SIGN-IMBALANCE OF ALTERNATING PERMUTATIONS
AVOIDING A PATTERN OF LENGTH THREE

YEH-JONG PAN AND CHIEN-TAI TING

ABSTRACT. For a set P of permutations, the sign-imbalance of P is
the difference between the numbers of even and odd permutations in
P. In this paper we determine the sign-imbalances of two classes of al-
ternating permutations, one is the alternating permutations avoiding
a pattern of length three and the other is the alternating permuta-
tions of genus 0. The sign-imbalance of the former involves Catalan
and Fine numbers, and that of the latter is always £1. Meanwhile,
we give a simpler proof of Dulucq and Simion’s result on the number
of alternating permutations of genus 0.

1. INTRODUCTION

Let S, be the symmetric group of all permutations on [n] = {1,...,n}.
A permutation 0 = 0y ---0,, € &, is alternating if 61 > 02 < 03 > 04 <
-+ +. These permutations (starting with a descent) are also known as “down-
up” permutations, while those “up-down” permutations (starting with an
ascent) are called reverse alternating. Let Alt,, denote the set of alternating
permutations in &,,,

For a permutation o, the sign of o, denoted by sign(s), is defined by
sign(o) = (=1)™(), where inv(0) = |{(0:,0;) : i < j and 0; > 0;}| is the
number of énversions of o.

For a subset P C &,, the sign-imbalance Z(P) of P is defined hy

P) = Z sign(o).
o€P
It is obvious that Z(&,) = 0 for n > 2. Also it is not hard to see that
Z(Alt,;) = £1 or 0 (e.g., by the following sign-reversing involution on Alt,,:
for a permutation o € Alt,, find the least integer i such that 2i — 1 and
2i are not adjacent in o, then interchange 2i — 1 and 2i). In this paper
we shall consider two classes of Alt,,, the alternating permutations avoiding
each pattern of length three and the alternating permutations of genus 0
(see section 1.2. for definition). Meanwhile, we shall give a simpler proof of
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Dulucg-Simion’s result on the number of alternating permutations of genus
0.

1.1. Alternating permutations avoiding a pattern of length three.
For a permutation w = w; ---w; € &; (t < n), we say that o contains an
w-pattern if there are indices 4; < iz < -++ < ; such that 0;; < oy, if and
only if w; < wg. Otherwise, o is w-avoiding. For a subset P C &y, let P(w)
denote the set of w-avoiding permutations in P.

Simlon and Schmidt showed in their seminal paper [7] that |G, (w)| =
Cn = +1 (2“) the Catalan number, for each w € G3. Later, Mansour
(6] proved that the cardinality of Alt,(w) also coincides with the Catalan
number (with indices shifted) for each w € G3. As for sign-imbalance,
Simion-Schmidt [7] also determined the sign-imbalance of the set of 123-
avoiding permutations in &,,, namely,

Cn-1 ifnodd,
I(6n(123)) = { 0 = if n even.

The first main result of this paper is to completely determine the sign-
imbalances of Alt,(w) for each w € G3. By establishing a bijection be-
tween Alt,,(132) and binary trees, we first determine Z(Alt,,(132)) in The-
~ orems 2.1 by a parity-reversing involution on binary trees. The sign-

imbalances Z(Alt,(213)), Z(Alt,(231)), and Z(Alt,(312)) can be derived
from Z(Alt,(132)) and we shall show them in Theorem 3.1-3.3. Moreover,
Z(Alt,,(123)) can be derived from Theorem 3.4, and a further refinement of
Z(Alt,(321)) will be discussed in S.-P. Eu, T.-S. Fu, Y.-J. Pan and C.-T.
Ting [4].

We make a brief list of Z(Alt,(w)) for each w € G3 in the following
table. It suggests that the result involves only Catalan numbers C, and
Fine numbers F,,. The Catalan numbers C, have the generating func-
tion C(z) := }¥,59Cnz™ = 1=yI=8  44d the Fine numbers {Fn}ao =
{1,0,1,2,6,18,---} can be defined by the generating function F(z) =

D on>0 Foz® = 1 l_ } :" Both are ubiquitous in enumerative combina-

torics. We refcr readers to Deutsch and Shapiro’s survey [2] and Stanley
[8] for more information.

ZAlty(oa)\n J O 1 2 3 4 5 6 7 8 9 10 11 12
Z(Alty, (123)) 11 -1 0 1 -1 0 0o -2 2 [} 0 5 Catalan
Z(Aly, (132)) 11 -1 0 0 1 -1 2 -2 6 -6 18 -18 Finec
Z(Alty, (213)) 11 -1 1 0 2 -1 5 -2 14 <6 42 -18 | Catalan, Fine
Z(Alt, (231)) 1 1 1 0 2 1 -5 -2 14 6 -42 -18 132 | Catalan, Fine
I(Aty (312)) 11 -1 -1 2 2 -5 -5 14 14 -42 -42 132 Catalan
Z(Alt,, (321)) 1 1 -1 0 0 -1 1 0 0 2 -2 0 0 Catalan

For example, from the table we have
T(Altg,_1(231)) = (=1)* " Fpy and  Z(Alt,(231)) = (-1)"C,.
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1.2. Alternating permutations of genus zero. A hypermap of size n
is an ordered pair of permutations of &, such that the group they generate
is transitive on [n]. Let 2(c) be the number of cycles of a permutation o.
Given a hypermap (0, a) € &, X G,,, the genus g of (0, @) is defined by the
relation
2(0) +z(a) + 2(a" o) =n +1—2g.

Based on this notion, Dulucq-Simion (3] considered the genus g(a) of a
permutation o € &, with o restricted to the n-cycle 2...n1 (in cycle
notation ¢ = (12 ... n)), namely,

z(@)+z2(a” - (12...n)) =n+1-2¢(a).
For example, if @ = 23154 (in cycle notation & = (123)(45)), then
oo = (14)(2)(3)(5), and hence g(a) = 0. They proved that the number
of alternating (resp. reverse alternating) permutations of genus zero coin-
cides with the small (resp. large) Schréder numbers. The large Schrider
numbers {Rn}n>0 = {1,2,6,22,90,...} have the ordinary generating func-
tion —‘—"'m and the small Schroder numbers are defined by S = 1
andS,,-Rn/2forn>1 ie. {Sn}n>0=1{1,1,3,11,45,...}.

Let D,(,o) and L{(o) denote the sets of alternating and reverse alternating
permutations of genus zero in &, respectively. By encoding a permuta-
tion of genus zero by a word in an alphabet of four letters, Dulucg-Simion
[3] obtained a system of grammars for the language formed by the words
corresponding to the permutations in D and UL® for n > 0, from which
they derived the cardinalities of D and UP. Meanwhile, we shall present
a simpler proof of this result by means of generating functions (see Theo-
rem 4.4). The second main result of this paper is to determme the sign-

imbalance of D(O) and U, (0), namely,
IO =Z(DX, ) =(-1)* and IUD)=0.

1.3. Organization of the paper. The rest of this paper is organized
as follows. Section 2 is devoted to Z(Alt,(132)). Section 3 deals with
Z(Alt,(w)) for other patterns w € G3 except for 321. The sign-imbalance
of alternating permutations of genus zero will be discussed in section 4.

Though the result may be solved algebraically, our exposition here is
deliberately bijective. The basic strategy is to translate the problem to
trees and apply a sign-reversing involution.

2. SIGN-IMBALANCE OF ALT,(132)

In this section, we shall determine the sign-imbalance of the set Alt,,(132)
and obtain the following theorem.
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Theorem 2.1. For n > 1, the following identities hold.

(i) Z(Altzn_1(132)) = Fn_y,
(ii) Z(Altzn(132)) = —I(Alts,—1(132)).

To prove Theorem 2.1 we first translate the problem to binary trees. Let
B, be the set of binary trees with n vertices. It is known that |B,| = C,.
For a binary tree T € B, the leftmost path of T is defined by the maximal
sequence vi, ...,V of vertices of T such that v; is the root and v; is the
left child of v;—1, for 2 < i < k. Let Impb(T") denote the number of vertices
in the leftmost path of T. Note that Impb(T") = 1 if the root has no left child.

Observe that |Altan—1(132)] = Cp, (see [6, Theorem 2.2]). Our approach
is to establish a bijection I' between Alto,—1(132) and B, such that for
a o € Alta,—1(132), the sign of o is opposite to the parity of Impb(I'(c)).
Then we can determine the sign-imbalance of Alta,—1(132) by an involution
VU on B, that reverses the parity of Impb(T') if T is a binary tree except for
the fixed points of ¥.

Let ' be a mapping from Alty,_1(132) to B, defined inductively as fol-
lows. Given a 0 = 0y+-02p—1 € Altap,—1(132), we factorize 0 as 0 =
01p1 - Pn—1, Where the subword p; = 09;09;4; consists of an adjacent pair
of elements, for 1 < i < n — 1. For convenience, denote p; = (024, 02i41)
and let pp = (0,01). We shall associate ¢ with a binary tree I'(0) € B,
with vertices labeled by po,p1,-..,Pn—1 and write I'(¢) = I'(pop1 - - - Pn-1).
Suppose that p; (0 < j < n— 1) is the subword which contains the greatest
element of 0. Then take p; as the root of I'(c) and put I'(po - - - pj—1) and
T(pjt1 -+ Pn-1) s the left subtree and the right subtree, respectively (see
Example 2.2).

Example 2.2. Take a permutation ¢ = 9810711453612 € Alt;;(132),
and factorize o as o = po---ps = (0,9)(8,10)(7,11)(4,5)(3,6)(1,2). The
corresponding tree I'(o), along with the vertex-labeling, is shown in Figure

1.
(7.11)
oy o

09 45 (1,2

FIGURE 1. The binary tree corresponding to 0 =9810711453612.
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Proposition 2.3. I is a bijection between Altgn_1(132) and B,, such that o
permutation 0 = 01 -+ Oon-) € Altzn—1(132) is carried to a tree ['(o) € B,
with Impb(I'(0)) = 2n — ;.

Proof. To show that I' is a bijection, it remains to find I'~!. Given a binary
tree T € B,, we shall recover the word I'"}(T') by defining inductively a
vertex-labeling of T starting with the set S = {1,...,2n — 1}. Let T} and
T, be the right and left subtrees of the root of T, respectively. If T} contains
k vertices (possibly empty), then we label T with S; which consists of the
least 2k elements in S, label the root of T" by the pair (z,y), where z is the
least element and y is the greatest element in S — S;, and label 7% with
S = 8§ — 51 — {z,y}. Note that |Ss| is odd, and inductively the leftmost
vertex of T' will be labeled by a single element (and then we attach O to the
left).

Observe that whenever Impb(T’) = ¢ the elements 2n—1,2n—2,...,2n—t
of o appear in the leftmost path of T' accordingly, and the last vertex of
this path is labeled by (0,0;), where oy = 2n — ¢t. The second assertion
follows. O

With Proposition 2.3, the following lemma leads to the fact that the sign
of o is opposite to the parity of Impb(I'(c)).

Lemma 2.4. For every ¢ = 01---02n—1 € Alty,~1(132), the statistic
inv(a) has the opposite parity of 0.

Proof. For 1 < i <n—1, let p; = (02i,02i+1) be the ith ascent of o. For
each p; and 2i 41 < j < 2n — 1, we observe that 69;41 > o; if and only if
09; > 0 since o is 132-avoiding. It follows that each p; contributes even
number of inversions to inv(c), and the parity of inv(s) depends on the
number of inversions due to o;, which is equal to o7 — 1. 0

It is known that the binary trees T € B,, can be transformed into plane
trees G with n edges such that the degree of root of G equals Impb(T)
(similar to leftmost child next right sibling, but here we use rightmost child
next left sibling, see Figure 2). Moreover, among many other objects, the
nth Fine number F}, counts the number of plane trees with n edges where
the root is of even degree (e.g., see [2]). Thus F,, counts the number of
binary trees T € B,, with even Impb(T).

For a vertex = of a rooted tree T, let 7(z) denote the subtree of T
rooted at x. Before proceeding the proof of Theorem 2.1, we shall define an
involution ¥ on B, such that it serves the needs of parity-reversing. Given
a T € B,, we construct ¥(T) from T according to Impb(T') as follows.

(i) Impb(T') is even. Let u and v be the left and right children of the
root of T, respectively. Let = and y be the left and right children
of u, respectively. The tree U(T) is constructed from T as follows.
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FIGURE 2. A binary-tree representation for plane trees.

Separate the subtrees 7(v), 7(z) and 7(y) from T', and then change
u to be the right child of the root. Attach 7(y) and 7(v) to v as
the left and right subtrees of u, and attach 7(z) to the root as the
left subtree of the root (see Figure 3).

(ii) Impb(T) is odd. If the root has no right child, then let ¥(T) =T
(i-e., T is a fixed point), otherwise ¥(T') is constructed by reversing
the operation using in (i).

FIGURE 3. An example for the the map ¥.

Let F,, denote the set of fixed points of the requested involution ¥, namely,
Fn = {T € B, : Impb(T) is odd, and the root has no right child}.
Lemma 2.5. Forn > 1, we have
|Fal = Fa-1.

Proof. Given a T € F,, it is easy to see that T is in one-to-one correspon-
dence to the tree T’ € B,,_; with even Impb(T"”), where T” is obtained from
T with the root vertex removed. The assertion follows. (]

We remark that Theorem 2.1.(i) is essentially proved by the following bi-
jective result.

Proposition 2.6. ¥ is an involution on the set B, such that

(i) Fn is the set of fired points, and
(i) Impb(T(T)) has the opposite parity of Impb(T) if T € B, — Fn.

Proof. It is a routine to check that ¥ is an involution on B,. The as-
sertion (i) is trivial by the definition of ¥. For a T € B, — F,, we
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have Impb(¥(T)) = Impb(T) — 1 if Impb(T) is even, and Impb(¥(T)) =
Impb(T') + 1 if Impb(T’) is odd. The proof is completed. 0O

Now we are able to evaluate the sign-imbalance of the set Alt, (132).
Proof of Theorem 2.1. (i) For the case of odd length, we have

I(Altzn_1(132)) = Z (_l)inv(a)
0€AI2—1(132)
= - Z (=1)'mPbT)  (by Prop. 2.3 and Lemma 2.4)
TEBn

= - Z (=1)'™Po(T)  (by Prop. 2.6)
TeF,
= Fn-—l-

(ii) For the case of even length, given a o = 01 :--02, € Alt2,(132),
observe that o2, = 1, otherwise there will be a 132-pattern (1, o2n—1,02,) in
0. There is an immediate bijection between Alta,(132) and Altg,_;(132) for
which o corresponds to the permutation w = w; -+ wap—1 € Alt2,—1(132),
where w; = 0; — 1 for 1 <7 < 2n—1. Note that o has the opposite parity of
w since inv(o) = inv(w) +2n — 1. Hence Z(Altg,(132)) = —Z(Alto,-1(132)).
The proof is completed. 0

3. SIGN-IMBALANCE OF ALT,(w) FOR THE OTHER PATTERNS w OF
LENGTH THREE

In this section, we derive the sign-imbalance of the set Alt,(w), for w €
{213,231, 312,123}.

Theorem 3.1. For n > 1, the following identities hold.

(i) Z(Altn(213)) = —F,,_,,
(ii) Z(Altzn—1(213)) = C,.

Proof. (i) Under the operations of complement and reverse, there is an im-
mediate bijection between Alts,(213) and Alty,(132). Namely, to each w =
Wy -wen € Alta,(213) there corresponds a ¢ = gy «--02n € Alt2,(132),
where 0; = 2n+ 1 —wap41-i (1 < i < 2n). Moreover, inv(o) = inv(w) since
the pair (0}, 0;) is an inversion of ¢ if and only if the pair (won41-5, Wan+1—i)
is an inversion of w. Hence Z(Alt2,(213)) = Z(Alts,(132)) = —F,,—;.

(ii) For every ¢ = 01 ---02,—1 € Alts,—1(213), we factorize o as ¢ =
O1P1- - - Pn—1, Where the subword p; = (02:,02i41) is the ith ascent. For
cach p; and 1 < 5 < 2i — 1, observe that o; > oy; if and only if o; > g2i41
since o is 213-avoiding. It follows that each p; contributes even num-
ber of inversions to inv(o). Hence inv(c) is even, and Z(Alta,_;1(213)) =
|Alton_1(213))| = Cp,.
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Theorem 3.2. Forn > 1, the following identities hold.

(i) Z(Altgn_1(231)) = (-1)*"1F,_,,
(i) Z(Alt2n(231)) = (=1)"Ch.

Proof. (i) Under the operations of reverse, there is an immediate bijection
between Altg,,—1(231) and Alto,,—1(132). Namely, toeachw =w; -+ *wan—1 €
Altg,—1(231) there corresponds a ¢ = @y -+ 0ap—1 € Altap—1(132), where
i = wan—;i (1 <i < 2n —1). Moreover, inv(c) = (**;") — inv(w) since for
i < j, 0; > 0; if and only if won—;j < wan—i. It follows that inv(c) has the
same parity of inv(w) if n is odd, and has the opposite parity of inv(w) if n is
even. Hence Z(Alto,-1(231)) = (=1)""1Z(Alt2,—1(132)) = (-1)*"1F,_;.
(ii) For every o = 01 - - - 025 € Alt,,(231), we factorize o as 0 = g1 -+ ¢n,
where the subword ¢; = (02i~1,02:) is the ith descent. For each ¢; and
j < 2i — 2, we observe that o; > 09— if and only if 0; > 09; since o is
231-avoiding. It follows that each g;, along with the inversion of g; itself,
contributes an odd number of inversions to inv(g). Hence inv(o) has the
same parity of n, and Z(Alt2,(231)) = (-1)?|Alt2,(231))| = (-1)*C,. O

Theorem 3.3. For n > 1, the following identities hold.

(i) Z(Altzn_1(312)) = (=1)""'Cp-1,
(i) Z(Altsn(312)) = (~1)"Ch.

Proof. (i) Under the operations of reverse, there is an immediate bijec-
tion between the two sets Alta,—1(312) and Alty,~1(213). Namely, to each
W = wy- - wo—1 € Altg,_1(312) there corresponds a ¢ = 0+ 02p-1 €
Alta,—1(213), where 0; = won—; (1 < i < 2n — 1). Moreover, inv(o) =

22-1) — inv(w) since for i < j, 0; > 0; if and only if won_j < wan—i. It
follows that inv(c) has the same parity of inv(w) if n is odd, and has the
opposite parity of inv(w) if n is even. Hence

T(Altz,-1(312)) = (-1)""1Z(Altz2n—1(213)) = (=1)*"'Cp-1.

(ii) For every 0 = 01-+- 02,41 € Alt2,41(312), we observe that the
greatest element of o is gop41 = 2n + 1 (otherwise there will be a 312-
pattern (2n + 1,09n,02n+1) in ¢). Then removing the element o541 from
o results in a member o’ € Altg,(312) with inv(c’) = inv(c). This is a
parity-preserving bijection between Alto,+1(312) and Alt2,(312). Hence
Z(Ait2,(312)) = Z(Alt2n+1(312)). The proof is completed. a

To determine Z(Altz,_1(123)) we first quote the following theorem for

the case Z(Alta,—1(321)).
Theorem 3.4 ([4], Corollary 3.4.). Forn 2 1, the following identities hold.
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n-—1

(i) Z(Altan(321)) = (=1)"T Caza m odd
0 n even,

(ii) Z(Altzn_1(321)) = —Z(Altza(321)).

Theorem 3.5. The following identities hold.
_1 1;—1 e d

(i) Forn 21, I(Alton—1(123)) = (-1) C"i_l n od
n even.

(i) Forn > 2, T(Altsn(123)) = —T(Altsn+1(123)).

Proof. (i) Under the operations of reverse, there is an immediate bijection
between Altg,_1(123) and Alta,—1(321). Namely, toeachw = w; ++-wop—1 €
Alta;,—1(123) there corresponds a ¢ = 1 --02,—1 € Altz,—1(321), where
0; = wan—i (1 < i< 2n—1). Moreover, inv(e) = (**;!) — inv(w) since for
i < j, 0y > o0; if and only if wan—; < won—;. It follows that inv(c) has the
same parity of inv(w) if n is odd, and has the opposite parity of inv(w) if
n is even. By Theorem 3.4, we have Z(Alts,_;(123)) = Z(Alt,-1(321)) =
(-1)%’-‘02;_1.

(ii) For n > 2 and for every o = 01 ++ - Gan41 € Altan4+1(123), we observe
that o9, = 1, and that o9;_1 > 0241, for 2 < i < n (otherwise there
will be 123-patterns in o). Then removing the element o3, from o and
subtracting 1 from the other entries leads to a member o’ € Alty,(123) with
inv(o’) = inv(g) — (2n — 1). This is a parity-reversing bijection between
Altg,4+1(123) and Alty,(123). Hence Z(Altgn(123)) = —Z(Altan+1(123)).
The proof is completed. O

4. SIGN IMBALANCE OF ALTERNATING PERMUTATIONS OF GENUS ZERO

Recall that D,(,o) and U,(,O) denote the set of alternating and reverse al-
ternating permutations of genus zero in &, respectively. In this section,
we enumerate DY and U by the method of generating functions for
completeness and determine the sign-imbalance of the two sets DY and
u®.

We say that an m-cycle of a permutations o € G, is increasing if its
elements are expressible as i < a(i) < o2(i) < --- < &™1(i). It is known
that a permutation of genus zero can be completely characterized as follows,
see [1, 5].

Lemma 4.1. Let o € G,,. Then g(a) = 0 if and only if the cycle decom-
position of a gives a noncrossing partition of [n], and each cycle of a is
increasing.
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The following observation is an immediate consequence of Lemma 4.1. .

Proposition 4.2. For n > 1, the following identities hold.

@) lvégl = |D£§3+1|,
(i) U = [USD, ol

Proof. (i) For every a = a1 -+ - qton41 € D,(_,(,),) +1, we observe that if aonq1 #
2n+1 then by Lemma 4.1 and the fact con < a2n41 there will be a crossing
in the cycle decomposition of o.. Hence agn,+1 = 2n + 1 and the subword

a---oop € 'Dg,],). This establishes a bijection hetween the two sets ’Dg,’,

and DY), .

(ii) For every o =y *+ - an42 € ué?,l,z, by the same argument as in (i)
we observe that agn42 = 2n 4+ 2 and the subword a; - --agn+1 € Llég)“.
This establishes a bijection between the two sets uggh_, and u2‘3)+2. O

We assume |Df,°’| = |Llf°)| = 1, and define the generating functions for
0 0
(D] and 157,

1) S=8@)=>IDPI", R=R@)=Y Ul

i>0 i>0

Proposition 4.3. The following relations hold.
(i) R-1=2(S-1),
(i) R—1=2zRS.

Proof. To prove (i), is suffices to show that |LI§2)+1| = 2|DY), for n >
1. For every permutation o« = a1 -:-0op41 € Uégh,l, by Lemma 4.1 we
observe that either a; = 1 or a3 = 2. Moreover, the elements 1 and 2
are not adjacent in a. Let ué?,{d be partitioned into two sets A; and Aj,
where @ € Ay if @1 = 1 and @ € A if @3 = 2. There is an immediate
bijection between A; and Ap by interchanging the elements 1 and 2 of the
permutation «.. For every 8 = f;---fan € Dg,),), we associate § with a
permutation o = a1 -+ epy1 € Sont1, Where ¢y =1 and o; = Bi—1 + 1
for 2 < i < 2n+ 1. We observe that o € Ué:)_,_l and this establishes a

bijection between Dg?l) and A;. The assertion (i) follows.

(ii) For every a = &) - -+ agn+1 € Aj, we have oy = 1 and agp4q = 2 for
some 1 < k < n. We factorize a as a = aypask+1v, where p = ap -+ - oo
and v = agp42 -+ - Q2n41. By Lemma 4.1, the entries in v are greater than
the entries in u. We observe that the word v is a down-up permutation of
length 2n— 2k, and that upon normalized v is in one-to-one correspondence
to the member B8 = B+ Bon_2k € ’Dg',)_zk, where 8; = aggt14i — 2k — 1,
for 1 <4 < 2(n — k). Moreover, the word u is a down-up permutation of
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length length 2k — 1, and u is in one-to-one correspondence to the member
Y= Yok—-1 € L{éz)_l, where v; =2k +2 — agpq1-j, for 1 < j <2k —1.
The above argument works well for the case a € Ay. This proves the
assertion (ii). ]

Now, we prove the following theorem.

Theorem 4.4 (Dulucg-Simion). For n > 1, the following identities hold.
() D5 = [Disa| = Sns
(if) sl = Usyol = R

Proof. By Proposition 4.3, we derive that the generating function R satisfies
the equation R =1+ zR + z2R2. Solving this equation leads to

l-z—+1—6z+ 22

2z !
which coincides with the generating function for large Schréder numbers.
Hence we have |u2‘2’+1 = R,. Moreover, it follows from the relation R =

25 — 1 that [DY| = S,. m]

R=

Theorem 4.5. For n > 1, we have
(i) Z(DL) = Z(DY),,) = (-1)",
(i) ZU®) =o.

Proof. Let v € 'Dg? be the permutation with cycle decomposition v =
(12)(34):--(2n -1 2n). Note that sign(y) = (—=1)*. We come up with a
sign-reversing involution on the set Dé?,) -{~}.

Foraa = a; - asz € DY — {v}, find the least integer j such that
(0j-1 @g5) # (25 25 — 1), say agx = 2§ — 1 for some k > j. Then either
ask—1 = 2k — 1 or ay~; = 2k. Moreover, the elements 2k — 1 and 2k are
not adjacent in «. The request involution is by interchanging the elements
2k — 1 and 2k in o. a
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