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Abstract

Let 7,,n—4 be the set of trees on n vertices with diameter n — 4.
In this paper, we determine the unique tree which has the minimal
Laplacian spectral radius among all trees in 7, n—4. The work is re-
lated with that of Yuan [The minimal spectral radius of graphs of
order n with diameter n — 4, Linear Algebra Appl. 428(2008)2840-
2851], which determined the graph with minimal spectral radius
among all the graphs of order n with diameter n—4. We can observe
that the extremal tree on the Laplacian spectral radius is dlfferent
from that on the spectral radius.
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1 Introduction

In this paper, we consider only connected simple graphs and, in particular,
trees. Let G = (V(G), E(G)) be a graph on vertex set V(G) and edge set
E(G). The degree of a vertex v in G, written by dg(v), is the number of
edges incident with v. Let Ng(v) be the set of vertices which are adjacent
to v in G. The distance between vertices u and v is denoted by d(u, v), the
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diameter d of a connected graph G is the maximum distance between pairs
of its vertices. Denote by Lg the line graph of graph G.

The adjacency matrix of a graph G is defined to be a (0, 1)-matrix
A(G) = (aij) of order n, where a;; = 1 if v; is adjacent to v;, and a;; =0
otherwise. We call the largest eigenvalue of A(G) the spectral radius of
the graph G, denoted by p(G). The characteristic polynomial of graph G
is just det(zI — A(G)), denoted by ®(G). The Laplacian matrix L(G) =
D(G) — A(G) is the difference of the diagonal matrix of vertex degrees and
the adjacency matrix. The largest eigenvalue of L(G) is usually called the
Laplacian spectral radius of the graph G, denoted by u(G).

In order to adjust the robustness of a network against the spread of
viruses and the quality of the service running over the network, van Dam
and Kooij [4] proposed the following problem: which connected graph of
order n with a given diameter d has minimal spectral radius? In [4], the
problem of cases with d € {1,2, |3],n—3,n—2,n—1} are explicitly solved.
Let P,'z':‘,'::" ""‘ be the tree (of order ny +ng +- - - +n; + k) obtained from
Py, labeled as vov1 - g1, by attaching pendant paths of order n; + 1 at
vertices v,, for each i=1,2,...,t. van Dam and Kooij [4] proposed the
following conjecture:

For a fized integer e, the tree Pll,__’T JJ ’F;el']' [?:11 has the minimal spectral

radius among the graphs of order n wzth diameter d = n — e, for n large
enough.

" Yuan et al. [13] proved that the conJecture holds for e = 4 (i.e. d =
n — 4), and pointed out for n > 11, P;3'7%; has the minimal spectral
radius. Furthermore, Cioabd et al. [3] proved that the conjecture also
holds for ¢ = 5 (i.e. d =n — 5) and n > 18, and for e > 6 the conjecture
does not hold. Belardo et al. [2] determined the trees with minimal spectral
radius and diameter at most 4.

Recent discoveries indicate that the Laplacian spectral radius of trees
plays an important role in the theory of the photoelectron spectra of sat-
urated hydrocarbons (see [5] and the references therein). Liu et al. [10]
characterized the trees with minimal Laplacian spectral radii among the
trees on order n and d € {1,2,3,4,n —3,n - 2,n —1}.

A problem arises naturally what is the tree whose Laplacian
spectral radius is minimum among all trees of order n with diam-
eter n — 4.

Let 75, n—4 be the set of trees on n vertices with diameter n — 4. In
this paper, we determine the unique tree which has the minimal Laplacian
spectral radius among all trees in 7, 4.
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2 Preliminaries

In this section, we introduce some lemmas which are useful in the presen-
tations and proofs of our main results.

Lemma 2.1 ([6, 14]) Let v be a vertez of a tree T with at least two ver-
tices. Let Ty; (k > 1 > 1) be the tree obtained from T by attaching two new
paths P :vv v -- vk and Q : vugug - - - of length k and |, respectively, at
vertez v. Let Tk+1,l-1 = Tk,z — up—1Uy + vy, Then F'(Tk+1,l—1) < ﬂ(Tk,z).

Lemma 2.2 ([14]) Suppose that uv is an edge on an internal path of tree
T. Let T, be the tree obtained from T by the subdivision of the edge uv
(i.e., by deleting the edge uv, adding a new vertez w and two new edges uw
and wv.) Then p(Ty,) < w(T).

Lemma 2.3 ([6]) Let u,v be two distinct vertices of a tree T. Suppose
v1,,...,v (1 < s < d,) are some vertices of Np(v)\Nr(u) and X =
(x1,22,..,%n)T is a unit eigenvector of tree T, where z; corresponds to
the vertex v; (1 < i < n). Let T* be the tree obtained from T by deleting
the edge vv; and adding the edges wv; (1 < i < s). If |zu| = |2y|, then
w(T) < w(T*).

Lemma 2.4 ([11])Let v be a vertex of a graph G, let € (v) be the collection
of circuits containing v, and let V(Z) denote the set of vertices in the circuit
Z. Then the characteristic polynomial ®(G) satisfies

8(G)=z8(G-v)- Y BG-v-w)-2 ) ¥GC-V(2)).
weNg(v) Ze¥(v)

Lemma 2.5 ([11])Let e = vw be an edge of G, and let €(e) be the set of
all circuits containing e. Then the characteristic polynomial ®(G) satisfies

B(G)=2(G-e)-d(G-v—w)-2 > &G-V(2)).
Ze¥(e).

Next, we denote ®&(Py,) by Py, for short. By Lemma 2.4, the following
result can be easily obtained.

Corollary 2.6 Let Py =1, then we have
(i)Pn.H =zP, — P, (n > 1);
(i) For 1 < s <t, then P,P, — Py,_1Pey1 = P,_,.

Lemma 2.7 ([9])Let G and H be two simple connected graphs. If ®(H) >
®(G) for = 2 p(G), then p(G) > p(H).
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Lemma 2.8 ([7])Let G be a connected bipartite graph, and G, be a proper
subgraph of graph G, then u(G1) < u(G).

Lemma 2.9 ([12])Let G be a connected graph, then u(G) < 2 + p(Lg).
The equality holds if and only if G is bipartite.

Lemma 2.10 Let G be a connected graph, A be its mazimum degree, d;
be the degree of vertex v;. Then

(i)([8]) u(G) = A + 1, the equality holds if and only if A =n —1.
(i1)([1]) #(G) < max{d; + d;|viv; € E(G)}, the equality holds if and only
if G is either a regular bipartite graph or a semiregular bipartite graph.

3 Tree with minimal Laplacian spectral ra-
dius

ForT € T, n—4, T must be obtained from P,_3 : vg-+-v; -+ 05 -V Up_yg

by attaching other three vertices to v;,v; and v as the following seven

forms, where 1 < z, i, k < n—5. Let 7; denote the set of each kind of trees,
clearly, Tp n—a = U;=; Ti (See Fig.1).

vy Y

VI L

Vi Y4 Vi V5 ViUV

i

Fig.1. Seven kinds of trees in 7,, 4.

y

Let T} be a tree in T;, where 1 < <7 (see Fig.2).

Lemma 3.1 For any T € T;, we have u(T) > u(T}), with the equality if
and only if T = T, wherel <¢<86.

Proof. According to Lemma 2.1, for 1 < ¢ < 4, we have u(T) > u(T}),
with the equality if and only if T 2= T},

By Lemmas 2.2 and 2.8, for 5 < ¢ < 6, we have u(T") > u(T?), with the
equality if and only if T2 T, O

Lemma 3.2 For any T € T, we have u(T) > u(17), with the equality if
and only if T = T7.
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Proof. For any T € T, by Lemmas 2.2 and 2.8, we have u() >
I 11'1”11;53 ,where 2<j < n-6.
Next we consider tree Pll’f';‘;f 5» it suffices to prove that p(P) “z’—‘_s_ )

#(T7). Note that line graph LPx jn—s = Gy, 1, (see Fig.3), by Lemma 2. 9,

we consider its line graph Gy, 1. Wlthout loss of generality, suppose that
lz > ;. Let Gi, 4, be the graph which has the minimal spectral radius. We
can claim that l; < I, + 1, that is to say, 77 has the minimal Laplacian

spectral radius in 77. Un—2
VUn—-3Un—-2VUn-1 VUn—3Un—1
vo U1 Un—5 Un-4 Vo V1 V2 Un_pUn—d
" e
7 I3
Un-1
Un-2Un-1 Vn—-2
Up—3 Un-3
Vo Vi V2 Un—5Un—q Vo V1 VU2 U3 Un—bUn—dg
* * 3
T3 Ty (P3n-s)
VUn-2
Up—3 Un~ Up—
n—3 Vn-2 n—1 Up—3 Un—1
Yo Y Un—5VUn—4 Yo Y1 V2 Un—5 Vn—4q
* ™ 2,n-5
T3 Tg (P31 ns)

VUn—-3 Un—2VUn—-1

Yo '01 'Uln—dj'vn_s Vn—-4
1,|252|,n-5
T; (PRUFEIR-S)

Fig.2. Trees T}, T3,..., T2

In the following, we prove by contradiction. Suppose ls > I; + 2. Note
that Gy, 1, is the graph which has the minimal spectral radius, it suffices
to prove that p(Gl, ;) > p(Gly41,15-1)-

According to Lemma 2.5, we have

Q(Glhlz) = Q(Gll.lz - u'u) - q)(Gll g —U— v) - 2¢(Gh,12 —Uu—-v- w)
= Q(Gll 2 — uv) - (.’ll + 2)¢(G¢1)¢(Glz)’
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(GChi1-1) = B(Cuirla-1—w) — B(Ghirl-1 —u—)
—2@(011.*.1’1,_1 -U—-v-—- w)
®(Gr 41,151 —wv) — (z + 2)2(Gi,+1)2(G1,-1)-

Note that
®(G)) = ¥(GiI—vv, ) —0G—vn —vy4)
—28(G) — v1 — V41 — Vi, 42)
= Pi2—(z+2)P_1,
hence
Q(Glhla) - Q(Glx-l-l,lz—l)
= (24 2)(®(C1,+1)2(Gl,—1) — 2(G1,)2(GL,))
= (z+2)-(*),
where

(*) = Py43Pu41— (2 +2)Py33Py-2

~(z +2)P, Ppi1 + (2 +2)*Py P2

=Py +2Piy2 + (z +2)Py42Pp11

+(z +2)P;y1Pyi2 — (z+2)?Pyy 1 Py

Let k = Iy — I, clearly k > 2.
For k > 5, by Corollary 2.6, we have
(*) = Peez—(2+2)Pres— (x+2)Pey1 +(z+ 2)2P—

(2 +4z + 5)Pr—2 — (z +2)Pis — (£ + 2) Peya
—(z — 1)(z 4+ 1)3(2? — 5)Pi—q + z(z + 1)?(z® — 5) Pe—s
(:B + 1)2(122 - 5)($Pk._5 - (:Bz - I)Pk_4)
(z+ 1)2(:1:2 — 5)(—z(zPi-4 — Pr-s) + Pi—4)
= —(z+1)%(z? - 5)P_2.

&(G1 1) — B(Gris15-1) = —(z +2)(@ +1)*(2% - 5) Pe—z.
Fork=4,letl), =1, I =1+4, then

() = P—(z+2)Ps+(z+2)°P — (z+2)(Pi43Piy2 — PyaPrys)
= —(z—1)(a®-5)(z+1)}
®(Gi, 1) — B(Glit1-1) = —(z +2)(z = 1)(z® = 5)(z +1)°.
Similarly, for k = 3 and k = 2, we have
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Q(Gh,lz) - @(Gll.‘.l,lz_l) = —(:B -+ 2)(13 - 1)(.’1.'2 — 5)(1: + 1)2.
(G, 1,) = B(Gry41,1,-1) = —(z + 2)(2? = B)(z + 1)%.

Note that .__A_. is a proper subgraph of Gy, i, for any {; > 0. And
by Lemma 2.4, we can get that <I>(._A_‘) = z(z? +z — 1)(z? ~ z - 3),
then p(—\_) = 1YB > \/5. So p(G1y 1) > p(—L\_) > v/5. Then for
any z > p(Gi, ;) > V5, we have &(G1, 1,) — (G, 41,4,—1) < 0. By Lemma
2.7, p(Gi,,1,) > p(G1,41,1,—1). This completes the proof of Lemma 3.2. O

O

Vb1 U1 V2 2 U1
G Gi1,

Fig.3. Gl and Gl;,lz-

Theorem 3.3 For T € T, n—4 (n 2 11), then p(T) > min{u(T7), u(T3)},
with the equality if and only if T2 T3 or T 2= T¢.

Proof. By Lemmas 3.1 and 3.2, it is known that for any T € T 4,
w(T) > min{p(T¥)]1 < i < 7}. By Lemma 2.3, u(T}) > p(Tg). For
n 2> 9, by Lemma 2.10, u(Ty) < max{d; + d;lviv; € E(G)} = 5 and
w(Tg) > A +1 =5, then u(Ty) > u(Ty).

Consider the tree T3, let X = (zo,Z1,...,Zn—1)T be a unit eigenvector
of T3, where z,, and z,,_, correspond to vy and v,_3, respectively. If
|Zwy| = |Zu,_s|, note that Ty = T35 — vn—3Vn—1 + V20n—1 and Lemma 2.3,
then u(T3) > p(T3). Otherwise [zy,| < |Zy,_,4|- Let To = T3 — vjvp +
V1Un-3, then by Lemma 2.3, u(To) > u(T3). Consider the vertex v,_gs,
according to Lemma 2.1, u(73) > p(To). Hence, u(T3) > u(T3). In tree
T3, we can view path: v,_gvn—3V2 - - Un—5¥n—4 as the diameter path, then
by Lemmas 2.2 and 2.8, we can easily obtain that u(73) > u(Tg).

For trees Ty and Ty, when n = 10, using Matlab to compute their
Laplacian characteristic polynomial, we have u(P3,) = p(PZ’f, 7). For n >
11, by Lemmas 2.2 and 2.8, u(T}) > p(P87) = u(Pye,) > w(Ty).

Hence for any n > 11, we have u(T) > min{u(T7), u(T¢)}, with the
equality ifand only if T = T7 or T2 Tg. O
Theorem 3.4 Forn > 13, tree T} (Pi:ﬁij_’g_s) has the minimal Lapla-
cian spectral radius in T, »_4.
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Proof. By Theorem 3.3, it suﬂices to prove that for n > 13, u(Tg) >
#(T7). Using Matlab, we have u(P} L1, P 10) & 4.4397 and p(P ) ~ 4.4463.
Note that PZ,, is a subgraph of P2 n-g for n > 13, by Lemma 2.8, we

have (P3_2) > p(P31,). By Lemma 2.2, u(Ph%,0) > u(PILiE "),
According to Lemma. 2.1, u(T3) = p(P3nts) > p(P3n_s), then u(Tg) >

W(PEn_2) 2 H(PEyy) > n(PYE8.0) > p(PRIEAr ") = w(ry). ©
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