We take
the following proposition from Bamberg et al. [1, Theorem 12].

Proposition 1.2 ([1]) Let P be one of the polar spaces W(2r — 1,q),
Q*(2r-1,q), H(2r — 1,9) and let X be a nonempty tight set of P. Then
X is a two-intersection set of the ambient projective space of P.

1.3 Dual polar spaces and embeddings

Let A = (P,£,I), I C P x L, be a point-line geometry. The distance
between two points of A will be measured in the collinearity graph of A.
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If z is a point of A and i € N, then A;(z) denotes the set of points at
distance ¢ from z. A hyperplane of A is a proper subset of P intersecting
each line in either a singleton or the whole line.

A full (projective) embedding of A is an injective mapping e from P to
the point-set of a projective space I satisfying: (E1) the image e(A) :=
e(P) of e spans X; (E2) for every line Lof A, e(L) isalineof . Ife: A —» X
is a full embedding of A, then for every hyperplane a of T, e~} (e(P)Na) is
a hyperplane of A. We say that the hyperplane e~!(e(P) N «) arises from
the embedding e.

With every polar space P of rank r > 2, there is associated a dual polar
space A of rank r, see Shult and Yanushka [19] or Cameron [4]. A is the
point-line geometry whose points and lines are the maximal and next-to-
maximal singular subspaces of P, with reverse containment as incidence
relation. For every singular subspace o of P, we denote by F,, the set of
all maximal singular subspaces of P containing . The points and lines
contained in F, define a dual polar space of rank n — 1 — dim(a). The set
F, is called a quad, respectively a maz, of A if dim(a) = n — 3, respectively
dim(a) = 0. The points and lines contained in a quad define a generalized
quadrangle. The set of points of A at non-maximal distance from a given
point z of A is a hyperplane of A, called the singular hyperplane of A with
deepest point . A hyperplane H of A is called locally singular if for every
quad @ of A, QN H is either @ or a singular hyperplane of the generalized
quadrangle associated with Q.

Let Q*(2n + 1,q9), n > 2, denote a nonsingular hyperbolic quadric in
PG(2n + 1,q). The set of generators (= maximal singular subspaces) of
Q*(2n+ 1, q) can be divided into two families M+ and M~ such that two
generators of the same family intersect in a subspace of even co-dimension.
For every € € {+, —}, let 8¢ denote the point-line geometry whose point-
set is equal to M* and whose line-set coincides with the set of all (n — 2)-
dimensional subspaces of @*(2n+1, ¢) (natural incidence). The isomorphic
geometries ST and S~ are called the half-spin geometries for @*(2n+1, g).
The half-spin geometry S¢, € € {+,—~}, admits a nice full embedding into
PG(2"-1, q) which is called the spin-embedding of S¢. We refer to Chevalley
[6] or Buekenhout and Cameron [2] for a description of this embedding.
For n = 3, this embedding has the following nice description. Let 6 be a
triality of @*(7, ¢) mapping M™ to the point-set of Q+(7, ¢), the point-set
of Q*(7,q) to M~ and M~ to M™*. Then 8 realizes the spin-embedding
of 8* into PG(7,q). From this argument it is also clear that the half-spin
geometries for @ (7, ) are isomorphic to the point-line system of Q*(7, g).

Now, consider the embedding Q(2n,q) C Q*(2n+1, q). Every generator
M of Q(2n, q) is contained in a unique element ¢(M) of M™*. If e denotes
the spin-embedding of St, then e o ¢ defines a full embedding of the dual
polar space DQ(2n,q) associated with Q(2n,q) into the projective space
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PG(2" —1,q). This embedding is called the spin-embedding of DQ(2n,g).
The spin-embedding of DQ(4,q) is isomorphic to the natural embedding
of DQ(4,q) = W(3,q) into PG(3, g).

Now, suppose g is a square and consider the inclusion Q~(2rn+1,/7) C
Q*(2n + 1, q) defined by a quadratic form of Witt-index n over F s which
becomes a quadratic form of Witt-index n + 1 when regarded over the
quadratic extension Fy of F_z. For every generator a of @~ (2n + 1, /g),
let ¢'(c) denote the unique element of M* containing . If e again denotes
the spin-embedding of S*, then e o ¢’ defines a full embedding of the
dual polar space DQ~(2n + 1, ,/q) associated with Q~(2n + 1,,/7) into
the projective space PG(2" — 1,¢). This embedding is called the spin-
embedding of DQ~(2n+1,,/g). The construction of this embedding is due
to Cooperstein and Shult [7].

1.4 The Main Theorem

We will prove the following:

Main Theorem. (1) Ife: A — ¥ is the spin-embedding of the dual polar
space A = DQ(8, q), then e(A) is a two-intersection set of T = PG(15, q).

(2) If e : A — X is the spin-embedding of the dual polar space A =
DQ~(7,q), then e(A) is a two-intersection set of & = PG(7, ¢?). Moreover,
e(A) is a (g® + 1)-tight set of a nonsingular hyperbolic quadric Q*(7,¢?)
of X.

The parameters of the two-intersection sets e(A) and their corresponding
two-weight codes and strongly regular graphs are listed in the following
table.

A DQ(8, q) [ DQ~(7,9)
e(d) | (@+ (g +1) (" +D)(g* +1) | (¢° +1)(g° + 1)(¢* +1)
5] PG(15, q) PG(7,4%)
w) 10 4
wy 9 +q 9 +q°
v 10 11:3
K (@ -1} +1) (¢° —1)(g" +1)
A ¢ +a —q =2 g +g —g -2
“ g°(g” +1) g (¢ +1)

We cannot rule out that the two-intersection set e(A) (A = DQ(8,4q) or
A = DQ(7,q)) is nonisomorphic to any of the many two-intersection sets
described in the literature. However, even if the two-intersection set e(A)
would not be new, we still would have a nice alternative description of this
special set of points.
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Another problem which remains open is whether the two-intersection
sets of PG(15, g) related to the spin-embedding of DQ(8, ¢) can be obtained
from the two-intersection sets of PG(7, ¢?) arising from the spin-embedding
of DQ~(7,q) by applying a change of the underlying field as described in
Section 6 of Calderbank and Kantor [3].

The (g3 + 1)-tight sets of Q*+(7,¢?) arising from the spin-embedding of
DQ@Q~(7,q) have not been described before in the literature. A construction
for these tight sets can be given which does not refer any more to any par-
ticular embedding. As before, consider an inclusion Q= (7,q) € Q*(7,4¢?),
let M+ and M~ denote the two families of generators of Q*(7, ¢2) and let 8
be a triality of @ (7, g?) which maps M* to the point-set of @Q*(7, ¢%), the
point-set of @*(7,¢%) to M~ and M~ to M*. If U denotes the set of gen-
erators of @~ (7,9) and V denotes the set of generators of M* containing
an element of U, then (V) is a (¢° + 1)-tight set of points of @*(7, ¢%).

Using a procedure referred to as field reduction in [14], one can con-
struct i-tight sets of Q% (2er — 1,q) from i-tight sets of @+ (2r — 1, ¢°) by
constructing a copy of @+ (2r — 1, ¢®) inside @+ (2er — 1,q). So, a (¢ + 1)-
tight set of @+ (7,¢?) will give rise to a (g% + 1)-tight set of Q*(15,q) and
even to more (g° + 1)-tight sets of hyperbolic quadrics if g is not prime.
By Propositions 1.1 and 1.2, also these (¢® + 1)-tight sets will give rise to
two-intersection sets, two-weight codes and strongly regular graphs.

Remark. Suppose e : A — X is a full projective embedding of a point-line
geometry A = (P, L,I) and hy, hy € N\ {0} such that

(%) |H| € {h1, h2} for any hyperplane H of A arising from the embedding
e.

Then e(P) is a two-intersection set of ¥. Many point-line geometries (e.g.,
generalized quadrangles, polar spaces, the dual polar space DQ(6, ¢)) have
a projective embedding e for which (*) holds. However, for almost all these
examples the corresponding two-intersection sets are well-known. We have
therefore restricted our discussion to the dual polar spaces DQ(8,q) and
DQ~(7,q) since for these geometries we have found no description of the
corresponding two-intersection sets in the literature.

2 A two-intersection set arising from the spin-
embedding of DQ(8,q)

Let ¢ : A — ¥ denote the spin-embedding of A = DQ@(8,q) into L =
PG(15,g). By De Bruyn [8] (see also Shult and Thas [18] for ¢ odd), the
hyperplanes of DQ(8, g) which arise from e are precisely the locally singular
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hyperplanes of DQ(8,q). By Cardinali, De Bruyn and Pasini [5], there
are three types of locally singular hyperplanes in DQ(8,¢): the singular
hyperplanes, the extensions of the hexagonal hyperplanes and the so-called
Q*(7,9)-hyperplanes.

(1) If H is the singular hyperplane of DQ(8,q) with deepest point z,
then |H| = |Ao(z)| + |A1(z)| + |A2(z)| + |As(z)| = 1 +q(® + ¢® + g+ 1) +
(@ +1)(P+9+ 1)@ +H(P+P +g+1)e® = (P + P+ 1) (¢* + P+ P +q+1).

(2) Suppose H is the extension of a hexagonal hyperplane. Then there
exists a max M 2 DQ(6,q) in DQ(8,q) and a hexagonal hyperplane A
in M such that H = M U (A;(A) \ M). [A hyperplane of DQ(6,q) is
called hezagonal (Shult [17]) if the points and lines contained in it define a
split-Cayley hexagon H(g).] Since every point of A \ M is collinear with a
unique point of M, |H| = M|+ |A]-¢* = (a+1)(¢® + 1)(¢* + 1) + (¢ +
D@ +g+1)¢* = (@ + 1)@+ P+ +* +¥ +q+1).

(3) Suppose now that H is a Q*(7,¢)-hyperplane of DQ(8,q), i.e. a
hyperplane which can be constructed in the way as described now. Let
Q(8, g) be the nonsingular parabolic quadric of PG(8, ¢) associated with the
dual polar space DQ(8, ¢). Intersecting Q(8,¢) with a suitable hyperplane
of PG(8,q) we obtain a Q*(7,q) C Q(8,q). Let M* and M~ denote
the two families of generators of Q*(7,q) and let St denote the half-spin
geometry for Q*(7,q) defined on the set M*. St is isomorphic to the
point-line system of Q*(7,q) and hence has a hyperplane A which carries
the structure of a Q(6,q). Let B denote the set of all generators w of
Q(8,¢) not contained in Q*(7,q) such that the unique element of M+
through 7 N Q*(7, ) belongs to A. Then H := AUM™ U B is a locally
singular hyperplane of DQ(8, g). Any such hyperplane is called a Q*(7, q)-
hyperplane of DQ(8,q). These hyperplanes were introduced in Cardinali,
De Bruyn and Pasini [5].

Every max M of DQ)(8,q) corresponds with a point zps of Q(8,q). If
zpm € Q*(7,q), then by [5], MNH is a singular hyperplane of M and hence
contains precisely ¢°+¢*+2¢%+¢%+¢+1 points. If z)s € Q(8,9)\Q*(7,9),
then by [5], M N H is a hexagonal hyperplane of M and hence contains
precisely (¢® + 1)(¢*> + ¢ + 1) points. Since every point of A is contained
in precisely ¢® + ¢ + ¢ + 1 maxes, the number of points of H is equal to

(@ + a2 +q+ D7 (1Q*(7,9)] - (¢ +¢* +26°+ ¢ + g+ 1) + (IQ(8, )| -
Q7,0 (@ + (@ +a+1)) = (@ +1)(e*+¢*+* + ¢ + ¢ +a+1).
By (1), (2) and (3) above, it follows that every hyperplane of ¥ intersects

e(A) in either (¢*+¢°+¢*+q+1)(°+¢*+1) or (P +1)(¢®+¢° +¢* +°+
g% + g+ 1) points. So, e(A) is indeed a two-intersection set of PG(15,g).
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The parameters of this two-intersection set are listed in the table given in
Section 1.4.

3 A two-intersection set arising from the spin-
embedding of DQ~(7,q)

Let e : A — ¥ denote the spin-embedding of A = DQ~(7,q) into £ =
PG(7,¢%). De Bruyn [8] classified all hyperplanes of A which arise from
e. There are three types: the singular hyperplanes, the extensions of the
classical ovoids in the quads and the so-called hexagonal hyperplanes.

(1) Suppose ‘H is the singular hyperplane of A with deepest point z.
Then [H| = |Ao(z)|+|A1 (z)[+|A2(2)] = 1+¢*(1+9+¢%) +¢°(¢* +g+1) =
I+ +P+at+P++1.

(2) Suppose H is the extension of a classical ovoid O in a quad Q =
DQ=(5,9) = H(3,4%), i.e. H=QU(T'1(0)\ Q). [An ovoid of H(3,4%) is
called classical if it is obtained by intersecting H(3, ¢?) with a nontangent
plane]) Then |H| = [Q|+[0] - ¢* = (¢® + 1)(¢* + 1) + (¢* + 1)¢* =
g+ +adt+3+¢2+1.

(3) Suppose H is a hexagonal hyperplane of DQ~(7,q). Then H is
obtained in the way as described now. Let @~ (7, ¢) denote the nonsingular
elliptic quadric of PG(7, q) associated with DQ~(7,q) and let Q(6,q) be
a nonsingular parabolic quadric obtained by intersecting @~ (7, q) with a
nontangent hyperplane.

Let G denote a set of generators of Q(6, g) defining a hexagonal hyper-
plane of the dual polar space DQ(6,q) associated with Q(6,q) and let £
denote the set of lines L of Q(6,g) with the property that every generator
of Q(6, g) through L belongs to G. Then by Pralle [16], the set H of gen-
erators of @~ (7,q) containing at least one element of £ is a hyperplane of
DQ~(7,q). We call any hyperplane which can be obtained in this way a
hezagonal hyperplane of DQ~(7,q). The number |L]| is the number of lines
of DQ(6, g) contained in a hexagonal hyperplane and is equal to 9:_;11. Each
element of £ is contained in g + 1 generators of Q~(7,q) which are con-
tained in Q(6, g) and ¢ ~ q generators of Q= (7, ¢) which are not contained
in Q(6,9). Hence, |H| =G|+ (* - IL| =¢" + P +¢* + P+ + L.

By (1), (2) and (3) above, it follows that every hyperplane of ¥ intersects
e(A) in either g7 +¢%+¢%+q* +¢®+¢?+1 or ¢"+¢%+¢*+¢°+¢% +1 points.
So, e(A) is indeed a two-intersection set of PG(7,¢%). The parameters of
this two-intersection set are listed in the table given in Section 1.4.
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4 A (¢*+ 1)-tight set arising from the spin-
embedding of DQ~(7,q)

Again, let e : A — ¥ denote the spin-embedding of A = DQ~(7,q) into
¥ = PG(7,4¢?). We show that e(A) is a (¢° + 1)-tight set of a nonsingu-
lar hyperbolic quadric Q*(7,¢?) of PG(7,g?). We recall the construction
of the spin-embedding of A = DQ~(7,q). Let @~ (7,q) be the nonsingu-
lar elliptic quadric associated with DQ~(7,q), and consider the inclusion
Q~(7,9) € Q*(7,¢%). Let Mt and M~ denote the two families of gener-
ators of Q*(7,9%) and let @ be a triality of Q*(7,¢?) mapping M* to the
point-set of Q*(7,¢?), the point-set of Q*(7, ) to M~ and M~ to M.
For every generator M of Q~(7,q), let ¢'(M) denote the unique generator
of M* containing M. Then 6 o ¢’ is the spin-embedding e of DQ~(7,q).
Obviously, e(A) is a set of points of Q*(7, ¢2).

Lemma 4.1 (a) If M; and M, are two generators of @ (7, q) which meet
each other, then e(M,) and e(My) are collinear points of Q* (7, ¢?).

(b) If My and M, are two disjoint generators of Q~(7,q), then e(M)
and e(M3) are noncollinear points of Q*(7,¢%).

Proof. (a) Suppose M; and M are two generators of Q~ (7, g) which have
a point z in common. Then the points e(M;) and e(M2) of Q*(7,4?) are
contained in the generator 8(z) € M~ of Q*(7,4%). Hence, e(M;) and
e(Ma) are collinear on Q¥(7, ¢%).

(b) Suppose that M; and M; are two disjoint generators of Q~(7,q).
Let M;, i € {1,2}, denote the 2-space of Q*(7,¢?) containing M;, Then
M, and M, are disjoint. Since ¢'(M;) and ¢'(Maz) belong to the same
family of generators of Q*(7, g%), they intersect in either the empty set or
a line. But since M; N M, = @, they must intersect in the empty set. Then
e(M,) =00¢'(M,) and e(Mz) = 0 0 ¢'(M3) are not collinear on Q*(7, ¢2).

Now, let V; denote the total number of ordered pairs of distinct points of
e(A) which are collinear on Q*(7,¢?). By Lemma 4.1,

Moo= (8] (1@ + |Ax(a)]), )
where |A| = (¢% + 1)(¢% + 1)(¢* + 1) denotes the total number of points of
A and z denotes an arbitrary point of A. So, Ny = (g2 + 1)(¢® + 1)(¢* +
D) (PP +a+1)+4%(@>+a+1)) = (@+1) (g1 + 1> +1) (@ +g+1).
Calculating expression (1) of Section 1.2, we find

(¢ +1)(q + 1)(¢* +1) 1)
¢ -1

(@ ~1)- (@ + (¢ + D +1)- (
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= (® + 1)(® +1)*(¢* + 1)(¢* +q+1).

Since the expressions (1) and (2) are equal, e(A) is a tight set of points of
Q*(7,4?). The set e(A) is i-tight where

Al-(?2-1
i=u;8(i_—1——)=q3+l.
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