WILLMORE LAGRANGIAN SUBMANIFOLDS IN
COMPLEX EUCLIDEAN SPACE

SHICHANG SHU

ABSTRACT. Let ¢ : M — C™ be an n-dimensional compact Will-
more Lagrangian submanifold in the Complex Euclidean Space C™.
Denote by S and H the square of the length of the second fundamen-
tal form and the mean curvature of M. Let p be the non-negative
function on M defined by p?2 = S—nH? , K, Q be the function which
assigns to each point of M the infimum of the sectional curvature,
Ricci curvature at the point. In this paper, we prove some integral
inequalities of Simons’ type for n-dimensional compact Willmore La-
grangian submanifolds ¢ : M — C™ in the Complex Euclidean Space
C" in terms of p?, K, Q, H and give some rigidity and characteriza-
tion Theorems.

1. INTRODUCTION

Let N™t? be an oriented smooth Riemannian manifold of dimension
n+p. Let ¢ : M — N™*P be an n-dimensional compact submanifold
of N**P, Denote by h;?‘j,S,ff and H the second fundamental form, the
square of the length of the second fundamental form, the mean curvature
vector and the mean curvature of M. We define the following non-negative

function on M

(1.1) p’=8—nH?
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which vanishes exactly at the umbilical points of M. The Willmore func-
tional is the following non-negative functional (see[2],{11],[13])

(1.2) W(p) = /M(s —nH?*%dy,

where dv is the volume element of M. From [2],[11] and [13], we know
that W(yp) is an invariant under Moebius (or conformal) transformations
of N*tP, The Willmore submanifold was defined by Li[9)and Hu-Li[7],
that is, a submanifold is called a Willmore submanifold if it is a extremal
submanifold to the Willmore functional. When n = 2, the functional es-
sentially coincides with the well-known Willmore functional and its critical
points are the Willmore surfaces. In [9](also see [11],(6]), Li obtained a
Euler-Lagrange equation of Willmore functional in terms of Euclidean ge-
ometry, which is very important to the study of rigidity and geometry of
Willmore submanifold in N**7,

Let C" be the Complex Euclidean Space with complex coordinates

21, " 2o and
i =
(1.3) Q= Ezi:dzi/\zi,

its symplectic structure.If <,> denotes the Euclidean metric and J the
standard complex structure on C", then Q(u,v) = (u,v) for any vectors
u,v in C™.

Let ¢ : M — C™ be an immersion of an n-dimensional manifold M. ¢
is called Lagrangian if ¢*Q = 0. This means that the complex structure J
of C™ carries each tangent space of M into its corresponding normal space.
The simplest examples of Lagrangian submanifolds of C* are the totally
geodesic ones, i.e. the Lagrangian subspaces of C™. The second example,
known as the Whitney sphere, can be defined as a Lagrangian immersion

of the unit sphere S™, centered at the origin of R**! in C™ given by (see



[12]) (up to dilatations of C™)

(1.4) &(z1, ,Zny1) = (z1(1 +ixnq1), -« Za(l +iZTnt1))-

1
1+22,,
Contrary to the well-known fact that a compact manifold can not be
immersed into C™ as a minimal submanifold, i.e. critical of the volume
functional, in (1] Castro and Urbano discover the following interesting fact:
Proposition 1.1([1]). For n =2, the Whitney sphere defined in (1.4)
is a Willmore sphere of C2.

Recently,Hu-Li [7} proved that the Whitney spheres defined in (1.4) are
Willmore submanifolds of C™ if and only if n = 2.Hu;Li [7] also gave
another example of Willmore Lagrangian submanifold in C™ that was called
Willmore Lagrangian sphere.

Example 1.1([7]). Willmore Lagrangian sphere.

Define the Lagrangian sphere ¥ : S* — C™ by

¥ ) 2\/%‘131'5(%“) ( )
T1,"* ,Tpgl) = T o1 T1y° " yTn),
(14 Znp ) VT + (1 = o) VI VE
where
2(n — 1) (1 +2p1) VID — (1 = 20y y) VD
B(Tn41) = / =——— arctan( =)
n (14 Z02)VID 4 (1 = 20y )V ToD

Then ¥ is a Lagrangian Willmore submanifold.
We note that in recent years, due to their backgrounds in mathemati-
cal physics, special Lagrangian submanifolds have been extensively stud-

ied(see(7],(1]and [12] ). In [7] Hu-Li obtained the following
Theorem 1.1([7]). A Lagrangian submanifold o : M — C™ is Will-
more submanifold if and only if forn+1 < m*,I* < 2n

(1’5) pn—2{ Z hﬁ;hﬁ;hz;.' _ Z Hl.hi;-h;?. _ 2H""}
6,5,k i,4,0*
+(n=1)p"2ATH™ +2(n~1)) (p" 2):HT
i

+(n~1)H™ A(p™2) - O™ (5"2) =0,
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where A(Pn—2 Z( -2) Yisis am* (p —2) = E(Pn 2)!J(nHm ij = th ):
ALH™ = Z: = and (p"2)i; is the Hessmn of p"~2 with respect to the
induced metmc dz - dz, Hj{“ and H,’,’; are the components of the first and
second covariant derivative of the mean curvature vector field H.

Remark 1.1. Fix the index m* with n+ 1 < m* < 2n, define O™
M — R by
(1.6) O™ f =Y (nH™ b — b )i

i,j
where f is any smooth function on M. We know that 0™’ is a self-adjoint
operator (see Cheng-Yau [4]). We can see that this operator naturally ap-
pears in the Willmore equation (1.5). This operator will play an important
role in the proofs of our theorems.

In this paper, by making use of the self-adjoint operator O™, we shall
establish some integral inequalities of Simons’ type for n-dimensional com-
pact Willmore Lagrangian submanifolds in the Complex Euclidean Space
C™ in terms of the scalar curvatures, the sectional curvatures, the Ricci
curvatures and the mean curvatures of the submanifolds and give some

rigidity and characterization Theorems of such submanifolds .

2. FUNDAMENTAL FORMULAS OF LAGRANGIAN SUBMANIFOLDS

In this section, we review some related facts for Lagrangian submanifolds
in C™ by method of moving frames. We will follow the notation in the first
section except agreeing with the convention of indices:

ABC,.--=1,---,n,1%,.-. 0", 1*"=n+1,---,n"=2n,
i,j)ka"' = 1,"' u
Let ¢ : M — C™ be an n-dimensional Lagrangian submanifold. We

choose a local field of orthonormal frames e, -+ ,en,e1» = Jey, - ,€ps =



v Je,, in"C™, such that, restricted to M, the vectors ey, -+ , e, are tangent
to M, where J is the complex structure of C™. Let wy,--- ,way, is the field

of dual frames. Then we have the structure equations of C" as follows

(2.1) dwg =1 wapAwp, wap+wpa=0,
B
(22) dwap =) wac Awc,
C

Let 64,04B be the restriction of wa,wap to M. Then §;. = 0, taking
its exterior derivative and making use of (2.1) and the Cartan lemma we

get
(23) zk‘ Zh 3 hk‘ = h;c:a

from which we define the second fundamental form IJ = > hfj wi Qujexs
ig,k*
and the mean curvature vector H of ¢ : M — C™ as follows:

S=Y (rE), B= ZH"ek- H¥ = Zh,,, H=|H)|.

t,4,k*
Since ¢ : M — C™ is Lagrangian, we have for any i, j

(24) (Je,-,ej) = 0, (e.~- ’ JEj) = 6,-,-.
Taking exterior derivative of (2.4), we get for any i,j,k

-v

(2.5) hE = hE = ki,

(2.6) B o = 64,
If we denote by Rijx; the Riemannian curvature tensor of M, we get the

Gauss equations

(2.7) Riw = ) _(hR' R — R REY),

(2'8) 1k “‘nZHm Z _1Ic ’
Jyms*

(2.9) n{n—1)R=n?H? _ 8,
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where R is the normalized scalar curvature of M.
The first covariant derivative {h7;
{h} of R7" are defined by

(210) Z ROk = AR + Y R O+ 3 BT Oy + D bl Okeme,
k k k-

™, } and the second covariant derivative

(2.11)
> hTub = dhT + > hTR0s+ ) R0 + > R O+ Y hljBpme.
[ ! 1 l i
The Codazzi equations and the Ricci identities

(2.12) e = hi,

(213) A — A =D himi Rt + Y RE Rji + ) bl Rkeme .
m m k*
The Ricci equations are
(214) Riejoit = Y (Wi, = Wlmhiza).
m

Define the first, second covariant derivatives and Laplacian of the mean
curvature vector field H = 3> H™ ey~ in the normal bundle N(M) as
m‘

follows

(2.15) S HT 6, =dH™ +)_ H* f4erm-,
i ke

(2.16) D HTO0;=dHT +Y HF 0+ Hf Okome,
J k=

3

m* m*® __ 1 m°
(2.17) A*H Z ., H —;Zk:hkk

Let f be a smooth function on M. The first, second covariant derivatives

fi» fi,; and Laplacian of f are defined by

@18)  df = £l D fubi=dfi+) fibs, AF=) fui
i 3 Jj i
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For the fix index m*(n+1 < m* < 2n), we introduce an operator 0™ due
to Cheng-Yau [4] by
(2.19) O™ f =) (nH™ 8; — k) fige

iJ

Since M is compact, the operator 0™ is self-adjoint (see[4]) if and only if

(2.20) /M (O™ f)gdv = /M £@ g)do,

where f and g are any smooth functions on M.
In general, for a matrix A = (a;;) we denote by N(A) the square of the
norm of A, that is,
N(A) = trace(4- A*) = ) (a;)*.
i3
Clearly, N(A) = N(T*AT) for any orthogonal matrix T'.
We need the following Lemmas due to Chern-Do Carmo-Kobayashi [5],

Li [10] and Cheng [3].
Lemma 2.1([5]) Let A and B be symmetric (n x n)-matrices. Then
(2.21) N(AB - BA) <2N(A)N(B),

and the equality holds for nonzero matrices A and B if and only if A and B
can be transformed simultaneously by on orthogonal matriz into multiples
of A and B respectively, where

010 .- 0 1 0 0 - 0
100 -+ 0 0 -1 0 --- 0
A=] 000 - 0 B=lo o o - o
000 --- 0 0 0 0 -- 0

Moreover, if Ay, A2 and A3 are (n x n)-symmetric matrices and if
N(AaAp — AgA,) = 2N(AL)N(Ap),1 <, <3
then at least one of the matrices A, must be zero.

Lemma 2.2([10]) Let ¢ : M — C™ be an n-dimensional (n > 2)
Lagrangian submanifold. Then we have

3'n,2 3
2 L 712
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where |Vhi? = > (h)% IV = Z(H”‘ )%
)Jl 'm

Lemma 2. 3([3]) Let b; fori = 1,-+-,n be real numbers satisfying
Zb =0 and zbz B. Then

i=1

B?  (n-2)%
Z 4 2

Lemma 2.4([3]) Let a; and b; fori=1,---,n be real numbers satis-
Sying Za.—O and Za =a. Then

i=1

n (i b2)2

(2.24) b2 < ZM L

3. INTEGRAL EQUALITIES AND PROPOSITIONS

In this section we shall obtain some integral equalities of Willmore La-
grangian submanifolds ¢ : M — C™. We should note that the self-adjoint
operator 0™, which appears in Euler-Lagrange equation (1.5) naturally,
will play an important role in the proof of these integral equalities.

Define tensors

(31) by = b - H™ b,
(3.2) 0‘m-1- = zhm hi;, Tmels = Z hm hl.

Then the (n x n)-matnx (ap) is symmetric and can be assumed to be

diagonized for a suitable choice of €j.,--- ,en.. We set
(3.3) &mol‘ = 5m‘6m‘l‘-
By a direct calculation, we have

(34) SR =0, Gmete = Omeie—nH™ H", p* =3 6me = S—nH?,
k o
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(35) z h’k] %] ?I:.= Z il;c;ﬁ:?.":',:.

ij,k,m* i,j,k,m*
+2 Y H™RZRG + H p? + nH?H".
i,j,m* .
From (3.1),(3.4) and (3.5),the Euler-Lagrange equation(1.5) can be rewrit-
ten as
Proposition 3.1. A Lagrangien submanifold ¢ : M — C" is Willmore
submanifold if and only if forn+1 < m*,I* <2n
(3.6)
O™ (p"%) = (n—1)p" AL H™ +2(n - 1) Z(ﬂ"_2)eH,'Z‘

+(n—1)H™ A(p"-2)+p"‘2(ZH’ Fmete + > RERERE).

i,k

Setting f = nH™" in (2.19), we have
(3.7) O™ (nH™) =Y (nH™ 8;; — hJ Y(nH™ )y 5
=Y (nH™)(nH™ )is = Y hZ (nH™ ) ;.
i i3

We also have
(3.8)

SAMH)? =3 A S(nH™ ) N e
L S E = S E™ )+ Y oH™ Y H™ )

=n?|VHP + > (nH™ )nH™ );;.
Therefore, from (3.7) and (3.8), we get
(3.9)
* N __ 1 2 17712 m”
;EI"‘ (nH™) = SAMmH)? - n?| VAP - ,Z,:n A (nH

1 = m e erm®
= -2-A('n(n—1)H2—p2+S)—n2|VJ'H|2— > RG (RH™ )

H,j,m*

1 1 2_1, o2  oolgie m® .
= 5AS + on(n— DAH? ~ AP — o |VEHP — 3 b (nH™ ).

i,j,m*
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On the other hand, we have

(3.10)
1
5AS = Yo (R + Z KT AT
i’j'klm !Jl
=|VA2+ > R (nH™ )is+ > Y R (R Rujx + AT Rukje)

i,jm* m* ilj)kll

+ Z Zh h{g‘Rl'm'jk-

m*,l* i,5,k

Putting (3.10) into (3.9), we have
(3.11)
Y O™ (nH™) = |Vh|? — n?|VLH? + %n(n -1)AH? - %A,P

+3° " hE (T Ruge + B Ruge) + ) Z R By Rpe e jik.
m* i,j,k,l mel* i,5,k

Multiplying (3.11) by p"~2 and taking integration, using (2.20), we have
(3.12)

S [ aHm T i = [ pHORE = o9 Ao

me v M M

+ -l—n(n - 1)/ P 2AH?dv - %/ ot 2 ApPdy
M

/ PSS 3 (R Ruse + B Ruseld

i,7,k,1
/ P IPILA RS
m*,l* i,k

Taking the Euler-Lagrange equation (3.6) into (3.12) and making use of
the following

/ Y B AL H™ do =1 / PTEY AL(H™ )?dv
M = 2/m =
_/ n—2 E(Hm )2dv

=1 / P 2AH%dv - / P2\ VH|?dv,
2Jm M
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A{ H2A(pn—2)dv =/ Z(Hm-)z Z(pn—Z)i'id;
- / (H™ )27, udo

m* ¢

== [ @)
—_ m* n—2y 7{;'
=—2 /M ;H ;(p )} H™ du,

—'2'/ P2 Ap d'v—-_Z/ "=2(p2), dv
=§ tZA{(p2)i(pn—2)idv =(n- 2)./”[ pn—Zlvplzdv’

we have, by a direct calculation, the following
Proposition 8.2 For any n-dimensional compact Willmore Lagrangian

submanifold ¢ : M — C™ , there holds the following integral equality
(3.13) / o"¥(|Vh]? — | VL AR)dv + (n — 2) / 72|V p|2dv
M

—/ n-2 Z nH™ (Hl O'm-p -+ th hlkhkj)dv
M

m*,{* i,k

+ /M P2 Z > b (WG Rugi + " Ruje)dv

i,5.k1
/ PP D B B Riemejady =0,
m*l* 4,5,k
From (2.14) and (3.1) we have

(3.14) D> > AT hLRiemesi = > D R RS R ~ RahE)

m=,l* i,5,k me*l* :,],k ]

Z Z iR~ R ki)
{

me* l*,5,k
> (Z Rhg - Z R Ri)?
m=*,l* 4,k

= — - Z N(Am-A[O —Al‘Am‘)v

m‘ 34

N = t\:>|
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where Ape = (A}) = (A" — H™ §;5).
By use of (2.7),(3.2),(3.4),(3.5) and (3 14) we can take a simple and
direct calculation that

(3.15)
Y > BT (R Ruja + b Rucie)
m* ik,
== 5 3 ARGRR R +n Y S HUhiGhT G
m*,l* i,k m* I*i,j,k
+ Z .kRPm‘Jk
m*,l*ij,k
==Y ok tn ), ZH“B RERE +2n Yy > H™ HUAG R
me,l* me,l*ijk m*l* i,j
+n2(H")2p2 +n2H2 Z(Hl.)z = Z N(Am'Al' _ A(oAm-)
m. l.
=- Z 62, +nH 2 +n Z ZH‘.h L ~"‘.
me,l* m*l* 4,5,k
- Z N(Am- Al — A A o).
mo l.

Putting (3.14) and (3.15) into (3.13), we have the following
Proposition 3.3 For any n-dimensional compact Willmore Lagrangian

submanifold ¢ : M — C™, there holds the following integral equality
(3.16) / 2| Vh[2 = VL BR)dv + (n - 2) / "2V pl2dv
M M

+n / PPHH? = Y H™ HY Gpmee)dv
M

m=*,l*

/ n-2 Z N(Am'A[- - Al-Am') +o’m.,.)dv =

m* l*

4. INTEGRAL INEQUALITIES AND THEOREMS

In this section, we shall obtain some rigidity Theorems of n-dimensional
Willmore Lagrangian submanifold ¢ : M — C™ in terms of the function

p? = S — nH?, sectional and Ricci curvature and mean curvature. We
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should note that the integral equalities (3.13) and (3.16) will play an im-
portant role in the proofs of these Theorems. Firstly, we can conclude the

following theorem
Theorem 4.1. Let p : M — C™ be an n(n > 2)-dimensional compact
Willmore Lagrangian submanifold. Then there holds the follows

wy [l Dwiap-@-Lma<o

In particular, If

[__2n
4.2) p2 <n le*Hl

then M is totally umbilical.
Proof. From lemma2.1, (3.2) and (3.3), we have

(43) = > N(mAie = Apdime) = Y 320
m*,l* me l*
Z"m‘ -2 Z Oms+Ope = -2(2 gm.)2+z
m*#l*

> 2% + ;(Zﬁm') =—(2- 7;)”4’
o

where, we used

- 1 -
(4.4) ;Ufn' 2 H(;Um‘)z
We also have
(45) Y H™H'6mepe = Z(H”' Vome <Y (H™ )Y 610 = H?p2.
me,l* m* i

By making use of lemma2.2, (3.16),(4.3) and (4.5), we have
(4.6)
2
0> / P2V — |VJ-H|2)dv + / "-(2(—3-"— — )|V A Pdv
M
n— n—2y2n(n 1
- [ e~ —)p4dv > [ s 2{(—|\7*Hl2 (2 - 2)p*)dn.
M n M n

(i) If n = 2, from (4.2) and (4.6), we have [V-H[2 = $p%on M.Ifp> =0
on M, then M is totally umbilical. If p? # 0 on M, from |VLH|? = §p*
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‘we know that the equality in (4.6) holds. Therefore, we have
(47) N(AsA4 — AyAs) = 2N(A3)N(Ay), 252 +53) = (53 +54)%,
that is
(4.8) 3 = 64.
We also have for m*,{* =3, 4,
(4.9) 3" H™ H 6o = H?P2.

m.'lo
From lemma 2.1, we know that at most two of Ape = (ﬁ?;'), m* = 3,4, are
different from zero. If all of Ap. = (713') are zero, which is contradiction
with M is not totally umbilical. If only one of them, say A, is different

from zero, which is contradiction with (4.8). Therefore, we may assume

that
A3 =AA1 A‘l =IJ'E) )\7“5é0’

where A and B are defined in lemma 2.1.
From (4.9), we have

N(HP)? 4 2 (HY? = (N + p2) ()2 + (HY)P).
Since \,u # 0, we infer that H3 = HY = 0, that is, H = 0, i.e, M is
a minimal Lagrangian submanifold in C? .This is contradiction with the

well known fact that there are no compact minimal submanifolds in the
complex Euclidean space.

(ii) If n > 2, from (4.2) and (4.6), we have p = 0 on M, that is, M
is totally umbilical, or %"T;—QIV-LI?P = (2 - 1)p*. In the latter case, if
p? = 0 on M, we have M is totally umbilical. If p*> # 0 on M, we know
that the equality in (4.6) holds. Therefore, we have

(4.10) N(AmeAre — Ao Am-) = 2N(Ape)N(Ap), m* #107,

n Z&gm = (Z &m‘)z:
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that is

(4.11) Fpa1 =+ = Gop.

We also have

(4.12) > H™H Gpee = H?p2.
m»*,l*

From lemma 2.1, we know that at most two of A,,. = (ﬁ;_f;‘),m‘ =n+
1,---,2n, are different from zero. If all of A, = (7113") are zero, which
is contradiction with M is not totally umbilical. If only one of them, say

Am-, is different from zero, which is contradiction with (4.11). Therefore,

we may assume that
“in+l = AA: A~n+2 = ﬂg» A)# # 0,
Am- =0, m*>n+3,

where A and B are defined in lemma 2.1.

From (4.12), we have
N(HMHR 4 g2 (H™)2 = (V2 4 2) 3 (H™ )2

Since A, 4 # 0, we infer that H™ = 0,n+1 < m* < 2n, that is, H =0, i.e,
M is a minimal Lagrangian submanifold in C™, This is contradiction with
the well known fact that there are no compact minimal submanifolds in the
complex Euclidean space. Therefore, we complete the proof of Theorem 4.1.
From (3.13),(3.14),(3.15) and (3.16), we know that for any real number
a, the following integral equality holds
(4.13)
[ R iV A+ (- 2) [ pvaan

-I-n/ "R H?p? — Z H™ H" e )dv — (a+1)n/ H%p"dy
M M

m* I
+(1+a) /M 2SS (B Rugi+ b Rugse)do
m* {4,k
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—ran [ Y > H g R+ o [

m*,l* 5,k m*,l*
l-a
2 -

/ " S N Aie = Ae A Yo =0,
M

m‘,l‘
Now, denote by K the function which assigns to each point of M the

infimum of the sectional curvature at that point, we have the following
Theorem 4.2 Let ¢ : M — C™® be an n(n > 2)-dimensional compact
Willmore Lagrangian submanifold. Then there holds the follows

(4.14) / p"{K - —LE—-H/) H?%}dv <0.
M

Vvn(n—1)

In particular, if

(4.15) K>_"-2

" Valn-1)
then M is totally umbilical.

Proof. For a fixed m*,n+1 < m* < 2n, we can take a local orthonor-
mal frame field {e;, -+ - ,eq} such that AZ}" = X""4;;. Then, A} = "6
with u*” = A" — H™', Zp{" = 0. Thus

i

Hp+ H?,

(4.16)
> Ry (hm.Rlijk'i‘h;?.lejk) ) Z (A = A7) Rajis
m.iinlkil m* hi
=3 3 - i) Ry 2 nKAP,
m‘,z,J

and the equality in (4.16) holds if and only if R;j;; = K for any i # j.
Let (A)? = m-. Then 1. < Y(RG)? = 1. Since TR =
i : 1,3 i
Zy}"' =0 and 2(;&}" = Gme-. We have from lemma 2.3 and lemma 2.4

@1y S STH™ AT hGhE =Y Y HURGAE A

m* l* i35,k 1*,m*i,j,k
= Hl‘ h m*)\2 n Hl . "
=2 LY s \m—,,%.' o

\/ﬁ(_n_TZam'lel |\/51—°
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L — Hl 2 .= ‘——-——""—H 3-
‘\/‘ E (H") E o ey 3 P
From (3.3), we get

(4.18) > = Z .2 %(Z&m.f = %p‘.

m*,l*

From lemma 2.1, (3.2) and (3.3), we have

(4.19)
D N(AmeAp — A Ane) <2 Y Gmebre = 2(20,,,.) - 22%.
m=,l* m*#l*

n—1
< —_ T e 2_-_—_ —_— 4.
_2p 2n(;am ) 2 n P

Therefore, from (4.5),(4.13), lemma 2.2, (4.16)—(4.19), we obtain for
0<a<l1
(4.20)

02 [ A (VHE ~ V- B+ (- 2) [ =21l

+n / HHYE = 3 H™ H Gpere Yo — (1 + a)n / H2p dv
M

ms [l*
+(1+ a)/ P K p?dv — (14 a)n/ P \/E(_n__l_szdv
+a/ n-2 -(1- a)/

n “K——-———
>(1+a) /M ( o
+[%—(1—a)n_1]/Mp"+2dv.

Putting a = 21, we have

Hp— Hz)dv

nig_ "2
(4.21) 0> /M ™K NoCER)

From (4.15) and (4.21), we have p = 0, that is M is totally umbilical,

Hp — H*}dv.

or K = 7=_(—;==1=Hp-{-H2 In the latter case, if p> = 0 on M, we have M
is totally umbilical. If p2 # 0 on M, then we have the equality in (4.21)
holds. Therefore, we know that the equalities in (4.20) hold. Therefore
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the equalities in lemma 2.1,(4.18) and (4.19) hold. Since we know that .
M is not totally umbilical, we have (4.10)-(4.12) hold. By making use of "
the same assertion as in the proof of Theorem 4.1, we infer that M is a
minimal Lagrangian submanifold in C™. This is contradiction with the well
known fact that there are no compact minimal submanifolds in the complex
Euclidean space. Therefore, we complete the proof of Theorem 4.2.

Now, we consider the rigidity of Willmore Lagrangian submanifolds in
terms of Ricci curvatures. Denote by Q the function which assigns to each
point of M the infimum of the Ricci curvature at that point, we have the
following

Lemma 4.1. For any n-dimensional Lagrangian submanifold in C",
there holds the follows
422) 3 N(Ame A = A Ame) < 4{(n - 2)Hp + H? - Q)6 - %p‘*.

me,le

Proof. From Gauss equation (2.8) and (3.1), we have

Ry =(n—2)Y H™RE +(n—1)H8 - SRR

m*,j
Thus, we get
(4.23) Ry=(n—2)Y H™hZ +H? =Y (7).
me me.j
By Cauchy-Schwarz inequality, we have
(4.24) STH™RT < [ (H™)? [ (h)? < Hp.
o o s
(4.23) and (4.24) infer that
(4.25) Q< (n—2)Hp+H?- > (T )%
m*,j
Therefore, we have
(4.26) > (hF)? < (n-2)Hp+ H? - Q- (R)™.

m*#l* i
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From (4.26) and 71{'; = " 8;;, it is easy to see

SO N(Amedpe = A hime) = 3 (B — Y
I 1*#m*,i,l
<4 ) (R)PW)?
I*#me* il

<4 {(n =D Hp+ H? — Q= (4P )
!
= 4{(n-DHp+ H? = Q} T ()2 ~ 4 3 ()
! ]
<4{(n=DHp+ H* - Q} 3 (W ~ 2wy
3 4

Therefore, we know (4.22) holds. This completes the proof of lemma 4.1.
Theorem 4.3. Let ¢ : M — C™ be an n(n > 2)-dimensional compact
Willmore Lagrangian submanifold. Then there holds the follows

(4.27) / Q-2 4p —(n—2)Hp— H*}dv < 0.
In particular, if
(4.28) Q2" 20+ (n—2)Hp+ H?,

then M is totally umbilical.
Proof. From (3.16), lemma 2.2, (3.3), (4.5) and lemma 4.1, we have
(4.29)

0>— / P H4((n-2)Hp+ H? - Q)p? — 4 *}dv —/ A" 2ptdy
M n M

- / Q- 222 — (n—2)Hp — HR)dv,
where we used

(4.30) > 6k = Zam. < (Z Fme)? = pt.

m*,l*
From (4.28) and (4.29), we conclude p = 0, that is M is totally umbilical,

or

Q —_

In the latter case, if p2 =0, then M is totally umbilical; if p? # 0, we have

the equalities in (4.29) and (4.30) hold. From § &2,. = (3 &m-)?, we have
m* m*
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S Gm-61- = 0. This implies that (n—1) of the G,,,» must be zero. Since
mo#lo
=X (l—z}’}')z # 0 and Gyppe = Z(fz,'-;?')"’, we infer that (n — 1) of the
m*,i,j i,J
Ape = (h};-") must be zero so that n = 1. This is a contradiction for we

assume that n > 2. We complete the proof of Theorem 4.3.
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