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Abstract

We introduce the notion of vague Lie sub-superalgebras (resp.
vague ideals) and present some of their properties. We investigate
the properties of vague Lie sub-superalgebras and vague ideals under
homomorphisms of Lie superalgebras. We introduce the concept of
vague bracket product and establish its characterizations. We also
introduce the notions of solvable vague ideals and nilpotent vague
ideals of Lie superalgebras and present the corresponding theorems
parallel to Lie superalgebras.
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1 Introduction

The theory of Lie superalgebras was constructed by V.G. Kac [17] in 1977
as a generalization of the theory of Lie algebras. This theory had played
an important role in both mathematics and physics. In particular, Lie
superalgebras are important in theoretical physics where they are used to
describe the mathematics of supersymmetry. Furthermore, Lie superalge-
bras had found many applications in computer science such as unimodal
polynomials.

The concept of fuzzy set was first initiated by Zadeh [19] in 1965 and since
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then, fuzzy set has become an important tool in studying scientific sub-
jects, in particular, it can be applied in a wide variety of disciplines such
as computer science, medical science, management science, social science,
engineering and so on. There are a number of generalizations of Zadeh’s
fuzzy set theory so far reported in the literature viz., interval-valued fuzzy
set theory, intuitionistic fuzzy set theory, L-fuzzy set theory, probabilistic
fuzzy set theory, bipolar fuzzy set theory etc. to list a few. In 1993, Gau
and Buehrer [16] introduced the notion of vague set theory as a general-
ization of Zadeh'’s fuzzy set theory. Vague sets are higher order fuzzy sets.
Application of higher order fuzzy sets makes the solution-procedure more
complex, but if the complexity on computation-time, computation-volume
or memory-space are not the matter of concern then a better results could
be achieved. In the most cases of judgment, evaluation is done by human
beings (or by an intelligent agent) where there certainly is a limitation
of knowledge or intellectual functionaries. Naturally, every decision-maker
hesitates, more or less, on every evaluation activity. For example, to judge
whether a patient has cancer or not, a doctor (the decision-maker) will
hesitate to give his opinion because a fraction of his evaluation is in favor
of truth, another fraction is in favor of falseness and the rest remains un-
decided to him. This is the fundamental philosophy behind the notion of
vague set theory.

Chen [11] considered the notion of fuzzy quotient Lie superalgebras over
a field. Akram introduced the notion of cofuzzy Lie superalgebras over a
cofuzzy field in [1). Chen [12, 14] introduced the notions of intuitionistic
fuzzy Lie sub-superalgebras and intuitionistic fuzzy ideals and investigated
several properties. In this paper, we introduce the notion of vague Lie sub-
superalgebras (resp. vague ideals) and present some of their properties.
We investigate the properties of vague Lie sub-superalgebras and vague
ideals under homomorphisms of Lie superalgebras. We introduce the con-
cept of vague bracket product and establish its characterizations. We also
introduce the notions of solvable vague ideals and nilpotent vague ideals
of Lie superalgebras and present the corresponding theorems parallel to
Lie superalgebras. The definitions and terminologies that we used in this
paper are standard. For other notations, terminologies and applications,
the readers are refereed to [2-6, 8-10, 13, 18, 20].

2 Preliminaries

In this section, we review some elementary aspects that are necessary for
this paper.

Definition 2.1. [17] Suppose that V is a vector space and V3, V1 are its
(vector) subspaces. Let V = V5 & Vj be the direct sum of the subspaces.
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Then V'(with this decomposition ) is called a Zy-graded vector space if each
element v of a Zy-graded vector space has a unique expression of the form
v=1v5+v; (v5 € V5, v; € V§). The subspaces V5 and V; are called the
even part and odd part of V, respectively. In particular, if v is an element
of either V5 or Vi, v is said to be homogeneous.

Definition 2.2. [17] A Zj-graded vector space L = Ly @ Ly with a Lie
bracket

[, ]:Lx Dilinear,
is called a Lie superalgebra, if it satisfies the following conditions:
(1) [Li,Ly) € Ly for d, j € 2o = {0,T},
@) [yl =—(-1)""[y,z] (antisymmetry),
() [z, [y, 2]] = [[=, 9], 2] + (~1)"*"*'([z, 2], y]( Jacobi identity),

where for any homogeneous element a € Lg, n = 0,1. The subspaces Ly
and L are called the even and odd parts of L, respectively. Therefore, a
Lie algebra is a Lie superalgebra with trivial odd part.

Definition 2.3. [17]If ¢ : L — L is a linear map between Lie superalgebras
L =Ls ®L; and L =Lg & Lj such that

(4) ¢(L;) € LL; (i € Zy) (preserving the grading),
(5) o([z,y]) = [p(z), o(y)] (preserving the Lie bracket).
Then ¢ is called a homomorphism of Lie superalgebras.

Throughout this paper, we denote V is a vector space, L is a Lie super-
algebra and & is a field.
Let p« be a fuzzy seton V, i.e., amap p: V — [0,1]. Let V be a complete
lattice whose minimum and maximum we denote by 0 and 1, respectively.
In this paper, we use the notations vy = max{z,y} and zAy = min{z, y}.
We give here review of two models that extend the Zadeh’s fuzzy set theory:
intuitionistic fuzzy set theory and vague set theory.

Definition 2.4. [16] A vague set A in the universe of discourse X is a
pair (ta, fa), where t4 : X — [0,1], fa : V — [0,1] are true and false
membership functions, respectively such that t4(z) + fa(z) < 1 for all
zeV.

In the above definition, t4(z) is considered as the lower bound for de-
gree of membership of z in A (based on evidence), and fa(z) is the lower
bound for negation of membership of = in A (based on evidence against).
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Therefore, the degree of membership of z in the vague set A is character-
ized by the interval [t4(z),1 — fa(x)]. So, a vague set is a special case of
interval valued sets studied by many mathematicians and applied in many
branches of mathematics (see for example [3]). Also vague sets have many
applications (cf. [1, 8, 10]). The interval [ta(z),1 — fa(z)] is called the
vague value of z in A, and is denoted by V4(z). We denote zero vague and
unit vague value by 0 = [0,0] and 1 = [1, 1], respectively.

It is worth to mention here that interval-valued fuzzy sets are not vague
sets. In interval-valued fuzzy sets, an interval valued membership value is
assigned to each element of the universe considering the “evidence for z”
only, without considering “evidence against z”. In vague sets both are inde-
pendently proposed by the decision maker. This makes a major difference
in the judgment about the grade of membership.

Definition 2.5. [7] An intuitionistic fuzzy set B = {< z,uB,vg > | T €
V} in a universe of discourse V' is characterized by a membership function,
ip, and a non-membership function, vg, as follows: pp : V — [0,1],
vg:V = [0,1], and pp(z) + vp(z) <lforallz e V.

As we can see that the difference between vague sets and intuitionis-
tic fuzzy sets is due to the definition of membership intervals. We have
[ta(z),1 — fa(z)] for z in A but (up,vp) for z in B. Here the semantics
of up is the same as with ¢4 and vp is the same as with f4. However, the
boundary 1 — f4 is able to indicate the possible existence of a data value.
This subtle difference gives rise to a simpler but meaningful graphical view
of data sets. -

Definition 2.6. [16] Let A = (t4, fa) and B = (¢B, fB) be two vague sets.
Then we define:

(3) A=(fa,1-ta),
(4) ACB&Va(z) < Vp(z), ie., ta(z) <tp(z) and 1-fa(z) < 1-FB(=),
(5) A= B & Vu(z) =Vp(z),
(6) C=AnNB & Ve(z) =min(Va(z), Va(z)),
(7) C = AUB & Vg(z) = max(Va(z), Va(z))
forallz e V.

Definition 2.7. A vague set A = (t4, fa) in vector space V is called a
vague subspace of V, if

tA(ax + By) 2 Inin{t/l(x)’ tA(y)}x fA(aIC + ﬁy) < max{fA(x)’ fA(y)}
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fora, 8 € F and z,y € V. From the definition, we have t4(0) = t4(z—z) >

min{t4(z),ta(z)} = ta(z), fa(0) = fa(z — z) < max{fa(z), fa(z)} =
fa(z) for any x € V. We always assume that V4(0) = [L, 1).

Definition 2.8. Let A = (t4, f4) and B = (¢, fB) be vague sets of vector
space V. We define the sum of A and B by A+ B = (ta4B, fa+B) Where

ta+B(z) = sup bmin{tA(a), tp(0)}, fa+n(2) = inf  max{fa(a), f5(b)}-

Definition 2.9. Let A = (24, f4) be a vague set of vector space V' and ¢ be
a mapping from vector space V to V'. Then the inverse image of A, denoted
by f1(A) = (t4-1 Ay f¢-1(a)), is the vague set in V with the membership
function given by ty-1(4)(z) = ta(d(x)), fa-10a)(x) = fa(é(z)) for all
zeV.

Definition 2.10. Let A = (t4,fa) be a vague set of vector space V and
& be a mapping from vector space V to V. Then the image of A, denoted
by #(A) = (tscay, foca)), is the vague set in V' with membership functions

defined by
toon ) = { e:glg(y){tA(fB)} y € p(V)
A= 0 y ¢ (),

(@) yedV)
= z‘ﬁl()
“W@){ ) v & (V).

We state here some properties of vague subspaces of vector spaces with-
out their proofs.

Lemma 2.11. A = (t4, fa) is a vague subspace of vector space V if and
only if t4 and fa are fuzzy subspaces of V.

Lemma 2.12. Let A = (t4,fa) and B = (tB, fB) be vague subspaces of
vector space V. Then A + B is also a vague subspace of V.

Lemma 2.13. Let A = (t4,fa) and B = (tp, fB) be vague subspaces of
vector space V. Then AN B is also a vague subspace of V.

Lemma 2.14. Let A = (ta,fa) be a vague subspace of vector space V'
and ¢ be a mapping from vector space V to V'. Then the inverse image
¢~1(A) is also a vague subspace of V.

Lemma 2.15. Let A= (ta, fa) bea vague subspace of vector space V' and
[ be a mapping from vector space V to V'. Then the image ¢(A) is also a
vague subspace of V.
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3 Vague Lie Superalgebras

Definition 3.1. Let V = V5 & Vj be a Z;-graded vector space and let
Ap = (tag, fas) and Aj = (ta;, fa,) be vague vector subspaces of V3, 1§,
respectively. Then we define Af = (tAé, fa;) and A} = (tA’t , fA’r) by:

uﬁ@={tﬁg) zeVy num={-“$“ zeVs

=€ z ¢ Vi,
tag () ={ tAi(()z) Z;‘éi y fay(z) ={ fol(-’B) :::“/’II

Ay = (t Ap» f A:) and A} = (¢ Apy fA:) are the vague vector subspaces of V.
Moreover, we have Aj n A= (t agnay, fagnay ), where

1 z=0
tagnay (z) = tay(z) Atay(z) = { 0 z4£0°

0 z=0
Faynay (@) = fay(2) V fay (@) = { 1 z#0°
Thus Aj+A{ is the direct sum and is denoted by Ag®Az. If A = (ta, fa)
is a vague vector subspace of V and A = Aj @ Aj, then A = (L4, fa) is
called a Z,-graded vague vector subspace of V.

Definition 3.2. Let A = (t4, fa) be a vague set of L. Then A = (ta, fa)
is called a vague Lie sub-superalgebra of L, if it satisfies the following con-
ditions:

(1)A = (ta, fa) is a Za-graded vague vector subspace,

(2) ta([z,y]) 2 ta(z) Ata(y) and fa((z,y]) < fa(z) V faly).

If the condition (2) is replaced by (3) ta([z,y]) = ta(z) V ta(y) and
fa(lz,y]) £ fa(@) A fa(y), then A = (ta, fa) is called a vague ideal of
L.

Example 3.3. Let N = Nj @ Ni, where N5 = (e),
Ni = (a1, ,@n, b1, ,bn) and [ai,b5] = e,i = 1,2, - n, the remaining
brackets being zero. Then N is Lie superalgebra [17].

Define Ay = (tag, fa,) Where t4, : N5 — [0,1] by

tAo(a:)={ 0.5 “GN“\{O} , Fag: N5 = [0,1] by

fag(z) = { O ;=€ Ng\_{g}

Define Ay = (ta;, fa;) where t4, : N; — [0,1] by
03 Ni\ {0
ta () = Te I\{ } y fag : N1 = [0,1] by

=0
fag(@) = {02 :cGN;\—{g}
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Define A = (t4, fa) by A= As ® A;. Then A = (t4, fa) is a vague Lie
sub-superalgebra of N.

Definition 3.4. Forany s € [0, 1] and fuzzy subset ¢ of L, the set U(t4, 8) =
{z €Lita(z) 2 s} (resp. L(fa,s) = {z € L|fa(z) < s}) is called an upper
(resp. lower) s-level cut of s.

We state the following Theorems without its proof.

Theorem 3.5. If A = (ta, fa) is a vague Lie sub-superalgebra of L, then
the sets U(ta,s) and L(fa,s) are Lie sub-superalgebras of L for every s €
ImtanImfa.

Theorem 3.6. If A = (ta,fa) is a vague set of L such that all non-
empty level sets U(ta,s) and L(fa,s) are Lie sub-superalgebras of L, then
A= (ta,fa) is a vague Lie sub-superalgebra of L.

Theorem 3.7. If A = (ta,fa) and B = (tB, fB) are vague Lie sub-
superalgebras of L, then so is A+ B = (ta+B, fa+B)-

Theorem 3.8. If A = (ta,fa) end B = (tB, fg) are vague Lie sub-
superalgebras of L, then so is AN B = (tans, fanB)-

Proposition 3.9. Let o : L — L’ be a Lie homomorphism. If A = (ta,fa)
is a vague Lie sub-superalgebra of L', then the vague set o~'(A) of L is
also a vague Lie sub-superalgebra.

Proof, Since ¢ preserves the grading, ¢(z) = o(zp + 1) = () +
p(z1) € Ly@Ly, for = = zp+z1 € L. We deﬁnetp 1A = (¢ —I(A)o,fw-l(A)o)
where t,-104), = ¥ (tay), fo-1(a); = ¥ (fa,) and define 9~ 1(A); =
(to-1(a)p
fv“(A)r) where t‘p—l(A)‘ = (p_l(t‘q!), fw-’(A)I = ‘P—l(fAI)- By Lemma
2.14, we have that they are vague subspaces of Lg, L1, respectively.

Then we define =1 (A) = (t, -1y fom1(ay), where -1y =~ (tay),
ftp-‘(A)’ = ¢ (£ay), and ™1 (A)] = (t-1(ay0 fom1(a)y), Where b1 ay, =
®- (tA’) fo-rcay, = ¢ Hfay)-

Clearly,
tp-1(a) () = { o=t an (%) Z;%‘f; ,
fo-ray(z) = { o1(4)(2) z;lltg ’
and ¢ -1(A)'($) { “(A)'(x) ‘:2]]11111 ’
fomvay(2) = { fomrcay () z:g? .These show that ¢~!(A4); and
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¢~ 1(A)j are the extensions of ¢~!(A)g and ¢~1(A);.
For 0 # z € L, we have

to-10ayy (2) Atpm1(ay (2) = @7 (Eay)(@) ApT (tay)(2)
tag (w(z)) Atay(p(z)) = 0.

Let 2 € L.. We have

to-1ay+e-r(ay (@) = S {tw-l(A);,(a)At¢-'(A)' (v}
= s Al Htag)(a) Ap~ (Eay)(0)}

= zilﬂ b{t.qa (p(a)) A tag (e(0))}

= sup  {taz(p(a)) Atay(p(®)}
pla)=p(a)+o(t)

= tag+a(p(z)) = ta(p(z)) = tp-104)(z).

In a similar way we can verify the analogous property of false membership
function. So p~1(A) = ¢~ (A)s ® ¢~ 1(A)1 is a Zy-graded vague vector
subspace of L. Let 2,y € L. Then
to-1(a)([z, 9]) = ta(p((z,9])) = talle(z), e¥)]) 2 ta(p(z)) Ata(e(y)) =
to-1(4)()Atp-1(a) (), and fo-104) ([, 9]) = fale([z,9])) = fA([‘P(z)"P(y)])
< F4lp(@) V Fa(@(®)) = fom1()(@) V fom1a)(9), thus ¢=1(4) is a vague
Lie sub-superalgebra. O

Proposition 3.10. Let ¢ : L — L' be a Lie homomorphism. If A =
(ta, fa) is a vague Lie sub- supemlgebra of L, then the vague fuzzy set p(A)
is ¢ vague Lie sub-superalgebra of L.

Proof. Since A = (ta, fa) is a vague Lie sub-superalgebra of L, we
have A = A @ A1 where Ag = (tay, fag), A1 = (tay, fa;) are vague vector
subspaces of Lg, L, respectively. We define ¢(A)p = (t,(4)5) fo(a);) Where
toars = Ptag)s focayy = P(fag)s P(A)N = (Lp(a)y Fo(a);) Where tya), =
@(tar)y foca); = ¢(fa;). By Lemma 2.15, p(A)y and ¢(A); are vague
subspaces of Lg, L1, respectively. And extend them to (A)j, ¢(A);, we
define p(A)g = (£p(a);, fo(ayy) Where to(ay, = P(tay)s focay, = p(fay) and
P(A)] = (tp(a)ys foa);) where tocay, = @(tag), fo(ay; = ¥(fay). Clearly,

L L
tocary () = { i) i; Ly > foty(@) = { Fotar (@) zelo
t‘P(A)'i (:x:) = { (t)ﬂP(A)r(fv) ZZ I]I[:I , fsa(A)’ (:L‘) { f‘,,(A),(a:) ::; %:1 .
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For 0 # z € L', then

to(a)s (@) Aoy (2) = o(tag)(@) Ap(ta)(z)
= {taz(a)} A sup {tay(a)}
= zfup {tA:(a)/\tAr(a)} 0.

Let y € L. We have
toarg+ecar () = e Lot (@) Atoay; (0)}
= e {so(tA;,)(a)/\tp(tA')(b)}

= Sup{ sup {tay (m)}/\ s {tA' (n)}}

y=a+b a=p(m)
= sul(a ){ sup {tA: (m)/\tA:(n)}}
y=p(x) z=m+
= s {(tagray)(@)} = sup {ta@)} =t ()

In a similar way we can verify the analogous properties of false membership
function. So ¢(A) = ¢(A)s ® ¢(A)1 is a Zy-graded vague vector subspace.

Let 2,y € L. It is enough to show to(a)([Z,9]) 2 toca)(T) Aty(ay(y) and
fota)([2,4]) < fo(a)(x) V fo(ay(y). Suppose that ¢, 4)([z,y]) < t,ca)(z)A
to(a)(y), we have ty4)([z, ¥])< tpa)(7) and tyea)([z,y]) < to(a)(y). We
choose a number ¢ € [0,1] such that t,(4)([z,y]) < t < t,a)(z) and
toa)([z,y]) < t < tya)(y). Then there exist a € ¢~ !(z),b € ¢~ !(¥)
such that ta(a) > t,t4(b) > t. Since ¢([a,b]) = [p(a),p(b)] = [z,y], we
have t,4)([z,9]) = ]Slll()[ b]){tA([aa i)}z ta(la,b]) = ta(a) Ata(d) >
z,y]=¢((a,
t > tya)([z,y])- This is a contradiction. Suppose that f,(4)(lz,7]) >
Foa)(2) V fo(a)(y), we have foa)([z,v])> fop(a)(z) and fuea)(lz,y]) >
Joa)(y). We choose a number ¢t € [0,1] such that o(f)([z,y]) > t >
foca)(z) and foay([z,y]) >t > f,(a)(y). Then there exist a € p~1(z),b €
¢~ (y) such that fa(a) < ¢, fA(b) < t. Since ¢([a,d]) = [p(a), p(b)] =

[z, 3], we have f,a)([z, ¥]) = = ]_ o b]){fA([a, )} < fa(la, b)) < fala)Vv
falb) <t < foay(lz, ). This is a contradiction. Therefore, ¢(A) is a
vague Lie sub-superalgebra of L. a

Proposition 3.11. Let ¢ : L — L’ be a surjective Lie homomorphism. If
A = (ta, fa) is a vague ideal of L, then the vague set p(A) is a vague ideal
of L.
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Theorem 3.12. Let ¢ : L — L' be a surjective Lie homomorphism. If
A = (ta,fa) and B = (tp, fB) are vague ideals of L, then (A + B) =
¢(A) + ¢(B).

Definition 3.13. For any vague sets A = (ta, fa) and B = (tp, fg) of L,
we define the vague bracket product [4, B] = (4,8), fl4, B)) Where
t(a,)(z) = sup[ {lileli){rl{tA(:ti) Atg(yi)}} where o; € k, z;,y; €L,
= QT Yi
iEN
t(a,8)(z) = 0 if = is not expressed as z = EN a;lzi, yi
i€
and fi4,8)(z) = o zigf(=~ y-l{x%%x{f,;(xi)vfg(yg)}} where a; € k, z;,y; €
"GN £ 3 A 314) t
L fia,B)(z) = 0 if z is not expressed as £ = 3 a[xi, ]
iEN
Lemma 3.14. Let Ay = (ta,, fa,), A2 = (ta;, fa,), B1 = (tB,, fB,) and
B, = (tB,, fB,) be vague sets of L such that Ay C Az, By C B;. Then
[A1,B1] C [A2, Bs). In particular, if A = (ta, fa), B = (tB, fB) are vague
sets of L, then [Ay, B] C [A, B] and [A, B] C [A, Ba).

Theorem 3.15. Let Ay = (ta,, fa,), A2 = (£, f42), B1 = (B, f3,), B2 =
(te;, fB,) and A =(ta, fa),B = (tB, fB) be any vague vector subspaces of
L. Then [A1+Aq, B] = [Ay, B]|+[A2, B] and (A, By+Bs) = [A, B1]+[A, Ba).

Theorem 3.16. Let A = (ta,fa) and B = (tg,fB) be vague vector
subspaces of L. Then for any a,B € k, we have [@A, B] = afA, B] end

The following theorem shows that the vague bracket product [, | re-
mains bilinear.

Theorem 3.17. Let Ay = (ta,, fa,), A2 = (ta;, fa,), B1 = (¢B,, fB,), B2 =
(tB,, fB;) and A = (ta,fa), B = (tB, fB) be vague vector subspaces of L.
Then for any o, B € k, we have

(@A + BAs, B] = o[ Ay, B} + A2, B]
[A,aB; + BB;] = o[A, B1] + B[4, B2]

Lemma 3.18. Let A = (t4, fa) and B = (tB, fB) be any two vague vector
subspaces of L. Then [A, B] is a vague vector subspace of IL.

Lemma 3.19. Let A = (t4,fa) and B = (tg, fB) be any two Z,-graded
vague vector subspaces of L. Then

[A, Bl := [As, By + {41, Bi] s an vague vector subspace of Ly,

[A, B)j := [Ap, Bi] + [A1, By| is a vague vector subspace of L and

[A, B)] is a Zy-graded vague vector subspace of L.
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Lemma 3.20. Let A = (ta,fa) and B = (tg, fg) be any two Zy-graded
vague vector subspaces of L. Then [A, B] = [B, A].

Theorem 3.21. Let A = (t4,f4) and B = (tp, f) be any two vague
ideals of L. Then [A, B)] is also a vague ideal of L.

Proof. Since A = (ta, fa) and B = (tp, fp) are vague ideals of L, we
know that [A, B] is a Z,-graded vague vector subspace by Lemma 3.20. In
order to prove this theorem, we only remain to show that ¢4, pj([z,¥]) >
t(4,B)(%) V(4,B)(y) and fi4 5)([z,¥]) < fia,5(2) A fia,B) ()

Suppose that t(4,)([z,y]) < t[4,5)(2)VE(a,B)(y), We have (4, p([z,¥]) <
t[a,5)(z) or t(4,5)([2,Y]) < t(a,5)(y). Let ¢4 5)([z,9]) < ti4,5)(z). Choose
a number ¢ € [0, 1] such that ¢4 pj([z,y]) <t < {{4,5)(z), then there exist
z;,¥; € L and a; € k such that z = Z o;[z;,y;] and for all 4, ta(z;) >

t,tp(yi) > t. Moreover, t4(z;) = (tAo+Ax)(ztu +x=1) = tAo(xto)AtAi (x!r) >
t, then we have ta;(zi;) > t,ta,(zi;) > ¢, and t(y:) = (£By+B;) (Vi +
y,',) = tBo(yio) A tBI(yii) > t, then tBo(yid) >, tBI(yii) >t.
Because [z,y] = [ENC!i[ziyyi],y] = g{ai[[%,yi],y], and
i€ : i

[z vl 4] = [[@i + Zigs vip + vig] ¥l

([i5: Yi] + [Tig, Yig] + [Tigs ] + [Big, ¥ ] 9]

([ig io)s ¥l + [[mig, Yo ¥l + [[%sg, ¥y 4] + ([, Wi ]

= [Tigs [Yigs Yl = [Yigs [Big» ] + [is (Wi, Y]] + [wirs [2ig, 9]
+[zig, [yipy]] - [¥igs [xis, y]] + [zs;, [yio’y]] — [¥ig) [xijay”

= [z [y,9]] - [Wig» [%i, Y]] + [yirv [zir, 9]l - [yi1

N | e T ) | B

we get
tia,p)([z,9]) = t[A,B](ZN ail[z:, vil, y]) 2 ta, 5 ([, 1), 9])
i€

([ ta,B) (s, (4, 9]]) 1

t(a,8)(—[Vig) [zir, ¥]]) (2)

> ming  ta,8)([vi, [T, ¥]]) (3)
t[A,B]("[yiv (i, ¥]]) 4)

\ t[A,B]("[yio’ [zsy, 9]]) (5)

If (1) is minimum, then we have
ta,Bi(lzi i, ¥]l) 2 ta(z:) Ats(lviyl)
2 talz:) A(te(vi) Vi) >t
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" If (2) is minimum, then we have

t(a,8)(([%i5, Y], Yio])

ta([zi:9]) A B (Yio)

(ta(zig) VEa(y)) AtB(yis)
(tag(%ig) VEA()) Ateg(vis) > 8

If (3) is minimum, then by Lemma 3.20 we have

t[A,B](_[yiu’ 5, 9]])

v v

t18,4)([iy» [y, 1))

ta(yi;) Ata((zig, y])

tB(yir) A (ta(zig) Via(y))

By (¥ir) A (tag(zi;) VEa(y)) > ¢

ti4,8)([¥ir, [zir, ¥]))

v v

If (4) is minimum, then we have
tia, By (—lin [T, ¥ll) = ta,my (g (T4, 9])
t18,41([Yir» [%ig, Y1)
tp(yir) A (talzis) Via(v))
B (¥iy) A (tag(zi) Via(y)) > 6

‘If (5) is minimum, then the case is similar to (2), we can also get

v

t[AiB](—[yiO’ [xip y]]) >t.

So we have t4,p)([z,]) > t > t4,5)([z,]), this is a contradiction. We use
the similar method to prove the case of t(4,5)([z,9]) < t{4,5)(¥)-
Also,

fias(z,9) = fia,5 O aillzi vl 9) < fia,my((lzs, ), )

N
( fia.B)(lzi, (33, ])) (1)
f[A,Bl(_[yim [zit »9l]) (2)

< max{  fia,B (Wi [, 9]) (3)
fia,B)(— Wiy, [Zi5, ) 4)

C fiaB (=i [z, D) (5)
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If (1’) is maximum, then we have
Jia.p(zo s, vl)) < fa(zi) V fe([vi,v))
< fa(@z:)V(fe(w) A fB(¥) < t;

If (2’) is maximum, then we have
fla.B(—[vio» (%5, 9]]) = fia,B)([[%i5, 9], ¥io))
fa([zig: Y1) V B (yis)
< (fa(zi) A fa(®) V FB(Yi5)
(Fas(@ig) A Fa()) V FBy(¥is) <1;

IA

If (3’) is maximum, then by Lemma 3.20 we have
fia.B([Uigs [z, ¥]]) = fiB,a) (Wi, [z41, 9]])
IB(Wir) V fa(lzir,9))
fB(¥ir) V (fa(zi) A faly))
= fBi(Wig) V (fay(zi;) A fa(y)) < &5

IA

IA

If (4’) is maximum, then we have

fiaB(=lvip: [zi, ¥]]) < fia,B)([Wirs (245, 1))

fiB,4] ([Yirs %45, ¥]])

FB(yi) V (falziy) A faly))

f31 (yi[) v (on(xio) A fA(y)) <t

A

If (5’) is maximum, then the case is similar to (2’), we can also get

f[A,B](_[yioa [xi: ’y") <t
So we have fi4,p|([z,9]) < t < fia,B)([z,¥]), this is a contradiction. We
use the similar method to prove the case of fi4,p)([2,¥]) > fi4,B)(¥)- Hence
[4, B) is a vague ideal of L. O
4 Solvable and nilpotent vague Lie ideals

Definition 4.1. Let A = (ta4, f4) be a vague Lie ideal of L. Define in-
ductively a sequence of vague ideals of L by A® = 4, A = [4©) A0},
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A® = [AD AW ... A = [A=D A(r=1)] then A®™ s called the nth
derived vague Lie ideal of L. In which, AG+1) = (¢ 441y, f46+1) Where

tac+n (z) = z= E:g?z,-,w {min{t 4 (25) Atao ()} }

i€
where aj € k, z;,y; €L
tau+n(z) =0 if z is not expressed as x = ) ajlzj,y;],
JEN
fasn(z) = _ .§ngf(zj’w){§!éa,3€{f4<-’> () V faow (¥5)}}
2

where oj € k, z;5,y; €L
fac+n(z) =1 if z is not expressed as z = ) aj;z;j,y;]
JEN
From the definition, we can get t40) 2 t40) 2tam 2 +- 2 tgm 2 -+

and fao C fam CEfa» €+ C fam C---.

Definition 4.2. Let A™ be as above. Define: (™ = sup{t m(z) : 0 #
z € L} and kK™ = inf{f4m (z) : 0 # z € L}. Then it is clear that 7(® >
g0 >9@>...>9M >... and kO <KW <MW < ... <M <0,

Definition 4.3. A vague Lie ideal A = (t4, fa) of L is called a solvable
vague Lie ideal, if there is a positive integer n such that 7™ = 0 and
k(™ = 1. So it is a solvable vague Lie ideal, then there is positive integer
n such that t 4y = 1g and f ) = 1§.

Lemma 4.4. Let A = (ta, fa) be a vague Lie ideal of L. Then A = (ta, fa)
is a solvable vague ideal if and only if there is a positive integer n such that
taem = Lo, faemy = 1§ for allm > n.

Theorem 4.5. Homomorphic images of solvable vague Lie ideals are also
solvable vague Lie ideals.

Proof. Let ¢ : L = I/ be a homomorphism of Lie superalgebra and assume
that A = (ta,fa) is a vague Lie ideal of L. Let ¢(A) = B, i, tg =

toay fB = fo(a)- We prove t,am) = tpm and f,amy = fpey by
induction on n, where n is any positive integer. Indeed, let y € L’. Consider
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n=1,

t‘p(Au))(y) = tcp([A,A])(y)= sup {t[A,A](x)}
y=¢(z)

= sup { sup {min(ta(z:) Ata(v:))}}
y=p(z) ==_§v°‘i[=hy¢] €N

= sup {?éi]{,l(tA (z:) Ata(y)}

y= 3 aiplzi,yi]
€N

= sup  {min(ta(z:) Ata(y:)) : o(z:) = as
y= ZN ai[a,-,b,-] ieN
i€

) tp(y,) = bt}

= su in(ts(a:) A ta(b:
z;vailaﬁba]=y{ieN( B(ai) Atp(h:))}
i€

= t[B,B](y) =tpwm (y)

In a similar way we can verify the analogous property of false member-
ship function. These prove the case of n = 1. Suppose that the case
of n — 1 is true, then tv(A(")) = tv(lA(n—l) Atn-D)]) = t[,P(A(n-n)) P(AC-1))
= t{g(n-1),pn-1] = tpm and fo(am) = fyam-n,am-1))

= f[w(A(""’) P(Am=1)] = le(n_x) B(n-1] = Sfpmy. Let m be a positive in-
teger such that ¢t 4m) = 1p and fam) = 1§. Then for any 0 # y € L', we

get tpem (y) = tyaemy(y) = S“E’ {lo()} = 0, fpem (¥) = P(fam)(y) =
y=yp(z)
mf {1 (x)} =1. So tgm) = 1p and fgwm) = 15. O

Theorem 4.6. Let A = (ta,fa) be an vague Lie ideal of L and A/I be
a solvable vague Lie ideal of L/I. If B = (tB, fB) is a solvable vague Lie
ideal of L. and is also a vague ideal of A = (t4, fa) such that B(I) = A(I),
then A = (ta, fa) is solvable.

Proof. Let ¢ be the canonical projection from L to L/I. From the proof
of 4.5, we can get t,P(A(n)) = t(A/I)(n) and f‘p(A(n)) = f(A/I)(n) Since A/T i 1s
solvable, there exists n such that £ 4,5y = 1o and f4/1ym = 1§.

For0 # § € L/1, we have sulz( ){tA(,.) (M)} = ty,(amn (@) = tanym (F) =
meEp~(F
0 and me‘ipllfl(g){f‘q(n) (m)} = f‘P(A(..))(;i]) = f(A/I)(")(y) =1. Notice tha.t
m €L and m # 0, we get t 4y (m) =0 and fym)(m) = 1.

For § =0, we have sup {tym(m)} =t,4m)(0) =1 and
meep=1(0)
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1(0){f'“") (m)} = fp(aw(0) = 0. Since ¢=1(0) = I and B(I) = A(]),

we have tgem(I) = tam(I) and fge(I) = fam(I). Forany z € I, B is
solvable, then there exists n such that tgm) = 1o and fg() = 1§, we have
tam =1g and fam) = 15.

Hence for any z € L, we always have that ¢4 = 1o and fu) = 1§,
which imply that A = (¢4, fa) is solvable.

Lemma 4.7. Let A= (ta,fa) and B = (tg, fB) be vague Lie ideals of L.
Then (A® B)(™ = A®) ¢ B™),

Theorem 4.8. Direct sum of any solvable vague Lie ideals is also a solvable
vague Lie ideal.

Definition 4.9. Let A = (t4, fa) be a vague Lie ideal of L. Define induc-
tively a sequence of vague Lie ideals of L by A° = A, A! =[4,A%], A%=
[4,AY,.. = [A,A™"1]. .., which is called the descending central se-
riesof a vague Lie ideal A = (tA, fa)of L. Wegettgo Dtar 28422+ 2
tan2--- and fao C far Cfa2 C---C fan C

Example 4.10. Let us take the basis h, e, f of sl(1|1) as follows

(3 9)um(38)0=(28): o

Then & is an even element, and e and f are odd element. Their bracket
products are as follows: [e, f] = [f, €] = h, the other brackets = 0. Then
s[(1]1) is a three-dimensional Lie superalgebra.
Define Ag = (tay, fa,) 5!(1]1)5 — [0, 1] where

0.6 0.4 z=h
tas(2) —{ 1 otherw1se » fag(2) = { otherwise

Define A1 = (tay, fa;) : s4(1]1)1 = [0,1] where

0.3 T=e 0.7 r=e¢e
tag(z) =4 05 z=f , fa(x)=4 05 z=f
1 otherwise 0 otherwise

Define A = (ta, fa) : sl(1]1) — [0,1] where ta(z) = ta,(xp) Atas(zi)
and fa(z) = fas(z5) V fa;(z1)- Then A is a vague Lie ideal of sI(1]1).

Let A° = A. We define A! = [A, A°), then if z € sl(1|1)1, = can not be
expressed as T = Y o;[zi, ¥i], Zi, ¥i € sl(1]1) then tai(z) =0, far(z) = 1.
If z € sl(1|1)5, = = afe, f], @ € k, then t q1(z) = sup{ta(e) Atao(f)} =0.3
and fai(z) = inf{fa(e) V fao(f)} =0.7.
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Define A% = [A, A'], we calculate if = € sI(1]1)1, t 42(z) = 0, faz2(z) = 1.
If x € sl(1]1), ta2(z) = sup{ta(e) Ats1(f)} =0 and far(z) =inf{fa(e)V
far(f)}=1. Thenweget 1° > ' >? =0and s < k! < k2 =1. So 4
is a nilpotent vague Lie ideal of s{(1|1).

Definition 4.11. For any vague Lie ideal A = (t4, f4), define y* =
sup{tan(z) : 0 # z € L} and " = inf{fsn(z) : 0 # 2 € L}, for any
positive integer n. The vague Lie ideal is called a nilpotent vague Lie
ideal, if there is a positive integer m such that #™ = 0 and k™ =1, or
equivalently, t4m = 1p and fam = 1§.

We state the following Theorems without their proofs.

Theorem 4.12. Homomorphic images of nilpotent vague Lie ideals are
also nilpotent vague Lie ideals. Direct sum of nilpotent vague Lie ideals is
also a nilpotent vague Lie ideal.

Theorem 4.13. If A = (t4, fa) is a nilpotent vague Lie ideal of L, then
it s solvable.
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