Atom-bond connectivity index of unicyclic graphs with perfect matchings

Jianping Li^{a,b} and Bo Zhou^{b,*}

^aFaculty of Applied Mathematics, Guangdong University of Technology,
Guangzhou 510090, P. R. China

^bDepartment of Mathematics, South China Normal University,
Guangzhou 510631, P. R. China

Abstract

The atom-bond connectivity (ABC) index of a graph G is defined in mathematical chemistry as $ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}}$, where E(G) is the edge set of G and d_u is the degree of vertex u in G. In this paper, we determine the unique graphs with the largest and the second largest ABC indices respectively in the class of unicyclic graphs on 2m vertices with perfect matchings.

1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). For $u \in V(G)$, N(u) denotes the set of neighbors of u in G. Then $d_u = |N(u)|$ is the degree of vertex u in G. The atom-bond connectivity (ABC) index of G is defined as [3]

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}}.$$

The ABC index displays an excellent correlation with the heat of information of alkanes [2, 3], and thus may be used as a molecular descriptor. Its mathematical properties have also received attention, see [1, 4–8]. In particular, Furtula et al. [4] determined the minimum and maximum ABC

^{*}Corresponding author; E-mail: zhoubo@scnu.edu.cn (B. Zhou).

indices for *n*-vertex trees with maximum degree at most four and showed that the star is the unique *n*-vertex tree with the maximum ABC index, and Xing et al. [5] gave the sharp upper bound for the ABC index of trees with a perfect matching.

In this paper, we determine the unicyclic graphs on 2m vertices of perfect matchings for $m \geq 2$ with the largest and the second largest ABC indices respectively. Recall that in mathematical chemistry a unicyclic graph with perfect matchings is known as a conjugated unicyclic graph.

2 Preliminaries

A matching M of a graph G is a subset of E(G) such that no two edges in M share a common vertex. If every vertex of G is incident with an edge of M, then M is a perfect matching.

For a graph G with $u,v \in V(G)$, G-u denotes the graph formed from G by deleting vertex u (and its incident edges), G+uv denotes the graph formed from G by adding the edge uv if $uv \notin E(G)$, and G-uv denotes the graph formed from G by deleting the edge uv if $uv \in E(G)$.

For
$$x, y \ge 1$$
, let $f(x, y) = \sqrt{\frac{x+y-2}{xy}}$.

Lemma 1 [5] If $y \ge 2$ is fixed, then f(x,y) is decreasing in x.

Let $\mathbb{U}(m)$ be the class of unicyclic graphs on 2m vertices with perfect matchings, where $m \geq 2$. Let C_r be the cycle on r vertices, where $r \geq 3$. Let U_m with $m \geq 3$ be the graph obtained from C_m by attaching a pendent vertex to each vertex of C_m , and U_m^* with $m \geq 2$ the graph obtained from C_{m+1} by attaching a pendent vertex to each vertex of C_{m+1} except two fixed adjacent vertices.

3 Results

In the following we show that U_m and U_m^* are the unique graphs with the largest and the second largest ABC indices respectively in $\mathbb{U}(m)$ for $m \geq 3$.

Theorem 1 Let $G \in \mathbb{U}(m) \setminus \{U_m\}$, where $m \geq 2$. Then

$$ABC(G) \le \frac{3}{\sqrt{2}} + \sqrt{\frac{2}{3}}(m-1) + \frac{2}{3}(m-2)$$

with equality if and only if $G \cong U_m^*$.

Proof. Let $\mathbb{U}^*(m) = \mathbb{U}(m) \setminus \{U_m\}$. Let $\varphi(m) = ABC(U_m^*) = \frac{3}{\sqrt{2}} + \sqrt{\frac{2}{3}}(m-1) + \frac{2}{3}(m-2)$.

We prove the result by induction on m.

If m=2, then $G\cong U_2^*$ or C_4 . By direct calculation, we have $\varphi(2)=\frac{3}{\sqrt{2}}+\sqrt{\frac{2}{3}}>ABC(C_4)=\frac{4}{\sqrt{2}}$. The result follows for m=2. If m=3, then $G\cong U_3^*$, C_6 or G_i ($i=1,2,\ldots,5$, see Fig. 1). By direct calculation, we have $\varphi(3)=ABC(U_3^*)=4.4210$, $ABC(C_6)=\frac{6}{\sqrt{2}}=4.2426$, $ABC(G_1)=4.4016$, $ABC(G_2)=4.3116$, $ABC(G_3)=4.2426$, $ABC(G_4)=4.2426$, and $ABC(G_5)=4.3520$ (up to four decimal places). Thus the result follows for m=3.

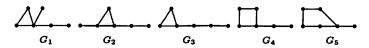


Fig. 1 Graphs in $\mathbb{U}^*(3) \setminus \{U_3^*, C_6\}$.

Suppose that $m \geq 4$ and the result follows for the uncyclic graphs in $\mathbb{U}^*(k)$ with $k \leq m-1$. Let $G \in \mathbb{U}^*(m)$. If $G \cong C_{2m}$, then

$$\begin{array}{rcl} \varphi(m) - ABC(G) & = & \varphi(m) - \sqrt{2}m \\ & = & \left(\sqrt{\frac{2}{3}} + \frac{2}{3} - \sqrt{2}\right)m - \sqrt{\frac{2}{3}} - \frac{4}{3} + \frac{3}{\sqrt{2}} \\ & > & \left(\sqrt{\frac{2}{3}} + \frac{2}{3} - \sqrt{2}\right) - \sqrt{\frac{2}{3}} - \frac{4}{3} + \frac{3}{\sqrt{2}} \\ & > & 0, \end{array}$$

and thus $ABC(G) < \varphi(m)$. Suppose that $G \not\cong C_{2m}$. Let M be a perfect matching of G. There are two cases.

Case 1. G has a pendent vertex u whose unique neighbor w has degree two. Obviously, $uw \in M$. Let $G_1 = G - u - w$. Then $M \setminus \{uw\}$ is a perfect matching of G_1 . Let v be the neighbor of w different from u in G. Obviously, v has at most one pendent neighbor.

Suppose first that v is not adjacent to a pendent vertex. Then for any $v' \in N(v)$, $d_{v'} \geq 2$. If $G_1 \cong U_{m-1}$, then $d_v = 2$ and by direct calculation, $ABC(G) = \varphi(m) - \sqrt{\frac{2}{3} + \frac{2}{3}} < \varphi(m)$. If $G_1 \in \mathbb{U}^*(m-1)$, then by Lemma 1 and the induction hypothesis, we have

$$ABC(G) = ABC(G_1) + \frac{2}{\sqrt{2}} + \sum_{v' \in N(v) \setminus \{w\}} \left(\sqrt{\frac{d_v + d_{v'} - 2}{d_v d_{v'}}} - \sqrt{\frac{(d_v - 1) + d_{v'} - 2}{(d_v - 1) d_{v'}}} \right) \\ \leq ABC(G_1) + \frac{2}{\sqrt{2}} \leq \varphi(m - 1) + \frac{2}{\sqrt{2}} \\ = \varphi(m) - \frac{2}{3} - \sqrt{\frac{2}{3}} + \frac{2}{\sqrt{2}} < \varphi(m).$$

Now suppose that v is adjacent to a pendent vertex v_1 . Then $vv_1 \in M$, $d_v \geq 3$ and for any $v' \in N(v) \setminus \{v_1\}$, $d_{v'} \geq 2$. Suppose that $d_v \geq 4$. If $G_1 \cong U_{m-1}$, then $d_v = 4$ and by direct calculation, $ABC(G) = \varphi(m) - \sqrt{\frac{2}{3}} - \frac{2}{3} - \frac{1}{\sqrt{2}} + \sqrt{\frac{3}{4}} + 2 \cdot \sqrt{\frac{5}{12}} < \varphi(m)$. If $G_1 \in \mathbb{U}^*(m-1)$, then by Lemma 1 and the induction hypothesis, and noting $g(x) = \sqrt{\frac{x-1}{x}} - \sqrt{\frac{x-2}{x-1}}$ is decreasing for $x \geq 2$, we have

$$\begin{array}{lll} ABC(G) & = & ABC(G_1) + \frac{2}{\sqrt{2}} + \sqrt{\frac{d_v - 1}{d_v}} - \sqrt{\frac{d_v - 2}{d_v - 1}} \\ & + \sum\limits_{v' \in N(v) \backslash \{w, v_1\}} \left(\sqrt{\frac{d_v + d_{v'} - 2}{d_v d_{v'}}} - \sqrt{\frac{(d_v - 1) + d_{v'} - 2}{(d_v - 1) d_{v'}}} \right) \\ & \leq & ABC(G_1) + \frac{2}{\sqrt{2}} + g(d_v) \\ & \leq & \varphi(m - 1) + \frac{2}{\sqrt{2}} + \sqrt{\frac{3}{4}} - \sqrt{\frac{2}{3}} \\ & = & \varphi(m) - \frac{2}{3} - 2 \cdot \sqrt{\frac{2}{3}} + \frac{2}{\sqrt{2}} + \sqrt{\frac{3}{4}} < \varphi(m). \end{array}$$

Suppose that $d_v=3$. Let $N(v)\setminus\{w,v_1\}=\{v_2\}$. Then $d_{v_2}\geq 2$, $G_1\in\mathbb{U}^*(m-1)$ and $G_1\ncong U_{m-1}^*$. Suppose that $d_{v_2}\geq 3$. Then

$$\begin{array}{rcl} ABC(G) & = & ABC(G_1) + \sqrt{\frac{2}{3}} + \sqrt{\frac{d_{v_2}+1}{3d_{v_2}}} \\ & < & \varphi(m-1) + \sqrt{\frac{2}{3}} + \sqrt{\frac{d_{v_2}+1}{3d_{v_2}}} \\ & = & \varphi(m) - \frac{2}{3} + \sqrt{\frac{d_{v_2}+1}{3d_{v_2}}} \le \varphi(m). \end{array}$$

Suppose that $d_{v_2}=2$. Denote $N(v_2)=\{v,z\}$. Then $d_z\geq 2$. Let $G_2=G-u-w-v-v_1$. Then $M\setminus\{uw,vv_1\}$ is a perfect matching of G_2 . If $G_2\cong U_{m-2}$, then by direct calculation, $ABC(G)=\varphi(m)-\sqrt{\frac{2}{3}}+\frac{1}{\sqrt{2}}<\varphi(m)$. If $G_2\in \mathbb{U}^*(m-2)$, then by the induction hypothesis and noting that $h(x)=\sqrt{\frac{x-1}{x}}$ is increasing for $x\geq 1$, we have

$$\begin{array}{lll} ABC(G) & = & ABC(G_2) + \frac{4}{\sqrt{2}} + \sqrt{\frac{2}{3}} - \sqrt{\frac{d_z - 1}{d_z}} \\ & \leq & \varphi(m - 2) + \frac{3}{\sqrt{2}} + \sqrt{\frac{2}{3}} + \frac{1}{\sqrt{2}} - h(d_z) \\ & \leq & \varphi(m - 2) + \frac{3}{\sqrt{2}} + \sqrt{\frac{2}{3}} \\ & = & \varphi(m) - \sqrt{\frac{2}{3}} - \frac{4}{3} + \frac{3}{\sqrt{2}} < \varphi(m). \end{array}$$

Case 2. No neighbor of a pendent vertex has degree two in G. Let C be the unique cycle of G. Since G has a perfect matching and a pendent vertex is incident to an edge in M, the graph obtained from G by deleting the edges of C consists of isolated edges. Thus G is a cycle C together with some pendent vertices each attached to a vertex of C. Let $C = u_1u_2 \ldots u_pu_1$.

Since $G \not\cong U_m$, there is at least one vertex of degree two on C. Since $G \not\cong C_{2m}$, there are adjacent vertices on C, one of degree two and the other of degree three. Assume that $d_{u_2}=3$ and $d_{u_3}=2$. Denote by w_2 the pendent neighbor of u_2 , then $u_2w_2\in M$. Since $u_3u_4\in M$, we have $d_{u_4}=2$. Suppose first that $d_{u_1}=3$. Let $G_3=G-u_2-w_2+u_1u_3$. Then $M\setminus\{u_2w_2\}$ is a perfect matching of G_3 and $G_3\in \mathbb{U}^*(m-1)$. By the induction hypothesis, we have

$$ABC(G) = ABC(G_3) + \sqrt{\frac{2}{3}} + \frac{2}{3} \le \varphi(m-1) + \sqrt{\frac{2}{3}} + \frac{2}{3} = \varphi(m)$$

with equality if and only if $G_3 \cong U_{m-1}^*$, i.e., $G \cong U_m^*$. Suppose that $d_{u_1} = 2$. Similarly, we have $d_{u_p} = 2$ and $u_1u_p \in M$. Note that $u_4u_p \not\in E(G)$ since $m \geq 4$. Let $G_4 = G - u_1 - u_2 - u_3 - w_2 + u_4u_p$. Then $(M \setminus \{u_2w_2, u_3u_4, u_1u_p\}) \cup \{u_4u_p\}$ is a perfect matching of G_4 and $G_4 \in \mathbb{U}^*(m-2)$. By the induction hypothesis, we have

$$ABC(G) = ABC(G_4) + \frac{3}{\sqrt{2}} + \sqrt{\frac{2}{3}} \le \varphi(m-2) + \frac{3}{\sqrt{2}} + \sqrt{\frac{2}{3}} < \varphi(m).$$

By combining Cases 1 and 2, the result follows.

Theorem 2 Let $G \in \mathbb{U}(m)$, where $m \geq 3$. Then

$$ABC(G) \leq \left(\sqrt{\frac{2}{3}} + \frac{2}{3}\right)m$$

with equality if and only if $G \cong U_m$.

Proof. If $G \not\cong U_m$, then by Theorem 1,

$$ABC(G) \le \frac{3}{\sqrt{2}} + \sqrt{\frac{2}{3}}(m-1) + \frac{2}{3}(m-2)$$

with equality if and only if $G \cong U_m^*$. Then the result follows since $ABC(U_m) - ABC(U_m^*) = \left(\sqrt{\frac{2}{3}} + \frac{2}{3}\right)m - \left[\frac{3}{\sqrt{2}} + \sqrt{\frac{2}{3}}\left(m-1\right) + \frac{2}{3}(m-2)\right] = \sqrt{\frac{2}{3}} + \frac{4}{3} - \frac{3}{\sqrt{2}} > 0.$

Note that $\mathbb{U}(2) = \{U_2^*, C_4\}$. By Theorems 1 and 2, U_2^* for m = 2 and U_m for $m \geq 3$ are the unique graphs with the largest ABC index in $\mathbb{U}(m)$, while C_4 for m = 2 and U_m^* for $m \geq 3$ are the unique graphs with the second largest ABC index in $\mathbb{U}(m)$.

Acknowledgement. This work was supported by the Guangdong Provincial Natural Science Foundation of China (no. S2011010005539) and the National Natural Science Foundation of China (no. 11001089).

References

- K.C. Das, Atom-bond connectivity index of graphs, Discrete Appl. Math. 158 (2010) 1181-1188.
- [2] E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett. 463 (2008) 422-425.
- [3] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849–855.
- [4] B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, Discrete Appl. Math. 157 (2009) 2828–2835.
- [5] R. Xing, B. Zhou, Z. Du, Further results on atom-bond connectivity index of trees, Discrete Appl. Math. 158 (2010) 1536–1545.
- [6] R. Xing, B. Zhou, F. Dong, On atom-bond connectivity index of connected graphs, Discrete Appl. Math. 159 (2011) 1617-1630.
- [7] R. Xing, B. Zhou, Extremal trees with fixed degree sequence for atombond connectivity index, Filomat, in press.
- [8] B. Zhou, R. Xing, On atom-bond connectivity index, Z. Naturforsch. 66a (2011) 61-66.