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Abstract

A survivable path (W, P) between a pair of vertices z;,z; in undirected
simple graph G is an ordered pair of edge-disjoint simple paths consisting of
a working path W = z;...z; and a protection path P = z;...z;. An optimal
set of survivable paths in graph G corresponds to a set of mesh-restored
lightpaths defined on an optical network that minimizes the number of used
optical channels. In this paper we present new properties of the working
paths, which are contained in an optimal set of survivable paths in G.
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1 Introduction

A survivable path (W, P) between a pair of vertices z;,z; in undirected
simple graph G is an ordered pair of edge-disjoint simple paths consisting
of a working path W = z;...z; and a protection path P = z;...z;. Figure 1
illustrates a survivable path (W, P) = (z1z2z32¢, T124T576) in G.

X1 X6

Figure 1: Survivable path between vertices z,, zs

A survivable path in G models a mesh-restored lightpath in the optical
network, which has a working route and a diversely routed backup route [3-
4,7). Each edge in G consists of an infinite number of channels. A working
path uses one dedicated channel on every edge of its path. A protection
path also uses one channel on every edge of its path, but in addition it can
share channels in such a manner as to provide guaranteed recovery upon the
failure of any single edge [1]. That is, a protection path can share a channel
with other protection paths if the corresponding working paths are pairwise
edge-disjoint. An optimal set of survivable paths minimizes the total
number of used channels over all sets of survivable paths defined between
identical pairs of vertices in G. The properties of optimal set of survival
paths were initially studied in [2]. The problem of finding an optimal set
of survivable paths corresponds to the variation of optimal routing in a
telecommunication network, which is NP-Complete [3-6).

Formally the optimal set of survivable paths can be defined as fol-
lows. Let ¢(S) denote the total number of used channels by the set of
survivable paths S in G. Let (W, P) = (z;(k)..z;(k), z:(k)...z;(k)) be
k’th survivable path in S, with working path W = z;..z; and edge-
disjoint protection path P = z;..z; between vertices z; and z;. Let
S’ be any other set of survivable paths in G (i.e., S’ # ), such that
if (W', P') = (zi(k)...2;(k), zi(k)...z}(k)) € S’ then z{(k) = =z;(k), and
z};(k) = z;(k). If for every such S’ ¢(S) < ¢(S’) then S is optimal.

Based on the above definition, the properties of working and protection
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paths in an optimal set of survivable paths were identified in [2]. In this
paper, we focus on the working paths only. In Section 2 we generalize one
key property from [2] and present several new properties for the working
paths based on a 2-edge connected graph. In addition, in Section 3 we
present several new properties of the working paths based on a complete
graph.

2 Survivable Paths in 2-edge-connected
Graph

We call two survivable paths distinct if they are not defined between the
same pair of end-vertices. Figure 2 illustrates two distinct survivable paths
defined on G with four vertices - first one defined between end-vertices
z1,%3, and second one defined between end-vertices z;,z4. Working paths
are denoted by thick arrows, and protection paths are denoted by thin ar-
rows. So, first survivable path is (W1, P1) = (z1(1)z3(1), z1(1)z2(1)z3(1)),
and second survivable path is (W3, P2) = (z1(2)z4(2), 21(2)z2(2)z4(2)) in
Figure 2. Note, both survivable paths here can share a channel on edge
I1%T9.

X2

X3 X4
W; W,

Xi

Figure 2: Example of two distinct survivable paths

For convenience we introduce the following notation for paths. Path
TiTiy)...T; denotes a path at least two in length between vertrices z; and
z;. In addition, if path x;z; is allowed between vertices z; and x; then path
Z;...xr; denotes a path at least one in length between them. The following
is known.

Theorem 2.1 [2] Let G be a 2-edge-connected graph with every survivable

path defined between adjacent vertices and at most one survivable path de-
fined for any pair of vertices. Then there exists an optimal set of survivable
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paths that contains every shortest working path.
Our first result generalizes Theorem 2.1 as follows.

Theorem 2.2 Let G be a 2-edge-connected graph with all m survivable
paths defined between k (m>k) pairs of adjacent vertices. Then there ex-
ists an optimal set of survivable paths that contains k pairwise distinct and
shortest working paths.

Proof. Consider an optimal set S of survivable paths in G. Suppose
that S contains a survivable path (W,P) such that W = z,2041...25 and
P = gz, ,,...7p, but it does not contain a survivable path with either a
working or protection path of type z,zs, for some pair of vertices z,,zp,
(za#zs)- Then S must also contain at least one survivable path (W?, P!)
such that Wl = z....z,7p...z4 and P! = z....z4, where r.#z4 and P!
shares at least one channel with P. Otherwise, we could obtain a better
set of survivable paths S’ by replacing W with z,z - a contradiction. So,
we can use the following transformation of S (i.e., Transformation A, which
results in S—S’) that does not increase the number of used channels. We
now have two cases two consider.

Case 1. P! contains an edge with a channel that is not shared with any
other channel.

In this case we replace P! with P? = z.z4 and then swap P? with W!
generating survivable path (P2, W!). These two steps retain the number
of used channels with the assumption that protection path W! does not
share any channels - a worst case scenario. In the next step we replace
W with z,z, and P with path z,...z.z4...2p generating survivable path
(b, Ta---TcTa...xp) = (W3, P3). By replacing W with z,xz; we decrease
the number of used channels by at least one. Furthermore, P2 requires only
one additional channel because it can share all its channels with other pro-
tection paths, except for a channel on z.z4. The remaining channels can
be shared as follows. P2 shares a channel on every edge of its two subpaths
Zg...Zc and ZT4...zp with W of survivable path (P2, W?!). This happens
because W3 = z,x is edge-disjoint with P2. Thus Case 1 transforms S
into S’, where S’ represents an optimal set of survivable paths (i.e., S’ does
not use more channels than S).

Case 2. All channels of P! are shared with some other channels.

In this case we replace P! with P2 = z.z4 that adds one channel because
we do not consider P? to be shared - a worst case scenario. Next we swap
W1 with P? generating the survivable path (P?, W!). This second step re-
tains the number of used channels from the first step with the assumption
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that protection path W! does not share any channels. In the third step
we replace W with z,z, and P with path z,...x.P'z4...T; generating the
survivable path (22, z4...2c P xq...7) = (W3, P?). By replacing W with
z,7p we decrease the number of used channels by at least one. Further-
more, P does not require additional channels because it can share all its
channels with other protection paths as follows.

(1) P® shares a channel on every edge of its z,..z. with W' of
survivable path (P2, W!). This happens because W3 = z,z,
is edge-disjoint with P2.

(2) P3 shares a channel on every edge of its P! with other survivable
paths. This happens because W3 is a subpath of W! (and the
initial survivable path (W?, P!) shared all channels on P!).

(3) P3 shares a channel on every edge of its z4...zy with W' of
survivable path (P2, W?!). This happens because W3 = z,z,
is edge-disjoint with P2,

So, Case 2 also transforms S into S, where S’ represents an optimal set of
survivable paths (i.e., 8’ does not use more channels than S). Furthermore
in both cases we did not replace any working path of type z;z; with type
Z;Tiy1...Tj, but instead we generated the new distinct working path z,zs.
Consequently, Transformation A increases the number of distinct working
paths of type z;z; and does not increase the number of used channels in
S,

Consider now S such that for some adjacent vertices z,, z; survivable
path (W,P) = (2,Zo+1.-Zb, Tas) exists, but there is no working path
z,zy. We can use the following transformation of S (i.e., Transformation
B, which results in $—5”) that does not increase the number of used chan-
nels. If no other protection path in G shares channel on edge (., z5) with
P then by swapping W with P we obtain S” with no more used channels.
Consider then P that shares a channel on (z,,z3) with at least one other
protection path. In this case we first swap W with P that produces a
feasible solution containing working path W’ = z,z, and new protection
path P/ = z,2441...25. Such a swap might increase the number of used
channels by at most one. That is, path P’ in the worst case will require
exactly the same number of channels as original path W, and path W' will
add one used channel. We now substitute every protection path of form
P;j = x;...zqTp...z; that originally shared channel on edge (z,,zp) with P,
with protection path F; = x;..24%g+1..-%b...2; creating (Wi;, Pj;), where
subpath z,Zg41...x6 = W. We observe that Fj; cannot violate diversity
with W;;, because otherwise P;; couldn’t be shared with P initially. Since
we divert all such shared paths then the number of used channels decreases
by one (i.e., channel on z,z5 will no longer be needed). Although P;; might
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contain cycle(s), but it doesn’t violate either channel sharing or diversity
with working path W;;. In addition, it can be easily transformed to a
simple protection path by Pj; = z;...zy...2s..7;—P";; = T;...Z,...z;, that
preserves the channel sharing as well as diversity with W;;. So, Trans-
formation B transforms S into S”, where S” represents an optimal set of
survivable paths (i.e., S” does not use more channels than ). Furthermore,
we did not replace any working path of type z;x; with type z;zi;,...;,
but instead we generated new distinct working path z,z,. Consequently,
Transformation B increases the number of distinct working paths of type
z;z; and does not increase the number of used channels in S”.

Suppose now that S contains a survivable path (W, P) such that W =
ZgTo+1---Th, but it does not contain a survivable path with a working path
of type zaxp. Then we can apply either Transformation A or B. By us-
ing Transformation A we generate an optimal set of survivable paths S’
with more distinct working paths of type z;x;. By using Transformation B
we generate an optimal set of survivable paths S” also with more distinct
working paths of type z;z;. Hence, by induction there exists an optimal
set of survivable paths S* with k distinct working paths of type z;z;. O

Note, based on the proof of Theorem 2.2 establishing distinct direct working
paths for adjacent vertices does not affect blocking of the other survivable
paths. So, Theorem 2.2 has the same applicability in case of a finite number
of channels on the edges.

A 1-shortest path between two vertices z; and z; in G is defined as a
shortest path between z; and z;. Furthermore, let k+1-shortest path be-
tween z; and z; be a shortest path of length greater than k-shortest path
between z; and z;. Then we can present the following results.

Theorem 2.3 Let G be a 2-edge-connected graph with m survivable paths
defined between pairs of adjacent vertices. Then there exists an optimal set
of survivable paths that contains m working paths, each of either type z;x;
or 2-shortest working path.

Proof: Suppose that an optimal set of survivable paths S contains a k-
shortest working path W between two adjacent end-vertices z;, z; in G,
where k& > 2. Let k' be the length of W. Then, we can replace (W, P) with
(zizj, P'), where P’ represents 2-shortest protection path. The number
of channels used by (ziz;, P’) is not greater than the number of channels
used by W. This is because the number of channels used by (z;z;, P’) is
at most 1 + (k' — 1) = k’ (i.e., one channel associated with z;z;, and by
definition at most k' — 1 channels associated with P’), and by definition a
k-shortest working path W uses k' channels, where k¥’ > k > 3 is satisfied.
So, we transform S—S’, where ' is also optimal but with fewer k-shortest

366



working paths for £ > 2. Since there are m survivable paths defined for
pairs of adjacent vertices in G, then by induction there exists an optimal
set of survivable paths S* consisting of m; I-shortest and my 2-shortest
working paths, where m; + my =m. O

Theorem 2.4 Let S be an optimal set of survivable paths in a 2-edge-
connected graph G. Let there be at least two edge-disjoint 2-shortest paths
between vertices v; and v; in G. Let k,q be given integers, where k > 3,q >
3. If S contains survivable path (W,P) between two adjacent end-vertices v;
and v in G such that W is a k-shortest path then S does not contain other
survivable path (W’,P’) such that W’ is a g-shortest path between vertices
v; and v;.

Proof: Suppose S contains W, W’ such that W is a k — shortest working
path and W’ is a ¢ — shortest working path between two adjacent end-
vertices v; and v; in G, for k > 3,9 > 3. Then, we can replace (W, P) with
(zszj, P%), where P? represents 2-shortest protection path. The number
of channels used by (z;z;, P?) is not greater than the number of channels
used by W. Furthermore, P? cannot share a channel with any other pro-
tection path. Otherwise, the number of used channels by (z;z;, P?) would
be less than the number of used channels by W - a contradiction. So, we
could subsequently replace (W', P’) with (W3, P3), where P3 = P2 and
W3 is 2-shortest path. So, P2 and P® would share all their channels. This
in turn would mean that the number of used channels would decrease - a
" contradiction. a

Theorem 2.5 Let S be an optimal set of survivable paths in a 2-edge-
connected graph G. Let k be given integer, where k > 3. If S contains
survivable path (W,P) between two adjacent end-vertices v; and v; in G
such that W is a k-shortest path then W is a 3-shortest path.

Proof: Suppose W is k — shortest path, for & > 4. Then, we can replace
(W, P) with (z;z;, P'), where P’ represents 2-shortest protection path. The
number of channels used by (x;z;, P’) is now less than the number of chan-
nels used by W - a contradiction. O

Note, Theorems 2.3-2.5 do not require all survivable paths to be defined
between adjacent end-vertices in G, so in that sense it’s generic. This in
turn has real implication on establishing/routing the lightpaths in the op-
tical networks [7]. In particular, if the optical network is lightly loaded
and the blocking of the lightpaths is not an issue, we can establish a priori
direct working lightpath routes between adjacent nodes based on Theorems
2.3-2.5. Based on the above results we also give the following statement.
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Conjecture Let G be a 2-edge-connected graph with a subset of m surviv-
able paths defined for k (m>k) pairs of adjacent vertices. Let k'>k. Then
there ezists an optimal set of survivable paths that contains k’ working paths
of type z;x; and remaining m-k’ paths being 2-shortest working paths.

Finally, we note that the above conjecture if proven true would have
significant importance in the real-world network design and optimization.
It would allow to establish a priori direct distinct working routes for the
lightpaths between adjacent nodes for arbitrary set of lightpath demands.
This in turn could save a critical computational time during the optical
network design and optimization.

3 Survivable Paths in Complete Graph

Based on the results from Section 2 we now identify the properties of the
working paths in an optimal set of survivable paths in complete graph K.

Corollary 3.1 Let K be a complete graph. Then there exists an optimal
set of survivable paths defined in K that consists only from 1-shortest and
2-shortest working paths.

Proof: Follows directly from Theorem 2.3. O

Note, I-shortest path in K is of length 1, and 2-shortest path in K is
of length 2. Consequently, we have the following.

Theorem 3.2 Let .S be an optimal set of survivable paths defined between
m pairs of vertices in K. Then the total number of used channels C(S) by
working paths in S is C(S) < 2|S| +m.

Proof: By Theorems 2.4 and 2.5 there is at most one working path of
length 3 for any distinct pair of vertices in K. This contributes 3n to
C(S), m 2 n 2 0. By Corollary 3.1, all remaining working paths |S| — n
are of length at most 2, which contribute at most 2(|S| — n) to C(S). So,
C(S) <3n+2|S|-2n=2|S|+n L 2|S|+m. O

Theorem 3.3 Let S be an optimal set of survivable paths defined between
m pairs of vertices in K. Then there ezists an optimal set S’ of surviv-
able paths with identical end-vertices in K, where |S| = |S’| and the total
number of used channels C(S') by working paths in S’ is C(S’') < 2|S'|—m.
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Proof: By Theorem 2.2 there is S/, which contains at least one working
path of length 1 for any distinct pair of vertices in K. This contributes
m to C(S’), for m distinct working paths. By Corollary 3.1, all remaining
working paths are of length at most 2, which contribute at most 2(]$’| —m)
to C(S’). So, C(8') < m +2|8'| - 2m =2|5'| - m. O

4 Conclusion

In this paper we presented several new properties of the working paths,
which are contained in an optimal set of survivable paths in G. These
properties were defined for the edges in G with the infinite capacities in
terms of the number of channels. In particular, the new property corre-
sponding to Theorem 2.2 would have the same applicability in case of a
finite number of channels on the edges, because establishing direct working
paths for adjacent vertices does not affect blocking of the other survivable
paths. The other properties are also applicable in this case, if G is lightly
loaded and the blocking of the survivable paths is not an issue. There-
fore, these new properties should be attractive for the real-world optical
network design problems, where the subset of direct working paths can be
established in advance, saving the computational time of the optimizations.
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