Independent sets in trees

Min-Jen Jou
Ling Tung University, Taichung 40852, Taiwan

email: mjjou@teamail.ltu.edu.tw

Abstract

In this paper, we determine the third largest and the fourth
largest numbers of independent sets among all trees of order n. More-
over, we determine the k-th largest numbers of independent sets
among all forests of order n, where &k > 2. Besides, We characterize

those extremal graphs achieving these values.

1 Introduction and preliminary

Given a graph G = (V(G), E(G)), a subset S C V(G) is called independent
set if no two vertices of S are adjacent in G. The set of all independent sets
of a graph G is denoted by I(G) and its cardinality by i(G). For a vertex
veE V(@) let I1,(G) = {S € I(G) : v € S} and I_,(G) = {S € I(G) :
v € S}. Their cardinalities are denoted by 4,(G) and i_,(G), respectively.
Note that i(G) = i44(G) + i—»(G). An empty set is also an independent
set in G. The nth Fibonacci number f, is defined by f_; =0, fo =1 and
Jn = fu—1 + fn—2 for n > 1.There are researches on independent sets in
graphs from a different point of view. The Fibonacci number of a graph
is the number of independent sets and is also known as the Merrifield-
Simmons indezx. The concept of the Fibonacci number of a graph was
introduced in [4] and discussed in several papers [2, 5]. It is known [4] that

the star K| n—; has the largest number of independent sets and the path
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P, has the smallest number of independent sets among all trees with n
vertices. The problems of detgrmining the second largest and the second
smallest values of independent.sets for a tree T' with n vertices and those
graphs achieving these values were solved in [1] and [3], respectively.

In this paper, we determine the third largest and the fourth largest
numbers of independent sets among all trees of order n. Moreover, we
determine the k-th largest numbers of independent sets among all forests
of order n, where k > 2. Besides, We characterize those extremal graphs
achieving these values.

We dénote by G = (V(G), E(G)) a graph of order n = |G|. The graph G
is called null if |G| = 0. A connected graph G is called nontrivial if |G| > 2.
For a vertex = € V(G), let degg(z) denote its degree. A leaf is a vertex of
degree 1. For a subset X C V(G), we define the neighborhood Ng(X) of X
in G to be the set of all vertices adjacent to vertices in X and the closed
neighborhood Ng[X] = Ng(X)U X. For a subset A C V(G), the deletion
of A from G is the graph G — A obtained from G by removing all vertices
in A and all edges incident to these vertices. If a graph G is isomorphic
to another graph H, we denote G = H. nG is the short notation for the
union of n copies of disjoint graphs isomorphic to G. P, a path with n
vertices and Ky ,—; a star with n vertices. The following useful lemmas

and theorems which are needed in this paper.

Lemma 1.1. ([1)) Given a graph G = (V(G), E(G)), the following hold.
(1) If z € V(G), then i(G) = i(G — z) + i(G — N|z]).

(2) If e€ E(G), then i(G) < i(G —e).

Theorem 1.2. ([4]) If F is a forest of order n > 1, then ¢(F) < 2". The
equality holds if and only if F =nP,.

Theorem 1.3. If F is a forest of order n > 3 having F # nP, then
i(F) < 3-2""2. The equality holds if and only if F = P, U (n —2)P;.
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Proof. Let F be a forest of order n > 3 having F' # nP,; such that i(F) is as
large as possible. By Lemma 1.1, then |E(F)| =1. So F= P, U(n—2)P,
and i(F)=3.27"2 O

Theorem 1.4. ([4]) If T is a tree of order n > 1, then i(T) < 21 + 1.
The equality holds if and only if T = TW(n), where T\ (n) = K; n-1.

Notice that if T is a tree of order n having T # T()(n), then n > 4.

Theorem 1.5. ([1]) If T is a tree of order n > 4 having T # T(M)(n), then
i(T) < 3-273 + 2. The equality holds if and only if T = T (n), where
T®(n) is the graph obtained from a star Ky 3 by adding o path P; and a

new edge joining the center of Ky ,_3 and one vertez of P, (see Figure 1).

2 Trees

In this section, we determine the third largest and the fourth largest num-
bers of independent sets among all trees of order n > 6.

For n > 6, we define the following graphs.

e T®)(n) is the graph obtained from a star K1 ,—4 by adding a path

Pj3 and a new edge joining the center of K ,_4 and the center of P;.

e T()(n) is the graph obtained from a star K} ,_4 by adding a path

P3 and a new edge joining the centers of K, ,—4 and one leaf of Pj.

Figure 1: The trees T(®(n), T (n) and T¥(n)
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Lemma 2.1. For positive integers n, a and b, if f(z) = 2 +2™"F for

a <z <b, then f(z) has a mazimum value when x =a orb.

Proof. ;From simple calculation, we have that f'(z) = (In2)(2* — 2"~%)
and f"(z) = (In2)%(2% + 2"~%). Note that f”(z) > 0. Hence f(z) yields a

maximum value when z = a or b. (]

Notice that if T is a tree of order n having T # T (n) and T # T3 (n),
then n > 6.

Theorem 2.2. If T is a tree of order n > 6 having T # TN (n), T®(n),
then i(T) < 5-2"% 4+ 4. The equality holds if and only if T = T®)(n).

Proof. Let T be a tree of order n > 6 having T # T(M)(n), T®(n) such
that #(T) is as large as possible. Then i(T) > i(T®)(n)) = 5.2"% + 4.
Let P: z,y,2,--- be a longest path of T. Then T —y = sP, UT’, where
1<s<n—4and T’ isatreeof ordern—s—1.
Claim. s > 2.

Ifs=1,thenT -z and T - Nlz] are trees. Since T # T™M(n) and
T # T®)(n), we have that T — = # K; 2. By Lemma 1.1, Theorem 1.4
and 1.5, we obtain that 5-2""% +4 < i(T) = i(T — z) + i(T — N[z]) <
(3-2"*+2)+(2""3+1) =5.2""*+3. This is a contradiction, thus s > 2.

By Lemma 2.1, Theorems 1.2 and 1.4, we have that 5-2"~4+4 < i(T) =
(T-y)+i(T—Nly)) <22 (2" 2+1)+2n 2 = 2024 29 4 2792 ¢
=24 92 L 9n—4 = 5.9%4 L 4 where 2 < s < n — 4. The equalities
hold, then s = 2 or n — 4, i.e., T — N[y] = (n — 4)P, or 2P,. Hence
T = T®)(n). O

Theorem 2.3. If T is a tree of order n > 6 having T # T(M)(n), TP (n),
TC)(n), then i(F) < 5-2"% 4 3. The equality holds if and only if T =
T (n).
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Proof. Let T be a tree of order n > 6 having T # T()(n), T®) (n), T® (n)
such that i(T) is as large as possible. Then i(T¥(n)) = 5.2"4+3 <
iT) < (5-2"*+4)~1=5.27"443,50i(T) = 52" 443. Let P : z,9,2, - - -
be a longest path of T. Then T —y = sP,UT", where 1 < s < n —4 and
T’ is a tree of order n —s — 1.
Claim. s=1lors=n-—4,

Assume that 2 < s < n — 5, then n > 7. Note that T # T®)(n). If
s =2, then 7' — N[y] # (n—4)P,. By Theorems 1.4 and 1.3, 5-2"~% 43 =
{(T)=i(T —-y)+i(T—Nfy]) <2227 *4+1)+3-2"6=19.2"0 44 <
5.2"4 43 for n > 7. This is a contradiction. If 3 < s < n — 5, then
n > 8 and 4 £ |T'| £ n— 4. By Lemma 2.1, Theorems 1.4 and 1.2,
5.2 44 3=4(T)=i(T—y)+i(T - Nly]) 2°(2"*"2+1)+ 272 =
272 4 95 4 o2 < on-2 4 gn=5 1 93 = 9. 975 1 8 < 5.27% 13 for
n > 8. This is a contradiction again. Hence s=1or s =n —4.

If s = n—4, then |T'| = 3. Since T # T®)(n), this follows that
T =T (n). If s = 1, then T —x and T — Nz} are trees. Since T # TM(n)
and T # T®)(n), these imply that T — z # T()(n — 1). By Theorems 1.4
and 1.5, i(T — ) < 3274 + 2 and (T — N[z]) < 2"~3 + 1. We obtain
that 273 +1 > (T —N(z]) = i(T)—i(T —z) > (5-2""*+3) - (3-2"4 +
2) = 2" 3 4+1 = 4§(TM(n —2)). Then T — N[z] = TV (n — 2). Hence
T =TW(n). a

3 Forests

In this section, we determine the k-th largest numbers of independent sets

among all forests of order n > &k > 1.

Lemma 3.1. Let F be a forest of ordern > 4 having at least two nontrivial

components.
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(i) Then i(F) < 9-2"4 with the equality holding if and only if F =
2P, U (n—4)P,.

(ii) Suppose that F # 2P, U(n—4)P,, where |F| > 5, then i(F) < 15.27~5
with the equality holding if and only if F = PsU P U (n— 5)P;.

Proof. (i) Let F be a forest of order n > 4 having at least two nontrivial
components such that i(F') is as large as possible. By Lemma 1.1, then
|E(F)| =2, F=2P,U(n—-4)P, and i(F) =9 .24

(i) Let F # 2P, U (n — 4)P,; be a forest of order n > 5 having at least
two nontrivial components such that i(F) is as large as possible. Then
15-27% = §(PsU P, U (n — 5)P,) < i(F). If F is a forest of order n > 6
having at least three nontrivial components, by Lemma 1.1, then |E(F)| = 3
and i(F) = i(3P,U(n—6)P;) = 27-2*6 < 15.2"~5, This is a contradiction,
thus F' have two nontrivial components. By Lemma 1.1, then |E(F)| = 3,
F=P;UP,u(n—-5)P, and i(F) = 15.2"75. O

Theorem 3.2. If F is a forest of order n > k > 1 with the k-th largest
number of independent sets among all forests of ordern, then i(F) < 2"~ 14
2"=* and the equality holds if and only if F = Ky, U (n — k)P, or
2P,U(n—4)P, with k = 4.

Proof. By Theorems 1.2 and 1.3, it’s true for £ = 1 and 2. Assume that F
is a forest of order n > 3 with the third largest number of independent sets
among all forests of order n, then F # nP;,K;;U (n — 2)P, and i(F) >
i(K1,2U(n—3)P;) = 27"1+27=3 > 9.27~4, By Lemma 3.1, we obtain that
F las exactly one nontrivial component. Since F' # Kj U (n — 2)P,, by
Lemma 1.1 and Theorem 1.4, F = K; oU(n—3)P; and i(F) = 2"~ 4-2n73,
Hence it’s true for £ = 3.

Assume that F is a forest of order n > 4 with the fourth largest number
of independent sets among all forests of order n, then F' # nP,,K;;U(n—
2)P,K 12U (n—3)P; and i(F) > i(K13U (n—3)P) = 2"~ + 24 =
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9.2"=*_If F have at least two nontrivial components, by Lemma 3.1, then
9-2"1<i(F)<9-2"4 Soi(F)=9-2""%and F=2P,U(n— 4)P,. If
F has exactly one nontrivial component, by Lemma 1.1 and Theorem 1.4,
then 9-2"* < i(F) <i(K13U(n—4)P,) =271 4+ 27~4 =9.27~4, Then
i(F)=2""1+2"4and F = K;3U (n — 4)P,. Hence it’s true for k = 4.
Assume that F is a forest of order n > k > 5 with the k-th largest
number of independent sets among all forests of order n, then F' # 2P, U
(n —4)P; and i(F) > i(Ky k-1 U (n — k)Py) = 2"~1 4 2=k > 15. 975 for
k > 5. By Lemnma 3.1, F has exactly one nontrivial component. By Lemma
1.1 and Theoremn 1.4, then F = K 4_1U(n—k)P, and i(F) = 2"~1427~%,
Hence it’s true for k > 5. |
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