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Abstract

In this paper we generalize the companion Pell sequence. We give
combinatorial, graph and matrix representations of this sequence.
Using these representations we describe some properties of the gen-
eralized Pell numbers and the generalized companion Pell numbers.
We define the golden Pell matrix for determining the generalized
Pell sequences and among other we prove the “generalized Cassini
formula“ for them. Moreover we give some relations between gener-
alized Pell numbers and the classical Fibonacci numbers.
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1 Introduction

In general we use the standard notation, see [1]. The Fibonacci sequence
is defined by the recurrence relation F, = F,,_; + F,,_,, for n > 2 with
the initial conditions Fp = F; = 1. The Pell sequence is defined by the
following recurrence relation P, = 2P,_; + P, _,, for n > 2 with the initial
conditions Py = 0, P; = 1. There are some versions of the Pell sequence,
one of them is the companion Pell sequence @, = 2Qn-1 + Qn-2, for
n > 2 with the initial conditions Qo = @1 = 1. The first few Pell and the
companion Pell numbers are0,1,2,5,12,...and 1,1, 3,7, 17, ..., respectively.
The Pell numbers and the companion Pell numbers are closely related with
the Pell equation. If two large integers £ and y form a. solution of the Pell
equation 2 — 2y2 = +1, then their ratio % provides an approximation to

V2. The sequence of approximations obtained from the Pell equation is
1.3 717 41 99 4 0n
1215213239 700 0 16 P .
There are many interesting generalizations of the Pell numbers see for
example [4], but a very natural is the concept introduced by I. Wioch in [11],
which generalize the Pell numbers in the distance sense. Let k> 2, n >0

be integers. The generalized Pell numbers P(k,n) are defined recursively
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in the following way
P(k,n) = P(k,n—1)+ P(k,n—k+1)+ P(k,n—k) forn > k+1, (1)

with the initial conditions P(2,0) = 0, P(k,0) =1 for k > 3, P(k,1) =1
for k> 2and Plkyn) =2n—-2for2<n <k Ifk=2andn >0,
then P(2,n) are the well-known Pell numbers P, with the initial condi-
tions Pp =0, P, = 1.

The following Table includes a few first words of the generalized Pell num-
bers for special values of k& and n.

n 0j112|3|4|5|6| 7] 8] 9] 10| 11 12
P, 011]2]|5]12]29]70] 169|408 | 985 | 2378 | 5741 | 13860
P@3,n)||1]1(2(4] 7 [13]24| 44 | 81 [149] 274 | 504 | 927
P4,n)||1|1|2|4]| 6|9 [15( 25| 40 [ 64 | 104 | 169 [ 273
P(5,n)||1]1(2f4] 6 [8|11]17 |27 | 41| 60 | 88 | 132

Table 1. The generalized Pell numbers P(k,n).

In this paper we give the generalization of the companion Pell numbers
in the distance sense. Next we give different representations of the compan-
ion Pell numbers and also some identities for them and the generalized Pell
numbers. Moreover we give the matrix representations of the generalized
Pell sequences and we generalize the Cassini formula for these sequences.

2 Generalizations and some identities

In this section we introduce a generalization of the companion Pell number
Q.

Let k > 2, n > 0 be integers. The generalized companion Pell numbers
Q(k,n) are defined by the k-th order linear recurrence relation

Qk,n)=Qk,n—-1)+Q(k,n—k+1)+Q(k,n—k) forn>k (2)

with the initial conditions Q(k,0) = Q(k,1) =1 and Q(k,n) = 2n — 1 for
2<n<k-1

We can observe that if k = 2, then Q(2,n) = Q.

We begin with the combinatorial representations of the companion Pell
numbers Q(k,n).

Let X be the set of n consecutive integers, n > 0 and X® = X x {1,2}.
(In particular X is empty if n = 0) For fixed integers k > 2 let Y ¢ X
be a subset of X(® such that

@) |Y|=t t=0and

(ii) for each (%,7),(u,v) €Y holds |i —u|+|j —v| > k.
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Let g(k, n,t) denote the number of all t-elements subsets Y and let G(k,n) =
;, q(k, n,1).

Theorem 2.1 Letn > 0, k > 2, t > 0 be integers. Then q(k,n,0) = 1,
g(k,n,1) = 2n and q(k,n,t) =0 forn < (t—1)(k—1). Fort > 2 and
forn > (t = 1)(k — 1) we have the following recurrence relation q(k,n,t) =
glk,n—1,t) +q(k,n—k+1,t - 1) +q(k,n — k,t —1).

PROOF: The initial conditions are obvious. Let k > 2, n > (t — 1)(k - 1)
and t > 2. Note that each subset Y ¢ X is associated with a binary
matrix M = [a;;] € Max,, such that

0 if(i,7)¢Y

1 if(i,5) €Y,

2 n

(b) igl ng M= t’
(c) for each a;; = ay, =1 holds |i —u| + |j —v| > k.
The mapping between subsets Y and such matrices M is bijective, hence,
instead of counting t-elements subsets Y we may count such matrices. Let
M denote the set of all matrices M satisfying conditions (a)-(c). Let
M(k,r,l) where ] < t, r < n be the family of matrices having exactly
l 1's and a;, = 0 obtained from matrices of the family M by deleting
columns r + 1,...,n. Let a(k,r,l) = |M(k,r,l)|. Consider any M € M.
If ajn = 0, then M € M(k,n,t) and we have a(k,n,t) such matrices. If
a;p =1, thena;j =0fori =1, j=n-%k+1,.,n -1 and for i = 2,
J=n—-k+2,..,n Hence in this case it suffices to consider the family
M(k,n —k +1,t — 1). Thus we obtain a(k,n—k+1,¢—1) matrices. Con-
sequently q(k,n,t) = a(k,n,t)+a(k,n—k+1,t—1). Now we calculate the
number a(k,n,t). For a;, = 0 we have the following possibilities az, = 0
or ag, = 1. If @y, = 0 and ay, = 0, then we get g(k,n — 1,t) matrices
satisfying conditions (a)-(c). If a1, = 0 and az, =1, then a;; = 0 fori =1,
j=n-k+2,.,nandfori=2,j=n—k+1,..,n~1. Clearly this case
gives the same number of possibilities as the case a;, = 1 and consequently
we have a(k,n — k + 1,¢ — 1) matrices satisfying conditions a1, = 0 and
azn = 1. Finally a(k,n,t) = q(k,n — 1,t) + a(k,n —k + 1, — 1). Hence
from the above considerations we have the following system of recurrence
equations

q(k,n,t) = oa(k,n,t)+alk,n—k+1,t-1)

alk,n,t)= q(k,n—-1,t)+alk,n-k+1,t-1)
By simple calculations we can give the k-th order linear recurrence relation
of the form q(k, n,t) = q(k,n—1,t) +q(k,n—k+1,t—1)+q(k,n—k,t—1).
Thus the Theorem is proved. o

(a) aij; =
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Theorem 2.2 Letk > 2 be integer. If0 < n < k—1, then G(k,n) = 142n.
Ifn >k, then G(k,n) = G(k,n — 1) + G(k,n — k+1) + G(k,n — k).

PROOF:If k > 2,0 < n < k-1, then G(k,n) = 3 q(k,n,t) = q(k,n,0)+
>0

g(k,n,1) = 1+ 2n. Assume that n > k. Then by the Theorem 2.1 we have
G(kyn) =Y q(k,n,t) =14+2n+ 3 q(k,n—1,t)+ Y q(k,n—k+1,t-1)+
>0 t>2 t>2

S qlk,n—k,t—1) = 142n+ Y q(k,n—1,8)—1-2(n—1)+ 3 q(k,n~k+

t>2 t>0 t>0

L,) =1+ 3 qlk,n—k,t) -1 = G(k,n—1)+G(k,n— k+1) + G(k,n— k).
t>0

Thus the Theorem is proved. 0
From (2) and the Theorem 2.2 it follows

Corollary 1 Letn > 0, k > 2 be integers. Then G(k,n) = Q(k,n+1).

The following table includes a few first words of the generalized com-
panion Pell numbers for special values of £ and n.

n 0[(1]2]3[4]5]6]| 7| 8 9 10 | 11 12

Qn 1({113|7]17141]99{239|577]1393|3363 | 8119 | 19601
QB3,n)|11|1{3]5]9 (17|31 57 |105] 193 | 355 | 653 | 1201
Q4,n)||1]1]3]|5]| 7 |11]19| 31|49 | 79 | 129 | 209 [ 337
QB,n) 1135 7]9]13]21 33| 49 | 71 | 105 | 159

Table 2. The generalized companion Pell numbers Q(k, n).

Now we give some basic identities for the generalized Pell numbers and
the generalized companion Pell numbers.

Theorem 2.3 Let k > 2 and n > 0 be integers. Then

Q(k,n) = P(k,n)+ P(k,n—k+1) forn >k -1. 3)
Q(k,n) = P(k,n+1) + P(k,n —k +2) forn>k—2. (4)
Plk,n+1) = Q(k,n+1;+Q(k,n)' ®)
k-2
P(k,n) =2 _ P(k,n—(k—1)—i)+ P(k,n—2k+2) forn > 2k—2. (6)
i=0

PROOF: (3) Let.n = k — 1. For k = 2 the result is obvious. If k¥ > 3,
then by (1) and (2) we have that Q(k,k —1) =2(k—1) —1 =2k~ 3 and
P(k,k—1)+ P(k,0)=2(k—1)—2+1=2k-3.

Assume now that n > k and suppose that the equality (3) holds for all
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integers k, ...,n. We shall prove that (3) is true for integer n + 1.
Using relations (1), (2) and induction’s assumption we obtain that
Q(k,n+1) = Q(k,n)+Q(k,n—k+1)+Q(k,n—k+2) = P(k,n)+ P(k,n—
k+1)+P(k,n—k+1)+P(k,n—2k+2)+ P(k,n—k+2)+P(k,n—2k+3) =
P(k,n+1)+ P(k,n—k +2).
(4) Let n > k— 2. For k = 2 the result is obvious. Suppose that the
equality (4) holds for all integers k — 1,...,n. We shall prove that (4)
is true for integer n + 1. Proving analogously as in (3) we obtain that
Q(k,n+1) = Q(k, n)+Q(k, n—k-+1)+Q(k, n—k+2) = P(k, n+1)—P(k, n—
k+2)+P(k,n—k+2)—P(k,n—k+3)+P(k,n—k+3)—P(k,n—2k+4) =
P(k,n+2) — P(k,n—k +3).
(5) It easily follows from (3) and (4).
(6) Let k > 2, n > 2k-2. If k = 2, then P(2,n) = 2P(2,n—1)+P(2,n-2)
and the identity follows by basic recurrence for the Pell numbers.
Assume now that k¥ > 3. Then using (1) and some calculations we have
P(k,n) = P(k,n-1)+ P(k,n—k+1)+ P(k,n—k)
= P(k,n—2)+2P(k,n—k)+ P(k,n —k—1)+ P(k,n—k +1)
= P(k,n —3) +2P(k,n — k) + 2P(k,n—k — 1) + P(k,n — k — 2)
+P(k,n—k+1).
After (k — 1) steps we obtain
P(k,n) = P(k,n—(k—1))+2P(k,n—k)+2P(k,n—k—1)+..
+2P(k n—2k+3)+2P(k,n—2k+2)+ Plk,n—k+1)

=2 zp(k n—(k—1) — i) + P(k,n — 2k +2).

Thus the Theorem is proved. 0O
From the identity (3) it is easy to see that IQ,":: < 2, for k > 2,
n>k-1.
Note that for £ = 2 we obtain the well-known identities for the Pell
numbers and for the companion Pell numbers. Namely, @, = P, + Pn-1,
Qn = Pat1 = Pacy, Pap = $28339 P = 9P, + P,_,, respectively.

3 A graph representation of the generalized
companion Pell numbers

In this section we give a graph interpretation of the generalized companion
Pell numbers Q(k,n). We use the standard definition and notation of graph
theory, see [2]. It is worth to mention that the graph representation of the
generalized Pell numbers P(k,n) was given by I. Wloch in [11].

Let G = (V(G), E(G)) be a simple graph. Let k > 2. A subset § C V(G)
is k-independent if for each z,y € S the distance between them, is at least
k. Moreover the empty set also is k-independent, for each k¥ > 2. The
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number of k-independent sets in G we denote by NIx(G). Let G, H be
two graphs with V(G) = {z1,..,2,}, n > 1 and V(H) = {y1,...,¥m},
m > 1. A Cartesian product of two graphs G, H is a graph G x H such
that V(G x H) = V(G) x V(H) and E(G x H) = {(zi, yp)(j, ¥q); (xiT; €
E(G) and p = q) or (ypy, € E(H) and i = j)}. By P,, n > 1 we denote an
n-vertex path and by K, n > 2 we mean a complete graph on n-vertices.
To give the graph interpretation of the numbers Q(k, n) we use given earlier
their combinatorial representation. The set X(? can be represented as the
vertex set of the graph P, x K;. Then Y corresponds to a k-independent
set of the graph P, x K3. Thus in the graph terminology the number
Q(k,n+1), for n > 0, k > 2 is equal to the number of all k-independent
sets of the graph P, x K.

The number of k-independent sets in graphs was studied in many classes
of graphs, in particular also in the context of the Fibonacci numbers and
their generalizations, see (8], [9], [10].

Consequently it immediately follows:

Fact 3.1 Letn > 1, k > 2 be integers. Then NIx(Pn x K2) = Q(k,n+1).

The graph interpretation of the number Q(%, n) can be used for proving
some identities:

Theorem 3.2 Let n > 2k — 3, k > 2 be integers. Then
k-2

Q(k,n+1) = Q(k,n—k+2)+ Y (Q(k, n—(k—1)—2)+Q(k, n—(k—1)+1—1)).
i=0

PROOF: Let n > 2k—3, k > 2 be integers. We use the graph interpretation
of the number Q(k,n +1). From Fact 3.1 we obtain that NI(P, x K3) =
Q(k,n+1).

Let V(P,) = {z1,...,Zn}, n > 1 and V(K3) = {y1,y2} with the numbering
vertices from V(IP,) in the natural fashion. Let Z = {(zi,y;);i =1,...,k —
1,7 = 1,2}. Assume that S is an arbitrary k-independent set of the graph
Pox Ky. Let 7y = {S C V(Pn x K2);SNZI =0} and 2 = {S C
V(Pn x K2); SNT # B}. Clearly |SNZ| <1 so we consider the following
cases:

1. |SnZ|=0.

Then it is clear that S is a k-independent set of the graph (P, x K2)\Z which
is isomorphic to P,,_(x_;) X K2. Hence by Fact 3.1, | F| = Q(k,n —k +2).
2. [SnZ|=1.

Without loss of the generality suppose that (z;,11) € S (the possibility
(z1,y2) € S is symmetric, by the definition of Cartesian product of two
graphs). Then (z,,y1) ¢ Sforp=2,...,k and (z4,y2) ¢ Sforg=1,....,k—
1. This implies that S = S*U{(z1,y1)}, where S* is a k-independent set of

396



the graph (P, x K2)\( U {(zp, 1)}V U {(z4,%2)}) which is isomorphic to

the graph (P,_(x—1y % Kg) \ {(sck,yl)}, where V(Ppe(k-1)) = {zk; ., Zn }.

Let H(k,n) denotes the number of k-independent sets S’ the graph
P, x K such that (z;,,y:) ¢ S’ (symmetric possibility (z;,y2) ¢ S').
Claim 1. H(k,n) = Q(k,n) + H(k,n - k +1).
Assume that (z1,y1) ¢ S’. Then we have two possibilities. If (z1,y2) ¢ &,
then S’ is a k-independent set of the graph P, x Kz \ {(z1,%1), (z2,v2)}
which is isomorphic to P,_; x K3 and by Fact 3.1 we have Q(k,n) such
k-independent sets S'. If (x;,y1) € S’, then using previous considerations
we obtain similarly that there are H(k,n — k + 1) sets $’. Consequently
the Claim 1 follows.
Claim 2. Q(k,n+1) = H(k,n) + H(k,n — k +1).
The Claim 2 we prove analogously.
Claim 3. H(k,n) = (Q(k,n) + Q(k,n +1)).
From Claim 1 and Claim 2 we obtain a system of recurrence equations

H(k,n) =Q(k,n) + Hk,n—k +1)
Qk,n+1) =H(kn)+Hk,n—k+1)

and consequently by simple calculations the Claim 3 follows.

From the above it is clear that there are 2H (k,n — k+ 1) possibilities of
k-independent sets of IP,, x K5 such that either (z1,3:) € S or (z1,%2) € S.
Proving a.nalogously for other vertices from the set 7 we obtain that

|Fa| =2 Z (H(k,n—(k-1) ~i)).
Consequently from the above cases we have that

Qk,n+1)=Q(k,n—k+2)+2 E H(k,n - (k —1) —1) and using Claim
3 we obtain that =
Q(k,n+1) = Q(k,n—k+2)+ E (Q(k,n—(k—1)—i)+Q(k, n—(k—1)+1-i)).
Thus the Theorem is proved 0
Using the above Theorem and by the identity (5) we obtain
Corollary 2 Let k > 2, n > 2k — 3, be integers. Then

Qkyn+1) = Q(kyn— 2k +3) +2 5 Plkyn— (k—2) +1—1).
i=0
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4 A matrix representation for the general-
ized Pell numbers and the generalized com-
panion Pell numbers

In (3] J. Ercolano gives a matrix representation of the Pell sequence.

P, n+1 P, n 2 1
M = P: F,ﬂ_qjlwhereM:[1 0
In this section we give matrix representations for the generalized Pell se-
quences. We recall that P(k,n) = P(k,n—1)+ P(k,n—k+1)+P(k,n—k)
with the initial conditions P(2,0) = 0, P(k,0) =1 for k > 3, P(k,1) =1
for k>2and P(k,n)=2n—-2for2<n<k.
Let Px = [pijlexx. For 1 <i < k an element p;; is equal to the coefficient
of P(k,n — i) in the equality (1). Moreover for j > 2 we have
1 ifj=i+1
0 otherwise
Consequently for k =

Pij =

N
(2]

,3,4, ... we obtain matrices:

1100
110
I
=2yl p=|101]|p=|2019],
|1 0 10 0 1001
1000
) 110 -« 0 0]
11000 001 0 0
00100 o
P5= 00010,...,Pk=: . .o
10001 000 - 10
10000 100 -~ 01
- 100 --- 00

We will say that the matrix P is the generalized Pell matrix.
Let k > 2 be integer. For a fixed k > 2 we define the matrix Ax of order k
as the matrix of initial conditions

P(k,2k—2) P(k,2k—3) --- P(k,k)  P(k,k~1)
P(k,2k—3) P(k,2k—4) --- P(k,k—1) P(k,k—2)
A = : : E :
P(k,k)  P(kk-1) - P(k2)  P(k1)
P(k,k~1) P(kk—-2) - P(k1)  P(k,0)
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Theorem 4.1 Let k > 2, n > 1 be integers. Then AP =

P(k,n+2k-2) P(kn+2k-3) -  P(kn+k) P(kn+k-1)
P(k,;n+2k-3) P(k,n+2k—4) - P(kn+k—1) P(kn+k—2)

: : : : . (7)
P(kn+k)  P(kp+k-1) - P(kn+2)  P(kn+l)
P(kyo+k—-1) P(kn+k—2) - P(knit1) P(kn+0)

PROOF: Let k > 2 be a fixed integer. If n = 1, then by simple calculations
and by (1) the result immediately follows. Assume that the formula is true
for all 1ntegers 1,...,n. We shall show that Theorem is true for integer n+1.
Since AkP""' = AkP"Pk, so by our assumption and from the recurrence
form (1) we obtain that A, Ppt! =

[ P(k,n+2k—2) - P(kn+k) P(kn+k-1) 110---0
P(kn+2k—3) - Plkmik—1) Plhmtk—2) | [001 - 0
P(kn+k) -~ P(kn+2) PEn+l) | |100-. 1

| P(kmtk-1) - Plka+l) Pkn+0) | [100 .. 0

[ P(kn+2k—1) P(kn+2k—2) - P(kn+k+1) Pk, n+k)
P(k,;n+2k—2) P(kn+2k—3) - Plkn+k) P(kn+k—1)

P(kntk+l) P(kntk) -  P(kn43)  P(En+2)

P(k,n+k) P(k n+k-1) - P(kn+2)  P(kn+1)
Thus the Theorem is proved. a
Theorem 4.2 Let k > 2 be integer. Then
det(Py) = (—-1)*+1. (8)
det(4y) = (—1)“F". (©)

- PROOF: Equality (8) follows from the definition of P, and basic properties
of determinants. To prove (9) auxiliary we define the sequence P*(k,n)
such that

P*(k,n)=0forn=0,1,..,k -2, P*(k,k—1)=1 and

P*(k,n) = P*(k,n—-1)+P*(k,n—k+1)+ P*(k,n—k) forn > k. (10)
Let AZ,m =
P*(k2k—2+m) P*(k2k—3+m) - P*(kj+m) P*(kk—1+m)
P*(k,2k—3+4m) P*(k2k—4+m) - P*(kk—1+m) P*(k,k—2+m)

Pr(kjk+m) P*(kk-l+m) - P*(k2+m)  P*(k1+m)
P*(kjk—1+m) P*(kk—2+m) - P*(kl+m)  P*(km)
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If m = 0, then by the definition of the number P*(k,n) we have that
Aio = [Pijlexk and pj; =0 for k+1—4 < j, pj; =2 and pj; = 1in
otherwise. This immediately gives that

2 1 ... 1
11 k(k—1)
1 0 --.- 0

By induction it is easy to prove that Ay ,, = A} o P", for 1 <m < k—1.
Moreover by definitions of the matrices Ax, A} ,,, and by (10) we have that
A = Ago- P,f""“. Consequently from basic properties of determinants

det(Ar) = (-1)"F2.

Thus the Theorem is proved. 0
The sequence P*(k,n) we will call as the extended generalized Pell
sequence.

The next Theorem gives two generalizations of the Cassini formula.
Theorem 4.3 Let k > 2 be integer. Then

det(A} o Pp) = det(AxPP) = (-1) 7522 1)
det(Py) = (—1)*¢*+D (12)

O
Now we give a matrix representation of the generalized companion Pell
numbers.

Q(k,n) =Qk,n-1)+Q(k,n—k+1)+ Q(k,n—k) forn>k

with the initial conditions Q(k,0) = Q(k,1) = 1 and Q(k,n) = 2n — 1 for
2<n<k-1. -

Using the same methods as for the generalized Pell numbers we define the
matrix By, of initial conditions

Qk,2k-3) Q(k,2k—4) --- Q(kk—1) Q(kk-2)

By = : : - : :
Q(k, k) Qk,k-1) - Q(k2) Q(k,1)
Qk,k-1) Q(kk-2) - Qk1) Q(k,0)
Theorem 4.4 Let k > 2, n > 1 be integers. Then By P} =

Qk,n+2k—2) Q(kn+2k-3) - Qkn+k) Q(kn+k—1)
Qlkn+2k-3) Q(kn+2k-4) - Q(kn+k-1) Q(kn+k-2)

QUentk)  Qhmtk—1) ~  Qkn+2)  QEm+l)

Qent+k—1) Q(kn+k—2) -  Qkm+l)  Q(k,n+0)



0
The extended generalized companion Pell sequence is defined as follows

Q (k1) = Q*(kyn—1) + Q" (k,n— k+1) + Q*(kyn — k) for n > k (13)
with the initial conditions Q*(k,n) =1for0<n <k -1

Then
Q*(k,2k-2) Q*(k,2k-3) --- 1
Q*(k,2k-3) Q*(k,2k—4) --- 1
Bi,o = : : .. :
1 1 e 1

We can see that By = By - Py -2,
Theorem 4.5 Let k> 2, n > 1 be integers. Then

det(Byo) = det(By) = —(—1)"5™ . 21 (14)

det(Bi,oPy) = det(BuPf) = —(-1) " F 261 (1)

a
The equality (15) generalize the Cassini formula for sequences (13) and
(2).

5 Some relations between P(k,n) and the Fi-
bonacci numbers

In this section we shall show that for special k& the generalized Pell num-
bers P(k,n) and the generalized companion Pell numbers Q(k,n) have
interesting relations with the classical Fibonacci numbers F,,. This section
is inspired by results given by E. Kili¢ (with D.Tasci, P. Stanica) in [5, 7, 6],
where interesting relationships between some generalized Pell numbers and
the classical Fibonacci numbers were given.

From the definition of P(k,n) and Q(k,n) it immediately follows that
P (2) n) = P ny
Q(2,n) = Qn,
Q(3,n) = Tr4+1, where T,, is the well known the Tribonacci sequence with
the initial conditions To =7, =T = 1.
P(3,n) =T, ,, where T} is also named the Tribonacci sequence with the
initial conditions Ty =0, T} = T3 = 1.
Now we give relations of P(4,n) and Q(4,n) with the Fibonacci numbers
F,.
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Theorem 5.1 Let n be an integer. Then

P(4,n) - P(4,n—4)=F, forn>4 (16)
P(4,n)+ P(4,n—2) = Fr 41 forn > 2 (17)
3
D> P(4,n—i)=Foy forn>3 (18)
i=0
P4,2n—1)=F? forn>1 (19)
P(4,2n) = iFf =F,Fh4q forn>1 (20)
=0
Q4,n)—Q(4,n—-4)=2F,_ forn>4 (21)
Q4,n)+Q(4,n—2)=2F, forn>2 (22)
3
> Q4,n—i)=2Fy forn>3 (23)
i=0

Proof (16) For n = 4, ..., 7 the result follows by simple observation. Assume
that n > 8 and P(4,n) — P(4,n — 4) = F,,. We shall show that P(4,n +
1)—P(4,n—3) = Fp4;. From the definition of P(k,n) and the induction’s
assumption we obtain P(4,n + 1) — P(4,n — 3) = P(4,n) + P(4,n - 2) +
P(4,n-3)—-P(4,n—-4)—P4,n—6)—P4n-T)=F,+F o+ F, 3=
F, + F,,_, = F, 41 which ends the proof of part (16).

Remaining parts of the Theorem can be proved by analogy.

6 Concluding remarks

We derive relationships between P(k,n), Q(k,n) and F, only for special
k = 2,3,4 which give known integer sequences. These relations does not
hold for an arbitrary k& > 2. Some special representations using the Fi-
bonacci numbers for k£ > 5 can be given. However the computing are very
large. It is interesting to find a simple rule (if there exists) between the
Fibonacci numbers and P(k,n) and Q(k,n) for k > 5.
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