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ABSTRACT

We describe the global behavior of the nonnegative equilibrium points
of the difference equation

axn_p

Tpp1 = , n=0,1,..,

%
b+ec 'Ho Tn-(2i+1)
1=l

where k,p € N, parameters @, b, ¢ and initial conditions are nonnegative
real numbers.
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1. INTRODUCTION

The study of the nonlinear rational difference equations is quite chal-
lenging and interesting. So, many researchers have studied the behavior of
the solution of rational difference equations. For example see Refs. (1-19)].

Schinas et al. [5] studied the boundedness, the persistence, the attrac-
tivity and stability of the positive solutions of the difference equation

n—1
xn+1 = + CER
Zn

Hamza et al. [2] studied the asymptotic stability of the nonnegative

equilibrium point of the difference equation
Azny
_—
B+C l-Il Zp—2i
=

We (14] studied the global behavior of the nonnegative equilibrium points

of the difference equation

ZTn41 =
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Elsayed [9] investigated the qualitative behavior of the solution of the
difference equation

Tntl =

2
bx?,

T4l = QTp + —— 2.
CZp + dTp-1

Elabbasy et al. [7] investigated some qualitative behavior of the solutions

of the recursive sequence
QLn—k
- .
B+l zn-i
i=0
Our aim in this paper is to investigate the dynamics of the solution of
the difference equation

Tp4l =

aZTn—p

(1.1) xn+1 b , = 0, 1, .o

%
b+c 'Ho Tp_(2i41)
=

where k,p € N, parameters a,b, ¢ and initial conditions are nonnega-
tive real numbers. Also we obtained some results of some special cases of
Eq.(1.1).

2. PRELIMINARIES

Let I be some interval of real numbers and let f : I¥*! — I be a
continuously differentiable function. Then for every set of initial conditions
Tky T—(k+1), - To € I, the difference equation

(2.1) ZTnt1 = [ (Zny Tn-1, s Zn-k), 2 =0,1,...
[ ]

has a unique solution {zn},”_,.

Definition 1. An equilibrium point for Eq.(2.1) is a point T € I such that
zT=f(%,%,... 7).

Definition 2. A sequence {z,}o._, is said to be periodic with period p if
Tntp = Tn for alln > —k.

Definition 3. (i) The equilibrium point T of Egq.(2.1) is locally stable if
Jor every € > 0, there exists § > 0 such that for all x_k,T_(x—1),...,To € [
with [T_k — F| + |T—(k-1) — F| + ... + |£0 — F| < b, we have |z, — F| < ¢ for
alln > —k.

(i) The equilibrium point T of Eq.(2.1) is locally asymptotically stable if
T 4s locally stable solution of Eq.(2.1) and there exists v > 0, such that for
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allz g, T _(k-1),..., %0 € T with |T_s — :t:|+|:z:_(,c -1 - .1:|+ A|zo —F| < fy,
we have llm n T, = T.

(i) The ethbrzum point T of Eq.(2.1) is global attractor if for all

Z_ky T—(k~1)) ---» To € I, we have llm D Tn = .

(iv) The equilibrium point T of Eq (2 1) is globally asymptotically stable
if T is locally stable, and T is also a global attractor of Eq.(2.1).

(v) The equilibrium point T of Eq.(2.1) is unstable if T is not locally
stable.

The linearized equation associated with Eq.(2.1) is

(2.2) Ynt1 = z (a:, Ty ) Ynoiy n=0,1,...

i—'O
The characteristic equation associated with Eq.(2.2) is

N~ O ke
(2.3) AN 5o (BT T) AT =0,

imp IOn—i

Theorem 1. [19] Assume that f is a C? function and let T be an equilibrium
point of Eq.(2.1). Then the following statements are true.

(1) If all roots of Eq.(2.3) lie in open disk |\| < 1, then T is locally
asymptoticelly stable.

(i) If at least one root of Eq.(2.3) has absolute value greater than one,
then T is unstable.

3. DynaMiIcs oF EqQ.(1.1)

In this section, we investigate the dynamics of Eq.(1.1) under the as-
sumptions that all parameters are nonnegative real numbers, the initial
conditions are nonnegative real numbers and p, k are nonnegative integers.

The change of variables z, = (& ) yn reduces Eq.(1.1) to the difference
equation
(3'1) Yny1 = _"_;&E'——P_a n= 0: 11 axs

1+ [] yn—2it1)
=0

where v = 3 > 0. We can see that §, = 0 is always an equilibrium
point of Eq.(3.1). When v > 1, Eq.(3.1) also possesses the unique positive
equilibrium 7, = (y - 1)

Theorem 2. The following statements are true:
(}) If v < 1, then the eguilibrium point §, = 0 of Eq.(3.1) is locally
asymptotically stable,
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(%) If v > 1, then the equilibrium points §, =0 and Jp = (y — 1)*"]'-7 are
unstable.

Proof. The linearized equation associated with Eq.(3.1) about 7 is

g+ y

The characteristic equation associated with this equation is

k41
2k+2 7] 2 y2k+1=p 1 2k+1-p _
AZkH2 4 7———-( o (;, A% ) ) 'y———(l e X 0.

Then the linearized equation of Eq.(3.1) about the equilibrium point

'1']1 =0is
Znt1 — V2n—p =0, n=0,1,.

The characteristic equation of Eq.(3.1) about the equilibrium point 7; =

Ois
)\2k+2 _ 7)\2’64‘1—}’ = O_

So

A=0and A = »+/7.In view of Theorem 1:

If v < 1, then |A| < 1 for all roots and the equilibrium point 5; =0 is
locally asymptotically stable.

If v > 1, it follows that the equilibrium point %; = 0 is unstable.

The linearized equation of E q.(3.1) about the equilibrium point 3, =

1

(v — 1)™T becomes

k
1 1
Zn41 + (1 - :Y-) (Z Zp—(2i+1) — Zn—p) - ;zn—p =0, n=0,1,..

i=0
The characteristic equation of E q.(3.1) about the equilibrium point

To=(y-1)"Tis
1 k . 1
AZRHZ (1 - -) (Z A% — )P"““P) — ZAFHP o,
¥ Y

i=0
It is clear that this equation has a root in the interval (—oo, —1). Then
the equilibrium point Fp = (v — 1)"7'}"T is unstable.
Theorem 3. Assume thet v < 1, then the equilibrium point J; = 0 of
Eq.(3.1) is globally asymptotically stable.

0
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Proof. Let {yn}n’_(ox41) be & solution of Eq.(3.1). From Theorem 2 we
know that the equilibrium point 7; = 0 of Eq.(3.1) is locally asymptotically
stable. So it is sufficed to show that

lim y, = 0.
n—o0
Since vy
Ynt1 = & “F < YYn—p
1+ I—I(]yn-(2i+1)
1=l
‘We obtain

Yn+1 < YYn—p-
Then it can be written for s =0,1,...

Ys+1)+1 < 7 y—p,

Ys(p+1)+2 < 7s+ly—(p—l)1

Yspn+p+1 < 7" 0.
If y < 1, then 1lim Yy =0
and
lim y, =0.
n—oo
The proof is complete. a

Corollary 1. Assume that v = 1. Then every solution of Eq.(3.1) is
bounded.

Proof. Let {yn}n2_ (241 be a solution of Eq.(3.1). It follows from Eq.(3.1)
that oy
Ynt1 = "——kﬂ—— < Yn—p-
1+ 'Hn Yn—(2i+1)
=
Then in view of the proof of Theorem 3, we have for s =0, 1,...
Ys(p+1)+1 < Y—p»

Ys(p+1)+2 < Y—(p—1)»

Ys(p+1)+p+1 < Yo
So every solution of Eq.(3.1) is bounded from above by
A=max {y_p,Y—(p-1)» > ¥0s }- O

Corollary 2. Assume that any two consecutive initial conditions y—; (¢ =
0,1,...,p) of Eq.(3.1) are zero, then the following statements are true:
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(i) If 4 > 1, then every solution of Fgq.(3.1) is unbounded except zero.
(ii) If ¥ = 1, then Eq.(3.1) has periodic solutions of period (p+1).

Proof. (i) Let {yn}ne_ 241y be a solution of Eq.(3.1). It follows from
Eq.(3.1) and our assumption that

Yn+1 = YYn—p-
Then we get for s =0,1,...

Ys(p+1)+1 = 7a+ly—p)

Ys(p+1)+2 = 'Ys+ly—(p—l)s

Ys(p+1)+p+1 = 'Ys+ly0~
K~ > 1, then al—i.%lo 7°*+! = 0o and every solution of Eq.(3.1) is unbounded
except zero.
(ii) If v = 1, from (i) it is obvious that Eq.(3.1) has periodic solutions
of period (p+1). 0

4. NUMERICAL RESULTS

In this section, we give a few numerical results for some special values
of the parameters.

Example 1. Let yp4g = —322=2— n =0,1,..,49 end p = 3,k =
1+i.l;loyn—(2i+l)

2,7y=03,y_5 = 6,y_4 = 5,9-3 = 2,y—2 = 1,y—1 = 4,y0 = 3. Then we

have the following results for Theorem 3:

n YUn N Yn
1 0,0122448979 33 7,6158838.10~7
14  0,0004825164 41 6,8542954.10°8
23 0,0026557092 46 3,1657873.10~8
28  0,0006211050 50 9,4973620.10~°
Example 2. Let yp4) = — 22— n =0,1,,..,49 and p = 3,k =

1+‘.l;[° Yn—(2i41)
2,7=5,y-5 =7,9¥-4 =6,y_3=1,y_2 = 3,y-1 = 2,y0 = 4. Then we have
the following results which show g, = 0 is unstable.

n Yn n Yn

1 0, 333333333 27 43732,0390

14  0,002004385 34 2, 40140.1010
19 1749, 286550 43 2,73325.107
21  0,0000081014 50 6,14759.10~16
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Example 3. Let ypy1 = — 222 n=0,1,..,.49 andp =3, v =

l+‘£[°vu-(zi+1)
Lk=3y-7=1y-6=2y-5=0Ly_4=02y-3=4y2=5y1=
0.3,50 = 6. Then we have the following results from Corollory 1:

n Yn n Yn
1 3,571428 25 1,328736
11 0,135316 34 0,017096
17 1,413484 44 1,677136
20 1, 685496 50  0,017040
Example 4. Let yp41 = — 22— n =0,1,..,49 and p = 3,7 =

1+‘I;onn—(2i+l)
2,k=2,y_5 =8,y-4 = 3,9y-3 =2,y—2 = 3,y—1 = 0,50 = 0. Then we have
the following results from Corollary 2 — (2):

n Un n yn
3 0 24 0
6 12 34 1536
13 32 39 0
21 128 50 24576
Example 5. Let ypyg = — 22—, n = 0,1,...,49 and p = 3,7 =

l+.];[oyn—(2|'+l)
1Lk=2,y 5 =3,y-4=4,y-3=0,y—2 =0,y_; = 2,y0 = 1. Then we have
the following results from Corollary 2 — (¥i):

N Yn T Yn
1 0 5 0
2 0 6 0
3 2 7 2
4 1 8 1
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